Handling Uncertainity in Error Propagation Analysis
Loading...
Date
2023
item.page.title
Handling Uncertainity in Error Propagation Analysis
item.page.contributor
item.page.advisor
Authors
Földvári, András
Pataricza, András
Pataricza, András
item.page.spatial
item.page.createdDate
item.page.extent
item.page.medium
item.page.isbn
item.page.issn
item.page.language
en
Publisher
item.page.replaces
item.page.alternative
item.page.type
könyvfejezet
item.page.accessRights
Open access
item.page.rightsHolder
Szerző
item.page.address
item.page.conferenceDate
2023.02.06-2023.02.07.
item.page.conferencePlace
Budapest
item.page.conferenceTitle
30th Minisymposium of the Department of Measurement and Information Systems
item.page.containerIdentifierIsbn
978-963-421-904-0
item.page.containerIdentifierIssn
item.page.containerPeriodicalNumber
item.page.containerPeriodicalVolume
item.page.containerPeriodicalYear
item.page.containerTitle
Proceedings of the 30th Minisymposium
item.page.contributorLector
item.page.contributor.lector
item.page.contributorBody
item.page.courseCode
item.page.courseName
item.page.dateDefence
item.page.department
Department of Measurement and Information Systems
item.page.descriptionVersion
Post print
item.page.doctoralSchool
item.page.faculty
Faculty of Electrical Engineering and Informatics
item.page.firstpage
29
item.page.identifier
item.page.identifierLectureNotes
item.page.identifierReference
item.page.inscription
item.page.note
item.page.page
item.page.periodicalCreator
item.page.periodicalNumber
item.page.periodicalVolume
item.page.periodicalYear
item.page.scale
item.page.signature
item.page.subjectArea
item.page.subjectField
item.page.subjectOszkar
error propagation analysis
rough set theory
uncertainity
rough set theory
uncertainity
item.page.technique
item.page.titlenumber
item.page.typeType
Konferenciacikk
item.page.university
Budapest University of Technology and Economics
item.page.universityProgram
item.page.universityProgramLevel
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Error propagation analysis (EPA) is a systematic model-based approach to assess the impact of incidental or malicious faults in the dependability and security analysis of complex systems.
Its main purpose is to estimate the most severe failures in the system under evaluation. It can be extended to evaluate the efficiency of built-in error protection and mitigation mechanisms.
However, during the EPA, uncertainties may arise, which may affect the outcome - this way, the validity of the analysis - and lead to escaping faults. Uncertainties can originate from two primary sources. Firstly, epistemic-type uncertainties express that there may be parts of the analyzed system that are unknown to the domain expert. Secondly, aleatory uncertainties may arise from incorrect or incomplete modeling of the system or even from the non-deterministic operation (physical processes). Our approach extends the known EPA models by handling the uncertainties via rough set theory, an advanced mathematical paradigm to generate approximate descriptions of the system behavior.