Műegyetemi Digitális Archívum
 

Thoratic Spine Segmentation Based on CT Images

Loading...
Thumbnail Image

Date

2023

item.page.title

Thoratic Spine Segmentation Based on CT Images

item.page.contributor

item.page.advisor

Authors

Révy, Gábor
Hadházi, Dániel
Hullám, Gábor

item.page.spatial

item.page.createdDate

item.page.extent

item.page.medium

item.page.isbn

item.page.issn

item.page.language

en

Publisher

item.page.replaces

item.page.alternative

item.page.type

könyvfejezet

item.page.accessRights

Open access

item.page.rightsHolder

Szerző

item.page.address

item.page.conferenceDate

2023.02.06-2023.02.07.

item.page.conferencePlace

Budapest

item.page.conferenceTitle

30th Minisymposium of the Department of Measurement and Information Systems

item.page.containerIdentifierIsbn

978-963-421-904-0

item.page.containerIdentifierIssn

item.page.containerPeriodicalNumber

item.page.containerPeriodicalVolume

item.page.containerPeriodicalYear

item.page.containerTitle

Proceedings of the 30th Minisymposium

item.page.contributorLector

item.page.contributor.lector

item.page.contributorBody

item.page.courseCode

item.page.courseName

item.page.dateDefence

item.page.department

Department of Measurement and Information Systems

item.page.descriptionVersion

Post print

item.page.doctoralSchool

item.page.faculty

Faculty of Electrical Engineering and Informatics

item.page.firstpage

25

item.page.identifier

item.page.identifierLectureNotes

item.page.identifierReference

item.page.inscription

item.page.note

item.page.page

item.page.periodicalCreator

item.page.periodicalNumber

item.page.periodicalVolume

item.page.periodicalYear

item.page.scale

item.page.signature

item.page.subjectArea

item.page.subjectField

item.page.subjectOszkar

spine segmentation
CT
image processing
expert system

item.page.technique

item.page.titlenumber

item.page.typeType

Konferenciacikk

item.page.university

Budapest University of Technology and Economics

item.page.universityProgram

item.page.universityProgramLevel

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Automatic vertebrae localization and segmentation in computed tomography (CT) are fundamental for computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems. However, they remain challenging due to the high variation in spinal anatomy among patients. In this paper, we propose a simple, model-free approach for automatic CT vertebrae localization and segmentation. The segmentation pipeline consists of 3 stages. In the first stage the center line of the spinal cord is estimated using convolution. In the second stage a baseline segmentation of the spine is created using morphological reconstruction and other classical image processing algorithms. Finally, the baseline spine segmentation is refined by limiting its boundaries using simple heuristics based on expert knowledge. We evaluated our method on the COVID-19 subdataset of the CTSpine1K dataset. Our solution achieved a dice coefficient of 0.8160±0.0432 (mean±std) and an intersection over union of 0.6914±0.0618 for spine segmentation. The experimental results have demonstrated the feasibility of the proposed method in a real environment.

Description

Keywords

Citation