Műegyetemi Digitális Archívum
 

Transfer Learning in Heterogeneous Drug-Target Interaction Predictions Using Federated Boosting

Loading...
Thumbnail Image

Date

2023

item.page.title

Transfer Learning in Heterogeneous Drug-Target Interaction Predictions Using Federated Boosting

item.page.contributor

item.page.advisor

Authors

Sándor, Dániel
Antal, Péter

item.page.spatial

item.page.createdDate

item.page.extent

item.page.medium

item.page.isbn

item.page.issn

item.page.language

en

Publisher

item.page.replaces

item.page.alternative

item.page.type

könyvfejezet

item.page.accessRights

Open access

item.page.rightsHolder

Szerző

item.page.address

item.page.conferenceDate

2023.02.06-2023.02.07.

item.page.conferencePlace

Budapest

item.page.conferenceTitle

30th Minisymposium of the Department of Measurement and Information Systems

item.page.containerIdentifierIsbn

978-963-421-904-0

item.page.containerIdentifierIssn

item.page.containerPeriodicalNumber

item.page.containerPeriodicalVolume

item.page.containerPeriodicalYear

item.page.containerTitle

Proceedings of the 30th Minisymposium

item.page.contributorLector

item.page.contributor.lector

item.page.contributorBody

item.page.courseCode

item.page.courseName

item.page.dateDefence

item.page.department

Department of Measurement and Information Systems

item.page.descriptionVersion

Post print

item.page.doctoralSchool

item.page.faculty

Faculty of Electrical Engineering and Informatics

item.page.firstpage

41

item.page.identifier

item.page.identifierLectureNotes

item.page.identifierReference

item.page.inscription

item.page.note

item.page.page

item.page.periodicalCreator

item.page.periodicalNumber

item.page.periodicalVolume

item.page.periodicalYear

item.page.scale

item.page.signature

item.page.subjectArea

item.page.subjectField

item.page.subjectOszkar

federated learning
multitask learning
boosting
DTI

item.page.technique

item.page.titlenumber

item.page.typeType

Konferenciacikk

item.page.university

Budapest University of Technology and Economics

item.page.universityProgram

item.page.universityProgramLevel

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In multitask federated learning, when small amounts of data are available, it can be harder to achieve proper predictive performance, especially if the clients’ tasks are different. However, task heterogeneity is common in modern Drug-Target interaction (DTI) prediction problems. As the data available for DTI tasks are sparse, it can be challenging for clients to synchronize the tasks used for training. In our method, we used boosting to enhance transfer in the multitask scenario and adapted it to a federated environment, allowing clients to train models without having to agree on the output dimensions. Boosting uses adaptive weighting of the data to train an ensemble of predictors. Weighting data boosting can induce the selection of important tasks when shaping a model’s latent representation. This way boosting contributes to the weighting of tasks on a client level and enhances transfer, while traditional federated algorithms can be used on a global level. We evaluate our results extensively on the tyrosine kinase assays of the KIBA data set to get a clear picture of connections between boosting federated learning and transfer learning.

Description

Keywords

Citation