Műegyetemi Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 1. Tudományos közlemények, publikációk
  • Konferenciák gyűjteményei
  • BME MIT PhD Minisymposium
  • BME MIT PhD Minisymposium, 2023, 30th
  • View Item
  •   DSpace Home
  • 1. Tudományos közlemények, publikációk
  • Konferenciák gyűjteményei
  • BME MIT PhD Minisymposium
  • BME MIT PhD Minisymposium, 2023, 30th
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer Learning in Heterogeneous Drug-Target Interaction Predictions Using Federated Boosting

Thumbnail
View/Open
30Minisy2023-011.pdf (4.901Mb)
Metadata
Show full item record
Link to refer to this document:
10.3311/minisy2023-011
Collections
  • BME MIT PhD Minisymposium, 2023, 30th [11]
Abstract
In multitask federated learning, when small amounts of data are available, it can be harder to achieve proper predictive performance, especially if the clients’ tasks are different. However, task heterogeneity is common in modern Drug-Target interaction (DTI) prediction problems. As the data available for DTI tasks are sparse, it can be challenging for clients to synchronize the tasks used for training. In our method, we used boosting to enhance transfer in the multitask scenario and adapted it to a federated environment, allowing clients to train models without having to agree on the output dimensions. Boosting uses adaptive weighting of the data to train an ensemble of predictors. Weighting data boosting can induce the selection of important tasks when shaping a model’s latent representation. This way boosting contributes to the weighting of tasks on a client level and enhances transfer, while traditional federated algorithms can be used on a global level. We evaluate our results extensively on the tyrosine kinase assays of the KIBA data set to get a clear picture of connections between boosting federated learning and transfer learning.
Title
Transfer Learning in Heterogeneous Drug-Target Interaction Predictions Using Federated Boosting
Author
Sándor, Dániel
Antal, Péter
Date of issue
2023
Access level
Open access
Copyright owner
Szerző
Conference title
30th Minisymposium of the Department of Measurement and Information Systems
Conference place
Budapest
Conference date
2023.02.06-2023.02.07.
Language
en
Page
41 - 44
Subject
federated learning, multitask learning, boosting, DTI
Version
Post print
Identifiers
DOI: 10.3311/minisy2023-011
Title of the container document
Proceedings of the 30th Minisymposium
ISBN, e-ISBN
978-963-421-904-0
Document type
könyvfejezet
Document genre
Konferenciacikk
University
Budapest University of Technology and Economics
Faculty
Faculty of Electrical Engineering and Informatics
Department
Department of Measurement and Information Systems

Content by
Theme by 
Atmire NV
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback

Content by
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Content by
Theme by 
Atmire NV
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback

Content by
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV