Műegyetemi Digitális Archívum
 

Analyzing the Discriminative Power of EEG Microstates Over Mental Tasks

Loading...
Thumbnail Image

Date

2023

item.page.title

Analyzing the Discriminative Power of EEG Microstates Over Mental Tasks

item.page.contributor

item.page.advisor

Authors

Vetró, Mihály
Hullám, Gábor

item.page.spatial

item.page.createdDate

item.page.extent

item.page.medium

item.page.isbn

item.page.issn

item.page.language

en

Publisher

item.page.replaces

item.page.alternative

item.page.type

könyvfejezet

item.page.accessRights

Open access

item.page.rightsHolder

Szerző

item.page.address

item.page.conferenceDate

2023.02.06-2023.02.07.

item.page.conferencePlace

Budapest

item.page.conferenceTitle

30th Minisymposium of the Department of Measurement and Information Systems

item.page.containerIdentifierIsbn

978-963-421-904-0

item.page.containerIdentifierIssn

item.page.containerPeriodicalNumber

item.page.containerPeriodicalVolume

item.page.containerPeriodicalYear

item.page.containerTitle

Proceedings of the 30th Minisymposium

item.page.contributorLector

item.page.contributor.lector

item.page.contributorBody

item.page.courseCode

item.page.courseName

item.page.dateDefence

item.page.department

Department of Measurement and Information Systems

item.page.descriptionVersion

Post print

item.page.doctoralSchool

item.page.faculty

Faculty of Electrical Engineering and Informatics

item.page.firstpage

21

item.page.identifier

item.page.identifierLectureNotes

item.page.identifierReference

item.page.inscription

item.page.note

item.page.page

item.page.periodicalCreator

item.page.periodicalNumber

item.page.periodicalVolume

item.page.periodicalYear

item.page.scale

item.page.signature

item.page.subjectArea

item.page.subjectField

item.page.subjectOszkar

EEG microstates
electroencephalography
statistics
machine learning

item.page.technique

item.page.titlenumber

item.page.typeType

Konferenciacikk

item.page.university

Budapest University of Technology and Economics

item.page.universityProgram

item.page.universityProgramLevel

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Microstate analysis of EEG recordings has long been an instrumental tool for studying the temporal dynamics of whole-brain neuronal networks. The characteristics of EEG microstate sequences have been used mostly for diagnostic purposes, including the detection of schizophrenia, epilepsy, Alzheimer’s disease, and early dementia. Aside from diagnostics, the use of this methodology has been limited. In this study, we examine the discriminative power of EEG microstates to differentiate between mental tasks, and we assess the generalizing power of microstate representations over different subjects and recording sessions. For this purpose, we inspect both the characteristics of discrete microstate sequences, as well as various features generated from the association of detected microstates with the continuous EEG data. For demonstration purposes, we use two distinct datasets, which contain recordings from multiple subjects, while performing different mental tasks.

Description

Keywords

Citation