Thoratic Spine Segmentation Based on CT Images
Loading...
Date
2023
item.page.title
Thoratic Spine Segmentation Based on CT Images
item.page.contributor
item.page.advisor
Authors
Révy, Gábor
Hadházi, Dániel
Hullám, Gábor
Hadházi, Dániel
Hullám, Gábor
item.page.spatial
item.page.createdDate
item.page.extent
item.page.medium
item.page.isbn
item.page.issn
item.page.language
en
Publisher
item.page.replaces
item.page.alternative
item.page.type
könyvfejezet
item.page.accessRights
Open access
item.page.rightsHolder
Szerző
item.page.address
item.page.conferenceDate
2023.02.06-2023.02.07.
item.page.conferencePlace
Budapest
item.page.conferenceTitle
30th Minisymposium of the Department of Measurement and Information Systems
item.page.containerIdentifierIsbn
978-963-421-904-0
item.page.containerIdentifierIssn
item.page.containerPeriodicalNumber
item.page.containerPeriodicalVolume
item.page.containerPeriodicalYear
item.page.containerTitle
Proceedings of the 30th Minisymposium
item.page.contributorLector
item.page.contributor.lector
item.page.contributorBody
item.page.courseCode
item.page.courseName
item.page.dateDefence
item.page.department
Department of Measurement and Information Systems
item.page.descriptionVersion
Post print
item.page.doctoralSchool
item.page.faculty
Faculty of Electrical Engineering and Informatics
item.page.firstpage
25
item.page.identifier
item.page.identifierLectureNotes
item.page.identifierReference
item.page.inscription
item.page.note
item.page.page
item.page.periodicalCreator
item.page.periodicalNumber
item.page.periodicalVolume
item.page.periodicalYear
item.page.scale
item.page.signature
item.page.subjectArea
item.page.subjectField
item.page.subjectOszkar
spine segmentation
CT
image processing
expert system
CT
image processing
expert system
item.page.technique
item.page.titlenumber
item.page.typeType
Konferenciacikk
item.page.university
Budapest University of Technology and Economics
item.page.universityProgram
item.page.universityProgramLevel
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Automatic vertebrae localization and segmentation in computed tomography (CT) are fundamental for computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems. However, they remain challenging due to the high variation in spinal anatomy among patients. In this paper, we propose a simple, model-free approach for automatic CT vertebrae localization and segmentation. The segmentation pipeline consists of 3 stages. In the first stage the center line of the spinal cord is estimated using convolution. In the second stage a baseline segmentation of the spine is created using morphological reconstruction and other classical image processing algorithms. Finally, the baseline spine segmentation is refined by limiting its boundaries using simple heuristics based on expert knowledge. We evaluated our method on the COVID-19 subdataset of the CTSpine1K dataset. Our solution achieved a dice coefficient of 0.8160±0.0432 (mean±std) and an intersection over union of 0.6914±0.0618 for spine segmentation. The experimental results have demonstrated the feasibility of the proposed method in a real environment.