Műegyetemi Digitális Archivum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 1. Tudományos közlemények, publikációk
  • Konferenciák gyűjteményei
  • 1st Workshop on Intelligent Infocommunication Networks, Systems and Services
  • View Item
  •   DSpace Home
  • 1. Tudományos közlemények, publikációk
  • Konferenciák gyűjteményei
  • 1st Workshop on Intelligent Infocommunication Networks, Systems and Services
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly Detection using combination of Autoencoder and Isolation Forest

Thumbnail
View/Open
WINS2023-005.pdf (524.2Kb)
Metadata
Show full item record
Link to refer to this document:
10.3311/WINS2023-005
Collections
  • 1st Workshop on Intelligent Infocommunication Networks, Systems and Services [19]
Abstract
The process of identifying abnormal objects or patterns that deviate from the typical behavior in a dataset or other observations is known as Anomaly Detection. It is an essential technique in many fields, such as cyber security, finance, transportation, and fraud detection. This paper combines an autoencoder and an isolation forest algorithm to enhance anomaly detection. The autoencoder is a neural network trained to reconstruct the input data, while the isolation forest is a tree-based algorithm that can identify outliers in the data. By combining these two methods, the autoencoder can learn a compact representation of the data, and the isolation forest can then be applied to the reconstructed data to identify anomalies. This combination effectively enhances the anomaly detection process in high-dimensional data when compared to utilizing the individual algorithms.
Title
Anomaly Detection using combination of Autoencoder and Isolation Forest
Author
Almansoori, Mahmood
Telek, Miklós
Date of issue
2023
Access level
Open access
Copyright owner
Szerző
Conference title
1st Workshop on Intelligent Infocommunication Networks, Systems and Services (WI2NS2)
Conference place
Budapest
Conference date
2023.02.07
Language
en
Page
25 - 30
Subject
Anomaly detection, autoencoder, isolation forest algorithm
Version
Post print
Identifiers
DOI: 10.3311/WINS2023-005
Title of the container document
1st Workshop on Intelligent Infocommunication Networks, Systems and Services
ISBN, e-ISBN
978-963-421-902-6
Document type
Konferenciaközlemény
Document genre
Konferenciacikk
University
Budapest University of Technology and Economics
Faculty
Faculty of Electrical Engineering and Informatics

Content by
Theme by 
Atmire NV
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback

Content by
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Content by
Theme by 
Atmire NV
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback

Content by
DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV