Corner Detection and Classification of Simple Objects in Low-Depth Resolution Range Images
Loading...
Date
2013
item.page.title
Corner Detection and Classification of Simple Objects in Low-Depth Resolution Range Images
item.page.contributor
item.page.advisor
Authors
Kovács, Viktor
Tevesz, Gábor
Tevesz, Gábor
item.page.spatial
item.page.createdDate
item.page.extent
item.page.medium
item.page.isbn
item.page.issn
item.page.language
Publisher
Budapest University of Technology and Economics
item.page.replaces
item.page.alternative
item.page.type
folyóiratcikk
item.page.accessRights
Open access
item.page.rightsHolder
item.page.address
item.page.conferenceDate
item.page.conferencePlace
item.page.conferenceTitle
item.page.containerIdentifierIsbn
item.page.containerIdentifierIssn
2064-5260
2064-5279
2064-5279
item.page.containerPeriodicalNumber
1
item.page.containerPeriodicalVolume
57
item.page.containerPeriodicalYear
item.page.containerTitle
Periodica Polytechnica - Electrical Engineering and computer science
item.page.contributorLector
item.page.contributor.lector
item.page.contributorBody
item.page.courseCode
item.page.courseName
item.page.dateDefence
item.page.department
item.page.descriptionVersion
Kiadói változat
item.page.doctoralSchool
item.page.faculty
item.page.firstpage
9
item.page.identifier
item.page.identifierLectureNotes
item.page.identifierReference
item.page.inscription
item.page.note
item.page.page
item.page.periodicalCreator
item.page.periodicalNumber
item.page.periodicalVolume
item.page.periodicalYear
item.page.scale
item.page.signature
item.page.subjectArea
item.page.subjectField
item.page.subjectOszkar
Range image
Corner detection
Feature extraction
Thinning
Corner detection
Feature extraction
Thinning
item.page.technique
item.page.titlenumber
item.page.typeType
Tudományos cikk
item.page.university
item.page.universityProgram
item.page.universityProgramLevel
Journal Title
Journal ISSN
Volume Title
Publisher
Budapest University of Technology and Economics
Abstract
This paper deals with corner detection of simple geometric objects in quantized range images. Low depth resolution and noise introduce challenges in edge and corner detection. Corner detection and classification is based on layer by layer depth data extraction and morphologic operations. Appearance based heuristics are applied to identify different corner types defined in this paper. Both computer generated and captured range images are dealt with. Synthetic range images have arbitrary range resolution while captured images are based on the sensor used. Real world data is collected using a structured light based sensor to provide dense range map.