Tartalomjegyzék

1. A TÁMÁVÁLASZTÁS INDOKLÁSA

2. OKTATÁSTECHNOLOGIÁA A SZAKKÉPZÉSBEN

3. A TANANYAG PROGRAMOZOTT FELDOLGOZÁSA

4. A TANANYAG FELDOLGOZÁSA A MULTIMÉDIA RENDSZERBEN
4.1 LEHETŐSÉGEK, KIVITELEZTE MEGOLDÁSOK

4.1.1 Programkészítés hagyamányos oktatástechnikai környezetben
4.1.2 Alapelv és módszerek
4.1.3 Az eredmény: a multimédiás tanulási óra
4.1.4 Multimédiás az egyéni tanulási környezetben

4.2 Programkészítés multimédiás rendszerek

4.2.1 Program-kínálatok, jellemzők
4.2.2. Műszaki, pedagógiai, metodikai koncepció
4.2.3 Néhány program elemzése

5. KISÉRLETEK PROGRAMOZOTT MULTIMÉDIA ANYAGOKKAL

5.1 AUTÓELEKTRONIKAI SZAKKÉPZÉS
5.1.1 Szakmák születése és megszűnése
5.1.2 A képzés programja
5.1.3 Cél- és követelményrendszer
5.1.4 A képzés színvonalja és az elért eredmények

5.2 Programkészítés a gyakorlatban
5.2.1 A tananyag elemzése, a fő részek sorrendje
5.2.2 Kiemelések, vizuális sarokpontok
5.2.3 A cél: a mérés-ellenőrzés és a helyes döntés támogatása
5.2.4 Lefüggyőd próbálkozások, hibás koncepciók

5.3 TECHNIKAI KÉRDÉSEK
5.3.1 Mire alkalmas a számítógépünk?
5.3.2 Néhány gyakorlati tapasztalat

6. ÖSSZEZÁMÍTÁS
7. IRODALOMJEGYZÉK..141
 BME-GTTK, kézirat, 1994..141
 Keraban Könyvkiadó, Budapest, 1997...142
 Tankönyvkiadó, Budapest, 1993...142
 HunDidact Konferencia, Budapest, 1997...142
 Pedagógiai Technológia, 1980/2...142

ELEKTRONIKUS FORRÁSOK...156
1. Bevezetés

1.1 A témaválasztás indoklása

Az oktatást, a jövendő generáció nevelését Európa szinte minden országában kiemelten kezelik. Az általános- és középiskolák hálózatában, az egyetemeken és főiskolákon tanuló diákok mellett a szakképzésben is tőmegek vesznek részt. A képzés új értelmezés szerint már nem az első szakképesítés megszerzését jelenti, hanem az át- és továbbképzések élethosszig tartó sorozatát, a permanens fejlődést és az alkalmazkodást. Magyarországon napjainkban az esti-levelező tagozatokon és a szaktanfolyamokon legalább annyiban tanulnak, mint az iskolarendszerű nappali tagozatos intézményekben.

A tanuláshoz klasszikus elméleti értelemben három dolog szükséges: a tanár, a tananyag és a tanuló. A 2000. év végén kijelenthetjük, hogy ez tulajdonképpen így már nem igaz. Sorozatos technikai változások eredményeként számos olyan taneszköz, berendezés jelent meg a mindennapi oktatási gyakorlatban, amely később az iskolai tanítás és az otthoni tanulás eszköze is lett. A rádió, a televízió, a magnetofon és a képmagnetofon mellé ma már felsorakozott a digitális kép- és hangrögzítésnek a világ eseményeit kiváló minőségben az otthonokba közvetítő és kivánság szerint rögzítő technikája, és a műholidays műsorszórással párhuzamatosan teret hódít az Internet is. Az elektronika lendületes fejlődésének mai eredményei elsősorban a mikroprocesszoros technikának köszönhetők, amelynek előnyeit és lehetőségeit legjobban kihasználó eszköz az otthonok és a munkahelyek környezetét a legutolsó évtizedben radikálisan megváltoztató szerkezet: a számítógép.

Az alkalmazott technika kulcsszerepet játszik az oktatási folyamatok átalakulásában. A számítógépre és a hálózati munkára alapozott oktatástechnológia élénkíti és színesíti a tanulási élményt a tanulói szükségleteknek megfelelően és a képességekkel arányosan, hozzáférhetővé teszi az iskolán kívüli információ-forrásokat, ahol a tanulás (és a szabadidős tevékenységek) számára idő takarítható meg a gyors elérések eredményeként. Támogatást kapnak a valós tanulási-szituációs folyamatok, az iskola irányító hatást fejthet ki az általa menedzselts és támogatott tanulási motivációkban.

Az Európai Unió 1995-ben közzétett állásfoglalása szerint a hangsúly a tudásalapú társadalom (knowledge society) létrehozásán van1. A tanítás-tanulás folyamatai adják meg a kereteket ahhoz, hogy az élethosszig tartó tanulás (lifelong learning) megvalósulhasson (Long, 1990). Fontos szerepet kap ebben a környezetben a multimédia, amely egyszerre kihívás és új eszköz az ismeretszerzés folyamatában.2 Előfordul, hogy a munkahelyen többet tanul az ember, mint a klasszikus értelemben vett iskolában. Az on-line hálózatok, a kibernetikus környezet tény-idő-tér dimenziói között a vizualitás alapvető kényszerré válók.

A számítógépek alkalmazása az oktatáshoz - az osztálykeretekben folyó tanításban, annak előkészítésében, feladatlapok szerkesztésében, az egyéni tanulás környezetében,

1 Fehér könyv az oktatásról és a képzésről, EU, 1995
2 Benedek András: megnyitó beszédé, SZÁMALK Multimédia’2000 konferencia
általában: az információszerzés és feldolgozás folyamatában, az adminisztrációban - új módszerek megjelenését is involválja. Lényeges elem, hogy a számítógépes környezet alkalmas az egyéni igényekhez való alkalmazkodáshoz is. Egyelőre még a pedagógus marad az oktatási folyamat vezetője és irányítója, de szerepe áttértékélődik, személyes jelenlétre sok esetben már nincs is szükség.

Magyarországon a közép- és felsőoktatásban a média- és digitálisoktató gyakran alapja a multimédia alkalmazása, amely megvalósítja a multimédia és az on-line hálózatok világában, ahol az információ végeláthatatlan sokasága elkápráztatható, bizonytalannát tehet, de egyidejűleg segítséggel és irányítással - az új környezet aktív felhasználói és élvezhetői is lehetünk.

http://www.sulinet.hu
1.2 Hipotézisek

A multimédia és a programozott oktatás szakterületén végzett irodalomkutatás és a sokoldalú adatgyűjtés eredményeként összetett és tanulságos kép tárult elénk a magyar iskolákról általában, a szakképzésről pedig szükebb értelemben. A tanítást és a tanulást támogató eszközöket történeti, technikai, alkalmazás-módszertani és pedagógiai szempontból szerint vizsgálva szükségesünk a kört a disszertáció munkacíme által lefedett területre. Az előzményeket és a már folyó fejlesztéseket-kutatásokat megismerendő az írott-nyomtatott dokumentumok mellett nagy segítséget jelentett az Internet lenyűgözően széles információ-bázisának kutatása, az oktatás, az oktatástechnológia, a média, a szakképzés, a hálózatok kezelése, az egyetemi és főiskolai könyvtáarak, témafigyelések, szakcikkek és technikai javaslatok szinte kimeríthetetlen tárházának tanulmányozása, esetenként egy-egy pedagógiai műhely titkainak kifürkészése.

Az iskola ... egyre jobban eltávolodik feladatától, nem az életre, hanem magára az iskolára készíti fel a diákokat” (Gyarmathy, 1999). Hozzátéhetjük, hogy a műszaki szakközépiskolákban a frissen végzettek sokszor inkább a következő (felsőoktatási) iskolatípusba való átlépest megcélzó ismeretanyaggal rendelkeznek, mint kifejlesztett képességekkel, hiszen elsősorban erre készítették fel őket. „Az oktatásban az ismeretek és a képességek szembeállítása nem indokolt. Ezekre ... sokkal inkább az egymásrautaltság jellemző” (Nahalka, 1999). Az iskolarendszer strukturáltságából fakadóan a gyengébb eredményűek, a szakiskola elvégzése után munkába állók önálló tevékenység végzésére még nem alkalmaz jártasságokkal, késésségekkel és képességekkel jelentkeznek az első munkahelyen, ugyanakkor sok olyan - tanulmányi eredményükkel arányos - ismeretanyagot visznek magukkal, amely később (szakmai tanulással, gyakorlással) a munkahelyeken önálló munkavégző képességrendszerre fejleszthető. „A késésegek fejlesztésére is jellemző az öncélúság: a gyakorlatok az adott tananyagrészre, tudományos szakterület problémáiba vannak beágyazva, és nem világos, hogy a feladatok megoldása milyen általánosabb gondolkodásfeljlesztő célokat szolgál” (Csapó, 1999).

Az ismeret-centrikus, esetenként túlzottan kognitív magyar iskoláról már sok szó esett az utóbbi években. „Sok ismeret elsajátítására van szükség ahhoz, hogy a képességeket hatékonyan kifejleszthessük” (Csapó, 1999). Gyarmathy Éva írta egy általános iskolai mérés Wechsler-féle intelligenciatesztjének kiértékelése alapján: „Az iskolai sikeresség az ismeretek nagyságával és a hosszú számsorok elismétlésére alkalmassá tevő képességgel korrelál” (Gyarmathy, 1999). A közelmúlt irányzataiban az iskola feladata változhatlanul az ismeretek szerezett átadása, a tudás megalapozása. A hiányolt „központi helyet foglal el, az ismeretelsajátítás hozadékának tekintjük, és ez részben valóban így is van” (Chappan, 1999). Az arányokkal van gond. A számítógépek általános bevezetésének időszakában a legtöbb tanár „... nem törekszik arra, hogy új módszereket sajátíton el, pusztán 'befogadj'a a gépeket a hagyományos ok-
tanítási folyamatba. A leggyakoribb felhasználás az 'oktatógép' (drillfeladatokkal), a 'vetítőgép' (képek, hangzó részletek bemutatása). A hagyományos oktatás és a számítógéppel segített tanítás és tanulás ötvözésére a leghasznosabb a tankönyv kiegészítése szoftverrel” (Kárpáti, 1999).

A legfontosabbak: a kommunikáció és a kooperáció képessége ma még nem fér bele a hagyományos iskola értelmezési keretébe. Az iskola csak részben tud hatni ezekre. Pedig „….az intézményes nevelés legfőbb célja a képességfejlesztés” (Chrappán, 1999). Az ismeretcentrikus iskolában is készíthető cél lehet a kognitív kommunikáció, a kognitív képességek tantárgyak keretein belül (legalább részben) megvalósított fejlesztése. Kiváltéképp akkor, ha ez „kifelé” sikert hoz és a teljesítménycentrikusság a vizsga- vagy verseny-eredményekben, az eredményes felvételi vizsgák realizálódik.

Különösen sarkosan jelentkezik az ismeretek vagy a képességek prioritásának problémakodása a szakképzésben, a szakközépiskolában és a szakmunkáképzőben, ahol az oktatás államilag előírt kontúráját a tanórák keretei között végzendő ügyviteli-oktató-nevelő munka minden lényeges elemét. Ezzel párhuzamosan eleget kell tenni a munkaerő-piaci elvárásoknak is. Kettős tehát a követelmény: a szakiskola nem „lőhat ki” az azonos szintű iskolák sorából a tanítás-tanulás struktúrája, időbeosztása, számonkérési és értékelési módszerei tekintetében, ugyanakkor csak helyben jár, önlelővá váljak a tevékenysége, ha nem hadra fogható (bár kezdő) szakembereket bocsát ki. És akkor még nem szólunk a tanulókról, akik a didaktika- és metodikai változások (vagy stagnálás) keresztüiben próbálnak talpon maradni, végezni, elhelyezkedni és később a munkahelyen előbbre lépni. Ne felejsük el, hogy őket a múltban szerkesztett ismeretanyaggal és a bevált módszerekkel nehezen tudjuk a jövőre felkészíteni!

Az oktatás hatékonyságának, eredményességének vizsgálatához tekintetbe kell venni minden olyan tényezőt, amely nehezen számszerűsíthető, sokszor nem is írható le egzakt formában (a tanár személyisége, a tanítási tevékenység részletei, az oktatás fejlesztésének irányelvei, az oktatás tárgyi feltételei, és: a diákok). A képességek struktúrájának megváltoztatásához a hagyományos időbeosztással, évtizedek óta változatlan koncepciókkal kevés segítséget tud nyújtani az átlagos mai iskola. Mondhatjuk, hogy ez csak részben igaz, mert van NAT, amelyik már nem tantárgy-blokkokban, hanem műveltségi területekből ad keretrendszt, és lendületesebb az oktatási eszközök fejlesztési és beszerzési tendenciája is. Mindenütt telepítettek már informatikai szaktantermeket és valamennyi iskola rendelkezik Internet-esatlakozással. „Az iskola nem eléggé tesz különbséget az esetleges, elfelejtett, csak eszközöket felhasznált és az általában érvényű, tartósan megőrzendő ismeretek között” (Csapó, 1999). Itt lép be az ÚJKT - Új Információs és Kommunikációs Technológia (Kárpáti, 1999), amely lehetőséget, kereteket teremt a határozottabb előrelépéshez.

Korábban az av-eszközökkel közvetített információ csak a figyelem felkeltésére volt alkalmas. Ma már: nő a tudásszint, a „támogatott” ismeretek hosszú távon rögzülnek. Érdekes tapasztalat, hogy a szemléltető- és gyakorlóeszközökkel gazdagított tanítás során a gyengék és a közepesek jobban fejlődnek, eredményesebben haladnak (Szűcs, 1984).
A képességfejlesztésben „…az igazi gondot az jelenti, hogy hiányoznak a módszerek és az eszközök. Az alaptauntervől - a kerettanterveken, helyi tanterveken, pedagógiai programokon, tankönyveken, taneszközökön keresztül - a tanóráig vezető úton elvész a képességfejlesztés, és erősödik a tantárgy diszciplináris tartalma” (Csapó, 1999). Ez azt jelenti, hogy a képességfejlesztés érdekében a szokásokat és a hosszú idők óta ható tendenciákat kell megváltoztatni. Példaként hozhatjuk fel az egyik évben szakrajz versenyen kiadott „irásbeli” feladatot: „Sorolja fel, milyen axonometriai ábrázolási módszereket ismer, és mi ezek jellemzője?” vagy „Határozza meg, milyen axonometriát használja a valódi kommunikációs helyzetben a számítógép és az Internet révén vált lehetővé” (Kárpáti, 1999). Jó lenne, ha a szakképzésben is ez vezetné az alapozó és szakmai rátaokat otatókat és nem elvont fogalmakkal, öncélű méretezési feladatokkal, öskövéletnek számító technikai megoldásokkal töltenék ki néhány iskolában a rendelkezésre álló időt. Csak részmegoldás, ha a modern oktatástechnika néhány eszközének alkalmazásával az oktatási folyamat színesnek látszik, ugyanakkor az évekkel ezelőtt főliára megírt és kivetített vázlatot másolja a tanuló, hosszú perceken keresztül.

Minden egyes kutatás a hipotézisek megfogalmazásával kezdődik. A szakképzés-pedagógiai, a szakmódszertani és az oktatástechnológiai előzmények feltárása, a tudományosan megalapozott eredmények megismerése, elemzése és értelmezése után az autóelektronikai tananyag feldolgozásához, a multimédia környezetben véghezthető programozáshoz az alábbi előfeltételezéseket szeretnénk a későbbiekben igazolni:

♦ a legegyszerűbb bemutató anyag tartalmát, közlési formáját és módszerét is gondosan meg kell tervezni;

♦ a hagyományos eszközök elsősorban a frontális tanításhoz nyújtanak segítséget;

♦ az audiovizuális technika hagyományos eszközei helyettesíthetők számítógéppel;

♦ a multimédia nem a már rendelkezésre álló eszközök választékának kibővítése, hanem teljesen új feldolgozási technikát és alkalmazási módszert igénylő, összetett rendszer;

♦ a multimédia magasabb szintű programozói munkát igényel;
a multimédia oktatástechnikai kerete - korszerű informatikai környezetben - az egyéni tanulásnak, a tájékozódásnak, az át- és továbbképzésnek;

a multimédia új kognitív struktúrát alakít ki;

a tudományosan még fel nem dolgozott autóelektronikai szakterület kedvező lehetőségeket kínál a módszertani, programozás-technikai és értékelő-ellenőrző kísérletekre, kutatásokra;

a kutatásokra alapozott kísérletek célja a hozzáférhető multimédia készítő programok elemzése, alkalmazása és a szakképzési folyamatba illesztése lehet;

keresni szükséges azokat a technikai megoldásokat és módszereket, amelyeket az autóelektronikai területén dolgozó pedagógusok figyelmébe ajánlhatunk.

Célszerűnek látszik a már megmutatkozó tendenciák érvényesülésének vizsgálata is. A technikai lehetőség adott, a pedagógiai-technológiai kimunkálás folyik, a kutatások és kísérletek eredményeként a következő változások várhatók:

a távoktatás kétirányú információs rendszere egy új dimenziót jelenthet a multimédia támogatással;

fokozatosan csökkenhet a frontális osztálymunka monopóliuma;

a kulcskvalifikációk prioritása, a kompetencia-alapú szakképzés jelentőségének fokozódása, az emberi erőforrások tudatos fejlesztése visszahat az alkalmazott oktatástechnológiára és a tanítási-tanulási módszerekre.

1.3 Neveléstudományi, módszertani szempontok

Az ELTE 2000 májusában rendezett, A doktori iskolák első országos tanácskozása című konferenciáján betekinthettük a neveléstudomány legújabb műhelytitkaiba. Megismerhettük az egyetemi oktatók oktatás-módszertani filozófiáját és megnyugvással vettük tudomásul, hogy a számítógép a bölcsészeknél is nagy szerepet játszik, a multimédia és az on-line alkalmazások itt is teret hódítanak. Ugyanakkor nem titkolt örömrel érzékeltek, hogy nem csak a tudományegyetem professzorai, kutatói és PhD hallgatói gazdagíthatják a neveléstudomány utóbbi években elért eredményeit, hanem más területekről is érkezhetnek értékelhető, eredményes, hasznos kutatói munkák. A Budapesti Műszaki és Gazdaságtudományi Egyetemet képviselve szerény büszkeséggel tapasztaltuk, hogy hipotéziseink, kidolgozott témáink, szakmódszertani és oktatástechnológiai kutatásaink eredményei és azok előadásmodja, szemléltetése egyáltalán nem játszottak másodrendű szerepet a bölcsészhallgatókkal rögtönözhető összehasonlításban.
Edelgard Bulmahn abban látja a megújult képzéspolitika lényegét, hogy egyre többen lesznek aktív résztvevői valamilyen iskolarendszerű, munkaerő-piaci vagy akár autodidaktikus tanulási folyamatnak. Elsősorban a média előnye emelhető ki abból a szempontból, hogy gyors és könnyű elérhetőséget biztosít a helytől és időtől csak részben függő, úgynevezett *individuális* tanulás megvalósításához. Ígéreses távlatok nyílnak az új információs és kommunikációs technikák alkalmazásának és a multimédia környezet hatásának következtében:

1. új kooperatív tanítási és *tanulási módozatok* születnek;
2. fel kell készülni az információs világ *kihívásaira*;
3. szerkezetváltozás lehetősége merülhet fel a főiskolákon;
4. kedvezőek a munkaerő-piaci képzés feltételei;
5. az önálló tanulás egyik formája a *távtanulás* lehet (Bulmahn, 1999).

Az új információs és kommunikációs technológia alkalmazási eredményei és a közeli jövő kutatási-fejlesztési tendenciái azonban *problémákat* is a felszínre hoznak. Az oktatástechnológia témakörét Nádasi András gondolatsora alapján megvizsgálva:

♦ megoldandó feladat az információs és kommunikációs technológiák oktatási célú alkalmazása;
♦ figyelembe kell venni a tanuló, vagy a tanulócsoport jellemzőit minden egyes oktatási rendszerelem tervezésekor vagy beiktatásakor;
♦ az oktatástechnológiának nem szabad kizárólagosan a médiumokra épített megoldásokra alapozni;
♦ az oktatástechnológiai kutatások fontos területe a médiumok és médiumkombinációk hatékonyságának vizsgálata és az eredményes tanulást támogató jellemzők kimutatása, az optimális tanulási feltételek meghatározása (Nádasi, 1998).

10
2. Oktatástechnológia a szakképzésben

2.1 Alapfogalmak, kategóriák, jellemzők

Érdekesen és tanulságosan alakult azoknak az alapfogalmaknak, kategóriáknak a műszaki és pedagógiai tartalma, amelyeket napjaink szokványos elnevezései, tanszközei és technikai lehetőségei, a tanítás-tanulás technológiája (vagy konkrétabban: az oktatástechnológia) jelentenek. A definíciók, tartalmi leírások, az oktatástechnika és az oktatástechnológia sokat vitatott párhuzama, egymásra épülése - szoros összefüggésben a tanítás és a tanulás támogatásával, modernizációjával - széles palettát tár a kutató elé.

2.1.1 Történeti visszatekintés

A kutatásban - mindeneckelőtt az oktatástechnológia, a programozott oktatás, a tanítás-tanulás didaktikai-metodikai kérdéseivel foglalkozó szakirodalom területén - az utolsó 20 év munkáit, tudományos eredményeit, fogalmi és tartalmi kategóriáit, a szakcikkek és a szakkönyvek, az előadások és (újabban) elektronikus publikációk széles választékát áttanulmányozva - érdemi konzervenciákat vonhatunk le. Leslie E. Briggs amerikai oktatástechnológiai kutató a 80-as években több éves vizsgálódás és elemzés alapján állította össze azt a mátrixot, amely a kutatói munka paradigmait rendszerezte az oktatásszervezés témakörében (idézi Driscoll-Dick, 1999). Úgy tűnik, a kutatók többségének a véleménye a kvalitatív és naturalisztikus módszerek helyett inkább az empirikus, gyakorlati vizsgálódást preferálja. Magyarországon Takács
Etel nevéhez fűződik az oktatástechnológia értelmezési, tartalmi, megnevezési és alkalmazási változatainak összegyűjtése és elemzése. Ugyancsak ő szedte csokorba a programozott oktatásról alkotott felfogásokat, elemzte a módszerek pedagógiai hátterét és a szakkifejezések olyan szótárat állította össze, amely napjainkban is reálisan fedi az egyes fogalmi kategóriákat (Takács, 1978).

Az elektronika, a számítástechnika és az oktatástechnika néhány jellemző, fontos felfedezése és az alkalmazások magyarországi bevezetése (a teljesség igénye nélkül):

1879 - a Néptanítók Lapja cikket közölt a fonográfról;
1910 - episzkópok, epidiaszkópok jelentek meg a magyar iskolákban;
1913 - megalakult a Pedagógiai Filmgyár;
1920 - megjelentek az első diavetítők a magyar iskolákban;
1934 - rendelet született a 16 mm-es filmek tantervbe illesztéséről;
1940 - George Stibitz megépítette az első elektromos kalkulátort;
1942 - Conrad Cuse létrehozta a kettes számrendszerben dolgozó Z1 komputert;
1946 - megjelent az ENIAC (Electronic Numerical Integrator and Calculator) - Neumann János közreműködésével;
1947 - A Bell-laboratórium elkészítette az első tranzisztor;
1958 - Kozma László számítógépet helyezett üzembe a Budapesti Műszaki Egyetemen (MESZ, Műszaki Egyetem Elektromos Számítógépe);
1965 - általánossá vált az iskolákban az írásvetítő használata;
1964 - Dúzs János útjára bocsátotta az Audiovizuális Közlemények című szakfolyóiratot (témánk feldolgozása szempontból jelentős, hogy a 3. évforduló 1.számában szakcikkek jelentek meg a programozott oktatásról és a nyelvi laboratóriumok bevezetéséről);
1969 - létrejött az ARPANET, a mai Internet öse, négy amerikai egyetem hálózatba kapcsolásával;
1970 - megjelentek az írásvetítők a magyar iskolákban, ezzel párhuzamosan egyre több automata és félautomata diavetítő került forgalomba;
1971 - elkészült az INTEL első mikroprocesszorá („komputer egy chipen”);
1973 - megalakult az Országos Oktatástechnikai Központ (OOK) veszprémi székhelyével, elsősorban az audiovizuális fejlesztés központi, középtávú koncepciójának megvalósítása céljából;
1973 - megjelent Magyarországon az első képlemezjátszó;
1979 - megjelent a Pedagógiai Lexikon, amelynek szócikkei, meghatározásai a mai napig nagy jelentőséggel bírnak (pl. speciális taneszköz-definíciók, taneszközök és programozási szakkifejezések meghatározása stb.);
1980 - Dúzs János megkőszönte az oktatástechnika helyzetének áttekintésében közreműködők munkáját (öt év alatt 23 számban 326 tanulmány jelent meg)⁴;
1980 - Clive Sinclair bemutatta a ZX 80 számítógépet;
1982 - Angliában megjelent a SPECTRUM típusú kisszámítógép;
1983 - megjelentek és gyorsan elterjedtek a programozható mikroprocesszorok.

⁴ AUDIO-VIZUÁLIS KÖZLEMÉNYEK, Budapest, 1980/3-4. szám

2.1.2 Taneszközök generációi

A leghíresebb kategorizálás, a taneszközök rendszerbe foglalása, meghatározása és jellemzése Wilbur Schramm nevéhez fűződik (Schramm, 1977). Az a négy osztály, gyűjtőkör, nemzedék, amelyre létrehozása óta amnyian hivatkozunk, még ma is fedi a legfontosabb paramétereket. Ugyanakkor szükség bizonyul a 4. generáció abból a szempontból, hogy a számítógéppel megvalósított tanítási-tanulási környezet elvileg egy ötödik generáció, vagy technikai osztály megalkotását is kiérdemelhetné.

A harmadik generációba tartoznak az auditív és a vizuális információhordozók, a lemezjátékos és a magnetofon, illetve az álló és mozgóképvetítő, az épiszkóp, a diavetítő, az írásvetítő, a mozgófilm és a videó. Mind készítésük, mind pedig alkalmazásuk során gépi berendezéseket alkalmaznak.

A negyedik generáció lényeges változást, tulajdonképpen egy, a mai napig is tartó információtechnikai forradalmat hozott: ez a számítógép a maga interaktív lehetőségeivel és annak egyre összetettebb, sokoldalúabb felhasználásával. Ennek a generációnak a megjelenése olyan döntő változást okozott, mint a saját idejében a könyvnyomtatás, a rádió és a televízió felfedezése, vagy az Internet életére hívása.

A taneszközök nem egyszerűen és kizárólagosan szemléltető eszközök. Az érzékszervekre való hatás célutadatos megtervezése gazdagította a megjelenítés lehetőségeit és a tartalmat, a korszerű oktatási környezetben változott a pedagógiai terminológia is. Módosul, átalakul a pedagógusi munka és a tanuló szerepe is. Az audiovizuális technika felvilágítja annak lehetőségét, hogy a többszörösen használt információközlés magasabb fejlettségű rendszerekben az önrényítést támogathatja. A taneszközök didaktikai funkciói alapján elvégzett csoportosítás a taneszközök rendszerét és a rendszer-alkalmazásokat mutatja (Szűcs, 1991 nyomán):
1. **Programozott tanítás** (oktatógépekkel vagy azok nélkül)
 1.1 csak a tananyagot közvetítő, kis hatósugarú készülék (pl. TANÉRT-korrepetítor)
 1.2 az oktatást szimuláló berendezések, közép-hatósugarú oktatógépek (pl. Bristol)

2. **Nyelvoktatást szolgáló berendezések**, nyelvi laborok, az új pedagógiai dimenzióban alkalmazható rendszerek, számítógéppel segített oktatás

3. **Komplex, kombinált rendszerek** (oktatóprogram és magnetofon, diával kiegészítve).

Az információ technikai feldolgozása, az információ-tehnikológia főfolyamata egy angol eredetű sorrend szerint: **alkalmazás, bemutatás, rögzítés, szintetizálás, feldolgozás, analizálás, interpretálás, megértés** (idézi Szűcs, 1991).

Tompa Klára szerint az **információ-átadás auditív, vizuális és audiovizuális** taneszközökkel valósítható meg. Az oktatástechnika fejlődésével szinkronban folyamatosan kiegészül ez a választék. Jó példa erre a kompaktlemez, a multimédia-PC, a növekvő számú interaktív rendszerek kínálatára. Schramm taneszköz-nemzedékekre vonatkozó rendszere még érvényes, de hovatovább bővítésre szorul:

1. **gépi eszközök nélkül készíthető** - a valódi tárgyak, modellek, makettek, faliképek, falitáblák - ezek a hagyományos taneszközök;
2. gépekkel készített taneszközök - tankönyvek, munkafüzetek, fényképek - használatukhoz különösebb technikai felszereltség nem szükséges;
3. mind az előállításhoz, mind az alkalmazáshoz gépi eszközök szükségesek - vetítőberendezések, hangtechnika, diaképek, filmek, videofilmek;
4. a taneszközök a tanulásirányítás elemei is magukban hordozzák - programozott tankönyvek, multimédia CD-ROM-ok, számítógépes oktatórendszer és hálózatok (Tompa, 1995).

Kerékgyártó László a taneszközöket a következő kategóriákba sorolja:

1. **Tanári demonstrációs eszközök**: eredeti tárgyak, gyűjtemények (pl. biológiai, geológiai), preparátumok, munkatermékek, kísérleti eszközök, utánzatok (modell, makett, metszet), applikációs eszközök, mérőeszközök;
2. **Tanulókísérleti- és munkaeszközök**: manipulációs eszközök, kísérleti eszközök, logikai készletek, laboratóriumi készletek, modellek, applikációs készletek, mérőeszközök, didaktikus játékok;
3. **Auditív információhordozók**: hanglemezek, hangszalagok, hangkazetták, rádióadás, CD-lemez;
4. **Vizuális információhordozók**: átlátszatlan képek, faliképek, falitérképek, síkmodellek, diaképek, írásvetítő ábrák, nagyméretű optikai ábrák;
5. **Audiovizuális információhordozók**: hangosított diaporázatok, filmek, televízióadás, videokazetták, képlemezek;
6. **Oktatócsoportok**;
7. **Elektronikus taneszközök és programok**: fotó-CD, számítógépes oktatóprogramok, szimulációs és didaktikus játékiprogramok, interaktív videoprogramok, multimédia és hipermedília adatbázisok és programok;
8. **Spórteszközök, tornaszerek**;
Oktatástechnológia a szakképzésben

Magyar Miklós olyan öt nemzedék megkülönböztetését ajánlja, amelyben a szokványos kategóriák ismérvei nem fedezhetők fel:
1. a nyomtatás előtti;
2. a nyomtatással előállított;
3. a gépesített látás, hallás;
4. az ember és a gép közötti kommunikáció eszközei;
5. a rendszer-alkalmazások (Magyar, 2000).

Szántó Tamás a taneszközök generációit a MIXI oktatórendszer szempontjából átfogalmazta, és a következő rendszer népszerűsítésére tesz kísérletet:
1. klasszikus taneszközök - a tanár leleményességének, pedagógiai céljainak alávetve születik;
2. a szakképzés érdekében átalakított taneszközök;
3. a számítógépes multimédias oktatóprogramok és szimulációs eszközök családja;
4. valóságos rendszerek programozott módon hozza létre (egyesíti a 2. és a 3. generációs eszközök előnyeit, kiküszöbölő azok hátrányait).

A taneszközök rendszerbe szervezésével foglalkozók állásfoglalásait és a kiemelés szempontjait összegezve egy saját rendszert alkothattunk, amelyben a XXI. század kezdetén igyekszünk minden olyan eszközt, technikai megoldást, hardvert és szoftvert elhelyezni, amelyek napjaink hagyományos és technikával támogatott tanítási óráin, az ezekre való készülés során vagy az otthoni munkában, tanulásban előfordulhatnak.

A javasolt felosztás:
1. nyomtatott dokumentumok;
2. audiovizuális technika;
3. számítógép-alapú rendszerek;
4. komplex multimédia környezet és eszközrendszer;
5. E-learning.

Feltételezzük az országosan megszervezett taneszköz-ellátást, az önálló iskolai (iskolaszövetségben megvalósított) kezdeményezéseket, a szakmai (autótechnikai) munkaközösségek aktivitását, a tanári előkészítő és fejlesztő tevékenységet, a tanulók bevonását a tömeges digitalizáló munkába az adat- és feladatbankok létesítésének érdekében. Autoelektronikai vonatkozásban kiemelten kezeljük a kapcsolási rajzokat, ezek mérőpontjait és a mérhető értékek minősítését, amely a képemény keresztül folytatott oktató, gyakorló és szimulációs munka egyik alapfeltételel képzheti.

2.1.3 A bemutatás, szemléltetés, gyakorlás eszközei és technológiája

A szemléltetés, az eredeti tárgyak bevitele az osztályterembe Comenius óta színesíti a tanítási órákat. A tankönyv-alapú tanítási módszer a legjobb előadónál is hatásosabb, ha bemutatás, szemléltetés, a tárgyakkal való közvetlen találkozás teszi változatosabbá és hatékonyabbá az osztálytermi munkát. A technika történetét és muzéalis értékű taneszközöinek vizsgálva bőséggel lehetünk mindarra, amit magyar tudósok találtak fel az elmúlt évszázadokban. Mai taneszközöinek elődei imponálóan ötletek és precízen szakszerűek (Nádasi, 1996). Sokáig a tantárgyakhoz való tartozás szerint osztályozták és
csoportosították az iskolai szertárak „kincseit”. Később a valós méret, vagy a kicsinyített-nagyított változat jelentett különbséget, majd az alkalmazáshoz elvárható szakértelem is adott néhány támpontot a rendszerező munkához.

A tanszerek a legutóbbi 20 évben már átfogó jelentéstartalommal szerepeltek a publikációkban, szakkönyvekben. A meghatározás nem merev, használatossá vált a „tanszer” alapelnevezés mellett az „oktatási eszköz”, a „tanítási eszköz”, később a „médium” elnevezés is.

Taneszköz-definíciók az 1979-es Pedagógiai Lexikon alapján:

1. **nyomtatott eszközök** - tanári demonstrációs eszközök (módszertani könyvek, szakkönyvek, folyóiratok, faliképek, térképek), tanulói segédletek (tankönyv, munkafüzet, munkalap, feladatsor, atlasz, szótár, füzet)

2. **háromdimenziós taneszközök** - tanári demonstrációs eszközök (természetes tárgy, kísérleti eszközök, applikációs eszközök, mérőeszközök), tanulói kísérleti eszközök (logikai készletek, modellek, mérőeszközök, kísérleti eszközök, mérőműszerek)

3. **oktatástechnikai eszközök** - oktatástechnikai anyagok, szoftver (auditív: hanglemez, hangsualag, iskolarádió-ádás; vízualis: dia, írásvetítő transzparens; audiovízualis: film, videó, TV; komplex: számítógép program, nyelvi labor) oktatástechnikai anyagok, hardver (lemezhátsó, rádió magnó - episzkóp, diavetítő, írásvetítő - filmvetítő, képmagneton, TV, képlemez - számítógép, oktatógép, nyelvi labor).

A szemléltető-gyakorló-szimuláló technika sokáig az audiovizuális eszközök célzásban megválasztott egyedi vagy csoportos alkalmazását jelentette. A számítógép általános bevezetésével nyilvánvalóvá vált, hogy a PC valamennyi auditív és vízualis információ hordozására, tárolására és rendszerezésére - kivánság és igények szerinti előhívására - alkalmas. Lényeges minőségi változást jelent, hogy a képernyő lényegében „egyszemélyes”, ennek megfelelően a tanítási-tanulási folyamat is elhangozódnak a méretek és a dimenziók. **Módosul a tanári szerep**, ezzel párhuzamosan a tanulást támogató technikai eszközök választéka is. Még nem szűnt meg, de észrevehetően csökken a nyomtatott taneszközök monopóliuma. Konkurense a hihetetlen mennyiségű információt nagyon rövid idő alatt szolgáltató multimédiás és Internetes környezet. A tanuló on-line kommunikálhat a tanárral (tutorral), egyéni igénye és időbeosztása szerint - esetenként speciális célhoz - szörfözhet a rendelkezésre álló adatbázisokban és minden segítség a rendelkezésére áll a különböző szintfelmérésekhez, vizsgákhoz szükséges ismeretek elsajátításához, a megkívánt képességek kifejlesztéséhez.

Sovány István szerint a klasszikus értelemben vett multimédiális információfeldolgozás lényege a témához tartozó alapinformációk szemléletes forrásokkal digitalizált képekkel, hangokkal, filmrészletekkel, animációkkal való kiegészítése, majd az alapinformációk logikus sorrendjéhez csatlakozóan e részeket elhelyezik és létrehozzák a résztárgyakra vonatkozó relációkat (Sovány, 1999). Tóth Péter érdekes megállapítást tesz: „... az egyik technológiai részrendszernben bekövetkező változás magával vonja a vele kapcsolatban álló összes részrendszer változását... “, azaz a trigger-effektus alapján bekövetkező lánc-
reakcióiról beszélhetünk. Új műszaki-technikai megoldásokról, az ezekhez igazodó pedagógiai koncepcióiról, a megvalósítást támogató metodikai eljárásokról szólhatunk, amelyek a közeli jövő pedagógia-technológiai gyakorlatában lassú, de eredményes változást hozhatnak.

2.1.4 A szimuláció, mint a gyakorlás lehetősége

A szimulációs, a speciálisan szituatív tanulás környezetének tervezői igyekeznek a valódi (életszerű) problémákat és helyzeteket utánozni. Ez a hagyományos oktatás technikai keretei között nem valósítható meg. A számítógépes környezetben számos lehetőség kínálkozik arra, hogy valós helyzeteket virtuálisan hozzunk létre - akár a nyomtatott tananyaggal párhuzamos haladás során is. A nyomtatott tananyag lineáris struktúrájával szemben a multimédia szabad, de nem kötetlen információ-hozzáférést kínál. A több érzékszervre ható aszinkron közlések hatékonyabb felismerést, bevésést, felismerést és alkalmazást feltételeznek. A tanulás szituatív jellegű, a tanulás környezete konstruktív és bizonyos keretek között alakítható. A tanulás üteme és a feladatok nehézsége egyes programokban beállítható, illetve az adaptív program menet közben szabályozási műveletekkel igazodik a haladási ütemhez.

2.2 Napjaink módszerei a frontális osztálymunkában

A közoktatás és a szakképzés a különböző irányzatok, rendelkezések, évfájat és elvárások szerint, a mértékadó tudósok, neves oktatás-irányítók életművénének hatására is állandó változásban, átalakulásban van. Keves olyan évet tudnánk kiválasztani az utolsó évtizedek program-változatainak sorozatából, amikor az egyik oktatási év éppen úgy telt el, mint az előző. Tekintettel arra, hogy az iskola feladatai alapvetően klienseinek kiszolgálása, ez tulajdonképpen helyeselhető is (Báthory, 1993). A rendszerváltozást követően felerősödtek a munkaerő-piaci elvárások, a konkret - az iskolarendszeren és annak éves időbeosztásán túlmutató - igények, és az ezekkel szinkronban megszületett oktatás-irányítási rendelkezések alapján valóban nagyobb léptékű átalakításra, és az ezzel járó szemlélet-váltságra volt szükség. Mindezek ellenére az iskolák többségében, a közoktatás és a szakképzés megannyi átlagos és hírneves fellegvárában a Comenius-féle osztályrendszerek, az értékelés és osztályozás néha stresszter eredményező présén tanórákra, tantárgyakra bontva kapja a tananyagot a tanuló, miközben a tanulás
irányításával és a tananyag átadásával megbízott pedagógusok egy személyben (frontálisan) képviselik a követelmények oldalát és sok esetben az űket valamikor tanítók módszerét és stílusát utánozva munkállakodnak.

A technikai fejlődés direkt hatása a szakképzésre a munkaerő-piaci elvárásoknak megfelelő tartalmi modernizációban öltethet testet. A tanítás-tanulás folyamatát a folyamatosan kidolgozott alapkivonatok hatják át, és az egyes szakterületek elvárhatóan speciális képességei a megújult tantervfejlesztési koncepciókban is nyomon követhetők (Vass, 1999). A még döntő „fölényben” lévő frontális osztálymunkát folyamatosan érik azok a hatások, amelyek következtében az elhangolódás, a mesterségesen lassított, de a mégis kimutatható fejlődés teret nyerhet előbb az új vizsga- és ismeretanyagokhez való alkalmazkodás során, majd később a tartalmi és módszertani innováció bevezetésével.

2.2.1 Autokratikusan, ismeretcentrikusan

A Lewin nevével fémjelzett kategóriáinknak megfelelő tartalmi modernizációban öltethet testet. A tanítás-tanulás folyamatát a folyamatosan kidolgozott alapkivonatok hatják át, és az egyes szakterületek elvárhatóan speciális képességei a megújult tantervfejlesztési koncepciókban is nyomon követhetők (Vass, 1999). A még döntő „fölényben” lévő frontális osztálymunkát folyamatosan érik azok a hatások, amelyek következtében az elhangolódás, a mesterségesen lassított, de a mégis kimutatható fejlődés teret nyerhet előbb az új vizsga- és ismeretanyagokhez való alkalmazkodás során, majd később a tartalmi és módszertani innováció bevezetésével.

5. Idézi Tóth Béláné, 1996
Az ismeretszerzés folyamatában hagymányosan a tanár és a tankönyv az ismeretek két legfontosabb forrása. Kiegészíti és támogatja a rendszert a különböző segédelek, szemléltető eszközök, audiovizuális alkalmazások tanári ízlés és iskolai szokások szerinti választéka, de a legkritikábban kerül a tanuló a „bűvös körön” kívülre, mert időbeosztását az ismerentcentrikusság predesztinálja. További keresgélsere, felkeltett kíváncaiságának kiélégítésére a sok esetben a „practice and drill” módszer már nem hagy szabadidőt. A klasszikus ismeretszerzési folyamatban szó szerint érvényesülnek a didaktikai alapelvek, melyek szerint az érdeklődés felkeltését, a motivációt az ismeretek átadása, azok megszilárdítása (ismétlése, begyakorlása), az alkalmazások és az ellenőrzés-értékelés kategóriája követi. A didaktikai sorozat lényege minden bizonyval az alkalmazáson van. „Egy fogalmat elsajátítani annyi, mint alkalmazásra képesnek lenni” (Landa, 1966). Az egész oktatási folyamat alapját tekintve és eredménységében meghatározhatja a folyamatos ellenőrzés és az értékelés metodikája. Teljesítmény-ellenőrzéséről, a visszacsatolásban (feed-back) alapuló tanári korrekció van a hangsúly, amely minden egyes tanulói észrevételt, gyorsabb vagy lassabb haladást reakcióval nyugtáz, ahol az elvárások módosulhatnak a ténylegesen elért eredmények függvényében. Mindezt nem befolyásolhatják az első (kedvező vagy rossz) benyomások, nem kategorizálhatjuk a tanulókat néhány első benyomás alapján (Tóthné, 1996).

A tanítás-tanulás gyakorlatát késéssel ugyan, de nagymértékben körvonalazzák a szakképzési struktúra modernizációs törekvései. Nováky Éva és Hideg Éva 1993-ban publikált szakértői felmérése az iskolák technikai felszerelésének korformázása, a megfelelő erkölcsi-anyagi elismerés biztosítása és a tanárok továbbképzése, a sok esetben elavult tananyagok modernizálása, az iskolarendszer átalakítása, a követelményszint általános emelése és az állami szerep fokozása (Novák-Hideg, 1993). A szakcikk megjelenése óta eltelt hét évben mind a hat modernizációs paraméter módosult, a helyzet lényegesen javult, azonban a napi osztálymunka oktatáspolitikai határozatokkal, helyi vezetői döntésekkel rövid úton nem korrígálható. Előbb a napjainkban, a már megújított tanárképzési koncepció szerint végzett szaktanárok döntési helyzetbe kerülését kell támogatni, majd az oktatástechnikai lehetőségeinek implementálása lehet a cél. A kinálat és az inspiráció adott, a tanári oldalon jelentkező többszörös idő-ráfordítás igénye és a magas költség-hányad ugyan visszatartó erő lehet, de hosszú távon a modernizáció feltételezhetően megtérüléssel jár majd együtt.

2.2.2 Szemléletetéssel, gyakorlással
A szakképzésben a gyakorlati oktatás hagymányos formája a bemutatás, a betanítás és a gyakorlás. Az ezzel párhuzamosan folyó szakelméleti képzésben ugyanilyen fontos szerepet kap a különféle taneszközök használata és azokat technikai eszközökké támogató szemléletetés alkalmazása. A gyakorlatokon a legkedvezősebb forma az utánzás, ennél valamivel magasabb szintet jelent az elméletben tanultak gyakorlati alkalmazása és a fogások bemutatás utáni memorizálása. A jellemző példaként hozható
autójavításban a szolgáltató szféra megköveteli az önálló gondolkodást, a gépies műveleteket felváltó kreativitást, a hibakereséssel együtt járó meréssel-ellenőrzéssel elvégzendő diagnosztikai vizsgálatokat, a javítást vagy alkatrészcsereit és az ezt követő - gyári adatokon és előírásokon alapuló - beszabályozást, minősítést. A szakképzés komplex folyamatát az autóelektronikában át kell hassa a mérésten alapuló felelős döntés fontosságára.

Gyaraki F. Frigyes véleménye szerint szoros összefüggés van a tanulók képességei és a tanítás során alkalmazott oktatástechnikai eszközök között. Kijelenti, hogy a mozgóképek hatékonyabban az állóképekkel. Bizonyításul megállapítja, hogy a gyengébb képességű tanulóknál a mozgókép helyettesíti a tudatos műveleteket, a képi részletek alapján feldolgozott tananyag az érdeklődés felkeltését támasztja, a figyelem céljából új módon irányítja, az egyensúlyozás aktiv válaszokban mérethető, a sokoldalú visszacsatolás és a megfelelő ütem jó hatáskótot biztosíthat (Gyaraki, 1980).

A szakképzésben kulcsszerepet játszó szakmai tanár és szakoktató feladatköré lényeges változásra ment keresztül a legutóbbi évtizedben. Bár a minőségi változás szinte még sehol sem következte be, az elhangolódás és az új technika irányába mutató tendenciák itt is figyelhetők meghallgatásukat. Elsősorban a következő, a tevékenységi körben megmutatkozó változásokról szól Kovács Ilma, amelyek eredetileg ugyan a távonkénti specialitásait jegyizik le, de kis átalakítással az iskolarendszerű szakképzésben betöltött szaktanári szerepet szemléljük, az iskolarendszerű szakképzésben betöltött szaktanári szerepet szemléljük (Gyaraki, 1980).

<table>
<thead>
<tr>
<th>korábbi tevékenységek</th>
<th>újabb tevékenységek</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szaktantárgy szakembere</td>
<td>Középpontba került a tanuló, a tanár feladata a tanulás segítése, támogatása</td>
</tr>
<tr>
<td>Az ismeretek, a tananyag forrása</td>
<td>A szakmai tananyagot különböző médiák hordozzák</td>
</tr>
<tr>
<td>A tartalom közvetítésének fő eszköze, előadó, az osztálytermi és a csoportos foglalkozások vezetője. A nyomtatott dokumentció kiegészíti és támogatja a tanári tevékenységet</td>
<td>A tananyagot a médiumok közvetítik</td>
</tr>
<tr>
<td>A tanítás középpontjában áll</td>
<td>A tanár csak az ismeretek, információk egyik forrása, speciális segítő-támogató funkcióit lát el</td>
</tr>
<tr>
<td>Közreműködik a tananyag összeállításában és szerkesztésében, saját koncepciója van</td>
<td>A team-munka egyik szereplője, ahol a koncepció (is) közös munka eredménye</td>
</tr>
<tr>
<td>Égy-egy tantárgy képviselője, önálló oktató-nevelő munkát végez</td>
<td>Segítőtárs a tananyag közvetítésében és felhasználásában</td>
</tr>
</tbody>
</table>

1. táblázat. A szaktanári tevékenység módosulása
A tanítási-tanulási folyamatban alkalmazott eszközök életszerűbbé teszik a foglalkozásokat, konkrét példákkal szolgálva gyorsíthatják az ismeret-átadást, fokozzák az érdeklődés szintjét, közben rövid időszakokra tehermentesítik a tanárt. Megalapozhatják a számonkérés objektivitását (Szántó, 1984). A kutatók és az elemzők a taneszközökkel kapcsolatosan legtöbbször az elméleti oktatást, az osztálytermi munkát teszik vizsgálatuk tárgyává, pedig a szakképzésben, a tanműhelyi gyakorlati képzésben legalább ilyen fontos a bemutatás, a szemléltetés, a begyakorlás taneszközökkel való előkészítése.

Az autós szakképzésben a változás jelei néhány vonatkozásban már megmutatkoznak. A nagyvállalati gyakorlóhelyek megszűnése után kisvállalkozóhoz kerülő tanulók egyik fele olyan feladatokat kap a gyakorlás során, amire alkalmas, amit el tud végezni. De a másik fél - és ez elsősorban az autóelektronikai szakmára vonatkozik - új ismereteket és kifejlesztett képességeket visz a szakmuhelybe, olyanokat, amelyeket eddig más nem értett, nem művelt. A „számítógépes autószerszerelő” tévesen meghatározott szakmai kategorijájában hatnak a szakoktatást befolyásoló - eddig csak tanulmányokból, pedagógiai szakcikkek ből ismert - tényezők. Ezeket a tényezőket Magyar Miklós egyik előadása alapján a következő sorrendbe állíthatjuk: a modernizáció, a globalizáció, a felnőttképzés tömegessé válása, az új ismeret-közvetítési technológia térhódítása, a tanulás funkciójának és szerepének felértékelődése (Magyar, 2000). Minőségi változás készül, ahol a ma oly divatos minőségbiztosítás szakkifejezése és tartalmi vonatkozásai is szerepet kapnak. Ahhoz, hogy a várt változások valóban bekövetkezzenek, Robert C. Camp feltételeinek teljesülését feltételezzük.6

♦ a változtatás szükségességében hinni kell;
♦ meg kell határozni a megváltoztatandót;
♦ ki kell fejleszteni egy határozott képet arról, hogy mit akarunk elérni és milyenek lesznek a körülmények a tervezett változás után.

Jelentős változást eredményezhet a tananyagtartalomban és a szaktanári munkában egyaránt a bizonyítottan fontos kulcskvalifikációk szakmák feltölti szerepének elfogadása és a kulcskvalifikációk taxonómia kivánalmainak teljesítése. A rendszer elsajátítási szintjei a szakmai tananyag átátdás-átvétele, azaz a tanítás-tanulás valamennyi fázisában érvényesek és hatnak:
♦ reprodukció - új tartalmak tanulása, alkalmazás segítséggel;
♦ reorganizáció - a tanuló alapvető készségeit és tudását hasonló feladatokba ülteti át;
♦ transzfer - az eddig tanultak átvitel és variáció révén új szituációkban is működnek (strukturnál hasonlóságok, párhuzamok, analógiák);
♦ problémamegoldás - az új megoldások a tanultak és az eddig ismeretlenek összekapcsolása révén születnek: alternatívákon keresztül új a kreativitáshoz (Deák, 1997).

6 Idézi: Pecsenye Éva, Új Katedra, 2000/2-3
2.2.3 Az oktatástechnikát alkalmazva

Több kutató, tudós, történetíró és szakpublicista tett már közzé meghatározásokat, amelyek az oktatástechnológia kategóriáját körülhatárolják. Többségük egybehangzó véleménye, hogy az oktatástechnológia lényegében az oktatástechnika eszköz-háttérének előnyös tulajdonságait kiaknázó komplex rendszer, ahol a pszichológiai, pedagógiai, didaktikai és metodikai elvek összehangoltan érvényesülnek a meghatározott cél érdekében, a hatékonyan megvalósított ismeretátadásban.

A tanítás-tanulás folyamatában az információ közvetítésére használatos, alkalmazott „közeg” a médium, amely a tanuló és a tananyag közötti kapcsolatot megteremti és kiszélesíti azt (Szűcs, 1986). Ezek a médiumok:

1. a nyomtatott anyagok (könyvek, feladatlapok, programok);
2. az auditív információhordozók (hanglemez, hangszalag, hangkazetta, iskolarádió);
3. a vizuális információhordozók (diafilm, keretezett dia, transzparens, irásvetítő modell, némafilm, diaporáma, multimédiás, holoram);
4. az audiovizuális információhordozók (hangosfilm, hangosított dia, TV, ZTV, iskolaTV, videokazetta, videomagnetofon szalag);
5. a tanulói kísérleti eszközök;
6. a tanári demonstrációs eszközök;
7. az oktatástechnikai eszközök;
8. az oktatációszemélyek;
9. a számítógépek.

Az audiovizuális eszközök kiválóan alkalmasak arra, hogy a médiumokkal megvalósított kreatív, öntvékenységet szaktanári munka eredményeképpen fokozódjék a tanulói aktivitás, az érdeklődés, a szakma szépségei és nehézségei területén valamennyien tisztán lássanak. Amerikában és Németországban már 15-20 évvel ezelőtt arra inspirálták a szakmát tanuló diákat, hogy vegyenek részt a médiaközpontok által szervezett videofilm-készítő szakkörök munkájában. Itt lehetőség nyílt az egyéni bemutatkozásra, a nyilvánosság reagálásának elemzésére, általában a szabadidő hasznos eltöltésére és egy speciális területen bizonyos gyakorlottság megszerzésére. A multimédia megjelenésével a közelés és a kivitelezés lehetőségei nagyságrendekkel gazdagodtak, ugyanakkor ezeknek a médiumoknak a kezeléséhez már mélyebb szakismertet szükséges. Érdekes, milyen gyorsan és hatékonyan közelített az amatőrök (a tanulók) munkájának színvonalára a professzionális produkciókhoz. A médiapedagógia szakértőinek feladata lehet, hogy az

7 Szűcs Pál: Személyi számítógépek az oktatásban (OMIKK, 1986) alapján
Oktatástechnológia a szakképzésben

ey egy kicsit váratlanul pozitív eredmény tudományos és gyakorlati alapjainak lerakásával
hogyan magyarázzák, értelmezik a helyzetet és hogyan mutatnak utat az új
próbálkozásokhoz, hogyan támogatják a felnővekvő nemzedék magától értetődően média-
centrikus érdeklődését és aktív tevékenységét.

Terjed az elektronikus információforrások alkalmazása a tanításban és a tanulásban.
Előnyt jelent a sokoldalúság és a többfunkciós kihasználhatóság. Philip Barker
elektronikus leckéket javasol és támogatja az előadások szinesítésére használható
számítógéppel támogatott oktatástechnikai megoldásokat (Barker, 1997).

Külön kategória a távoktatás, ahol az új információs technológiák alapvető megújítást is
eredményezhetnek (Astleitner, 1998). Globális osztályterem megteremtésének a
lehetősége állhat fenn, mert az oktatás anyagainak tárolási és közvetítési módja
győkeresen megváltozott. Az E-mail, a CD-ROM, a WWW és a belső on-line
alkalmazások új kompetenciákat követelnek meg a tanároktól és a felhasználóként
közreműködő tanulóktól is. A legtöbb tanároknak többet nyújt, mint az egyszerű
szemléletetítő anyagok. Elsősorban az alkalmazó, az eszközöket az oktatás folyamatába
integráló pedagógus munkájától függ, hogy minőségi többletet jelent-e egy-egy vetített
kép, animációval szemléletetített folyamat vagy a rövid videoklip. Minden eszköz motivál
valamilyen mértékben, már az audiovizuális eszközök rendszeres alkalmazása is komoly
színvonal-emelejést jelent a hagyományos tanítási órához képest. Ugyanakkor visszavetheti
a haladást, ha a következő órákon „elvárt” segédalkatrészököket helyett visszaváltunk a
szárny közlére, a tényszerű felsorolásra és a követelmények szigorú hangsúlyozására. Itt
„összedől” az eddig fenntartott érdeklődés és konzervens passzivitással találjuk magunkat
szemben.

A tanítási-tanulási folyamatot oktatástechnikai eszközök, hardverek és szoftverek
támogathatják. A technika gyakorlati - tervezett, programozott, tudatos pedagógiai-
didaktikai-metodikai elveken alapuló - alkalmazása az oktatástechnológia. Ismerni kell
az egyes eszközök alkalmazási területeit, az alkalmazás előnyeit és hátrányait, meg kell
határozni a helyes arányt a lehetséges és a szükséges szemléletetés terén és mindegy
ellenére bizonyára találunk olyan anyagrázást, ahol semmiféle tanaszköz alkalmazására
nincs szükség - azaz marad az élőszó, a hagyományos tanítási módszer.

Gyaraki F. Frigyes az oktatástechnikai eszközök tanítási funkcióit tételesen és pontosan
meghatározza. Az iner adása és az ennek következtében megvalósuló figyelem és a
tevékenység irányítása a belépési motivációt támogatja. Ennek következtében joggal
elvárhato a teljesítmény aktivizálása. A programokban különbözőképpen megvalósított
segítségnyújtás a gondolkodás vezérlését valósítja meg, amely ösztönöz a transzferre. Az
élért eredményeket elemezve a visszajelzések a pedagógus, a programozó számára
nagyon lényegesek, de a feed-back a tanuló számára is fontos, mert innen tudhatja meg,
hogyan halad előre a programban, a tananyagban (Gyaraki, 1980).

A néhány évvel ezelőtti tananyag-feldolgozás nyomtatott segédletek, lexikonok, korábbi
források legtöbbször könyvtári elemzését jelentette. Ma az információ-tömeg az Internet
kersőrendszerében a kulcsszavas lekérdezéssel szinte elsodorhat bennünket (Kövesdi-Loboda, 2000). Ezért konkrétabban kell a célokat meghatározni, szükebb sávon kell a megvalósításhoz tartalmakat és módszereket választani. Segítséget nyújthat a programozott oktatás és a multimédia választékos környezete.

2.2.4 A témának megfelelő módszerrel

A tanuló emlékképeiben felidézhetően és megerősíthetően megtalálhatók a korábbi tapasztalások, a szakmai élmények, az adatok és változatok, az általa már ismert konzervens hibák. A műhely-körülmények között adott variációs lehetőségek, tipushibák egy kicsit „fogva tartják” a gondolkodást és a probléma megoldására, a hiba megállapítására először a már ismert úton indulunk el. Mindez nem ellenkezik azzal a tényel, hogy ugyanakkor a szelektív gondolkodáshoz bizonyos tudás- és tapasztaláskészlet alapján szükségeltetik, mert csak egy bizonyos rendezett információ-halmaz adhat lehetőséget a különböző variációkhoz, kombinációkhoz (Tóthné, 1996).

A gyakorlati oktatásban a modelleket, a maketteket, a gyakorlóeszközök választékát szerencsésen egészítheti ki a számítógépes adattárolás, a modelllezés, az újabb értelmezés szerinti a szimuláció. Ma már nem csak elméleti és gyakorlati oktatásról beszélhetünk, hanem egyéni vagy kicsportoports (esetleg távotkatalási) formában megvalósuló) elméleti, labor (szimulációs) és eredeti munkakörülmények között megvalósított gyakorlásról, gyakorlati képzésről. A korábbi kétpólusú - elmélet-gyakorlat - rendszert olyan három fázis váltja fel, amelyben egyérlőre még megőrzi domináns helyét az írott dokumentáció, de már nem kizárólagosan nyomtatott formában és nem csak szemléletlét képayaggal, hanem hanggal, mozgóképpel, animációval, gyorskeresésre szerkesztett adatbázisokkal, művelet-sorozatokat bemutató és betanító multimédiaval.

Teoretikusan helyes sorrendben az elmélet megalozó a gyakorlatot. Úgy gondoljuk, hogy az autóelektronikában ez a sorrend nem minden témakörnél helyes. Vendégh Sándor úgy foglal állást, hogy „...a tanulás a tanulók cselekvése, tevékenykedése keretében megy végbe. Ez a megismerési folyamat tanulási vagy cél oldala....” Ha a gyakorlás a cselekvés-orientált tevékenységek színere, feltéhetően elsőbbséget élvezhet az elméleti magyarázatokhoz, elvi szabályokhoz, működési változatokhoz képest. „A gyakorlati oktatás nem az elméleti ismeretek és tevékenységek egyszerű alkalmazása. Az ismeretek
Oktatástechnológia a szakképzésben

ismeretforrásokból, érzékszerveinkkel, értelmi műveletekkel a gyakorlati tevékenységben szerzhetők” (Vendégh, 1980). Az állásfoglalás azt sugallja, hogy gyakorlati értelemben vett képességfejlesztés nem valósítható meg az osztálytermi körülmények között.

„A gyakorlati oktatás az ismeretek forrása, egyidejűleg a tanulók értelmi képességeinek, gondolkodásának kifejlesztését szolgáló eszköz is.” (Vendégh, 1980). Erre a megállapításra kívánjuk felépíteni azt a rendszert, amely a gyakorlat-labor-elmélet triászon alapul és egyes szolgáltató szakterületeken modellezhet egy új szakképzési megközelítést is. Speciális előnyt jelent, hogy az autós szakmát tanuló fiatal elvárhatóan motiválva (felkészítve, érdeklődve) érkezik a gyakorlatra. Ott először megkapja a helyre, felszerelésre és berendezésre vonatkozó tájékoztatást, majd a bemutatás-betanítás után gyakorolhat. Új dimenziót jelent, amikor a szerszám, a célgép, a műszer a munka tárgya a képernyön jelenik meg, a tanuló nem szerel, mér, javít, hanem szoftversen avatkozik be a folyamatba, azaz mér, ellenőriz, vizsgálódik, hibát keres, cserél, beszabályoz, bemér, minősít, készre jelent és lekérdezi az általa produkált eredményt - a képernyőn. A tanulási-gyakorlási folyamatot a legtöbbször hálózatba kötött számítógépekken a gyakorlat vezetője irányítja, felügyeli, hiszen ő generálja a vezérgépen a hibákat, ő adja meg az induló paramétereket. Lényegében az oktató tűzi ki az elérendő célt is. „A tanulás célja lényegében a munkaképzés elsajátítása” (Vendégh, 1980).

Ma már az egyszerű ékszíj-csere sem a megszokott módon zajlik. Javítási kézikönyv helyett CD-ROM szolgál a csere szakszerű folyamatának leírására, a speciális munkafogások megadására, a célszerszámok alkalmazására és a cserére megérett ékszij (bordásszij) megválasztására. Az interaktív programot a gyártó cég bocsátja a szakműhely rendelkezésére CD-ROM formájában, amelyen a megfelelően kívül további szöveges és képi információ is található. Rendeléskor, vagy szakmai probléma esetén az Interneten keresztül megvalósított on-line keretek között kommunikálhatunk a vezérképviselettel.

A tanárok és az oktatók többsége az új technika eredményeit legtöbbször egyszerűen beillesztik a hagyományos oktatási folyamatba. A programozott CD-ROM ebben az esetben a korábbi oktatógépek funkcióját veszíti át és a modern számítógépes környezetben kínál lehetőséget az aktív egyéni tanulásra. Sok esetben maga a tanár diktálja a felhasználói tempót, beleszól, magyaráz, feladatokat oszt, minősít - és ez sok esetben metodikai visszalépést jelenthet. A rutinosabb pedagógusok korrigálják időbeosztásukat és a kiadott feladatok sorozatát, ajánlják és preferálják a külön tevékenységet, nem avatkoznak bele az önálló ismeretszerző folyamatba és minden lehetőséget kihasználnak az önálló tanulói munka támogatására. Persze ez sem tökéletes megoldás. A multimédia bevezetése teljesen új struktúrán, más sarokpontokon nyugvó tananyag-feldolgozást, időbeosztást és számonkérési módszert jelent. Már a tananyag megtervezésekor fejlődésbe kell venni a multimédia által kínált lehetőségeket és ekkor jogosan várhatjuk el a jó eredményt is.

Újabb bővítést, a lehetőségek szélesebb tárházát kínálja az Interneten, vagy intraneten keresztül megvalósított multimédias munka. Merőben új a multimédias tartalom tárolásának, továbbításának és megjelenítésének problematikája (Gyarmati, 1998).
Nagyságrendekkel nagyobb tárolókapacitás, sávszélesség szükséges és a video- és audio-szekvenciák is különböző formátumokban élvezhetők, illetve rögzíthetők. Ez már egy bonyolult információ-kereső és tanulási környezet, ahol a profik is csak a legkorszerűbb számítógépekkel, kereső programokkal és tömörítő-kicsomagoló eljárásokkal boldogulnak. Hosszú távon nem csak a bő kínálatra és a programok „vételére” kell berendezkednünk, hanem arra is, hogy mi magunk is felvihessünk multimédiás tartalmakat a hálózatokra.

2.3 Számítógéppel támogatott tanítás és tanulás

Kutatók számos csoportja foglalkozott azzal, hogyan befolyásolják a számítógépek az oktatási-nevelési folyamatot, milyen mértékben változtatja meg a pedagógiai eszközöket és módszereket (Varga-Pék, 1988). Napjainkban még lassan terjed a számítógépes alapon megvalósított multimédia az iskolákban. Előre látható volt, hogy ebben a relációban megváltozik a pedagógus szerepe, aki mindenpedig az oktatás középpontjában állt, most pedig az információk egyik forrásává „degradálódott”. Ugyanakkor senki nem vitatja, hogy a tanár és az oktató áll minden egyes multimédia program háttérében, mint aki ugyan nincs jelen a tanítási-tanulási folyamatban, de szakértelmének köszönhető minden egyes gyakorló, bemutató és szimulációs program, illetve annak sikere. A számítógép nélkül megszünne a precíz tanügyi statisztika, a nyilvántartás. Univerzális eszközhöz beszélhetünk. A tanári adminisztráció és dokumentáció, az előkészítő munka fontos funkcióinak ellátása mellett (és azzal párhuzamosan) a tanuló egyik leghatékonyabb segítőtársává vált, elsősorban az egyéni (otthoni) tanulásban.

Amikor arról beszélünk, hogy a számítógép nagy kihívást jelent az átlag-tanár számára, ugyanakkor el kell ismerjük, hogy az előkészítésben és a bonyolításban lassan nélkülözhetetlen segítséget és megbízható technikai támogatást is biztosít. Segédesköz-funkcióit láthat el a számítógép azáltal, hogy a tanulók számára megkönnyíti, hatékonyabbá és érdekesebbé teszi a tanulást. Ugyanakkor meg kell jegyezzük, hogy a személyes kontaktus, a tanítási órák hangulata feltételezhetően hiányzik a számítógép által támogatott egyéni tanulásnál. Jó lenne, ha meg tudnánk határozni a konvencionális (azaz tanárközpontú) tanítás-tanulás és a multimédiával támogatott oktatás kombinálásának ideális arányát. A kérdés megoldása egyre súrűbb, mert újabb és újabb programok jelennek meg és a didaktikai-metodikai koncepció nem központi programok, kerettantervek kérdése, hanem az újabb ismeretanyagok és megkívánt képességek átadásának igénye feszíti a szakmai oktatás kereteit (Hermann, 1998).

Az oktatási eszközök véleményünk szerint ugyan nem lehetnek nyereséges, piac-orientált termékek, könnyen megvásárolhatók, de a számítógéppel támogatott egyéni tanulási rendszerek képességei és fontosságai fokozatosan javulnak. A számítógéppel támogatott egyéni tanulási rendszerek népszerűségéhez kétség sem férhet. Terjedésüket az előbb említett gazdasági szempontok mérésével (Sajnos) nagymértékben befolyásolja. A megcélzott területen feltételezhetően meglévő hardver-színvonalra tervezett rendszerek

Az amerikai tanárok túlterhelésről beszélnek a technikai feltételek módosulásának korában, mert a tanárok sokszor lebecsülík, alulértékelik a számítógépes lehetőségeket. Richard M. Beattie felmérései szerint az USA-ban 1990-ben egy számítógépre még 11 diák jutott, ez a szám 1994-ben már 6-ra javult. A tanárok 90%-a rendelkezik Internet-hozzáféréssel, a legtöbbjük egyben home page tulajdonos is. A napi Internetesek aránya eléri a 70%-ot. A technika mindenütt gyorsabban fejlődik, mint a pedagógiai alkalmazások technológiája (Bettie, 2000).

Amerikai szakemberek úgy foglalkoznak állást, hogy a tanulás új technológiája nem lehet rokon értelmű a munka világával, nem hasonlítható munka-tevékenységhez. Ha a tanulás
során elért eredmények 30%-át az iskola javára írjuk, a további 70% megoszlását az
otthonnak, a környezetnek és a tanulótársi kapcsolatoknak tulajdoníthatjuk (Mann-
Shakeshaft-Kottkamp-Becher, 2000). A telekommunikációs tanulási lehetőségek új
környezetében fokozatosan alakul át a tanárközpontú oktatás tanuló-központú tanítássá,
az egy-médias ismeretátadás multimédiálíssá, az egyidejűleg több érzékszervre ható
tananyagokkal a passzív befogadás aktív tanulássá válék, a között tényleg sorozata helyett a
kritikus gondolkodás preferálása irányába változik a didaktikai koncepció.

A számítógépes környezet oktatástechnológijájában speciális témák is előfordulnak. Az
emberek közötti kommunikáció ember-gép kapcsolattá módosult. Az első szoftverek még
nem nagyon voltak tekintettel a felhasználók véleményére, a funkciók és a reakciók nem
voltak szinkronban a ma már jogosan elvárható szoftver-ergonómiai (kognitív, a
mikroelektronikára épülő mesterséges) szempontokkal. Az emberek mentális műveleteit
nagymértékben befolyásolja az ember és a munkatárgy (a számítógép) közötti
kapcsolatteremtés, az érintkezés gyakorlata, annak minden eleme. A kezelőszervek
minősége, a billentyűzet hozzáférhetősége és a képernyő minőségi paraméterei éppen
annyira fontosak, mint a user interface további jellemzői. Külön tudományág, a kognitív
(szoftver) ergonómia foglalkozik az emberközpontú technika megvalósításával, és az
embernek a technikához való közelítésével (Izsó, 1999).

A számítógépes környezetben való tanulás a bevezetésnél még előre nem látható, de a
gyakorlatban rendszeresen jelentkező problémata a felhasználók bizonyos értelemben
vett „magánya”. Be kell látnunk, hogy az emberi kapcsolatot - tanár és tanuló között,
tanulók egymás között - nem pótolhatja és nem helyettesítheti a korszerű technika egyik
vívománya sem. Hiányzik a dicséret, és - bármilyen furcsa, hiányzik - a kritika is.
Szükséges, hogy a tananyagban való előrehaladásnak, az eredményes teszt-megoldásnak
tanúja is legyen, és ezt a feladatot az egyéni tanulás szervezőjének kell valahogyan
megoldania.

2.3.1 Az informatika oktatása

A számítógépet először magának az informatikának az oktatása, a számítástechnika
iskolai alapjainak lerakása érdekében használták fel a közoktatás (szakoktatás)
hagyományos keretei között. Ez azt jelentette, hogy az új technikai eszköz
megismeréséhez új tantárgyat biztosítottak, amely sajátosan aktív tanári és tanulói
munkát, a számítógépes környezetben megvalósított számítástechnikai oktatást jelentette.
Az informatika tanítása-tanulása még a számítógép-központú korszakra tartozik. A lényeg
a géphanszálát, a programozás és azok az algoritmusok, amelyek az első
oktatóprogramokban újabb és újabb információkat közöltek, majd kérdeztek és bizonyos
segítségnyújtással tovább engedtek a felhasználót. Lényegében számítógép segítségével
folyt a számítógép működésének oktatása. Nagyon lassan bővült az a kör, ahol először a
programozástechnikát támogató matematika kapta azt a kütöntő szerepet, hogy már nem
csak az informatikáról szólta a készülő programok. A sorozatszámítás, a táblázatkezelés
után függvényábrázolások, összetett matematikai feladatok megoldása jelentette az újdonságot. Ezt a fizika területéről vett példák követték, ahol már ábrák, vonalas kísérleti szemléletetek is színesítették a szigorú matematikai munkát.

Az általánosan művelő iskolában az információtechnikai alapműveltség közvetítésének folyamata négy szakaszra bontható (Szűcs Barna, 1985)8:
1. motiváció (játék, rajz, robotok - a gép lehetőségeinek bemutatása);
2. ismerkedés (programozási alapok, algoritmusok, funkciók irányítása - kétdőlő kommunikáció);
3. használat (algoritmusok, programnyelvek, szemantikailag kifogástalan, egyszerű programok megírása, adatfeldolgozás, tevékenység-szimuláció a számolásban);
4. informatika és kommunikáció emberi-társadalmi következményei (ügyvitel, automaták, taneszközök, robotok; természettudományi, társadalomtudományi, informatikai modellék).

A számítógéppel támogatott egyéni tanulás területén Mary Alice White (1985) klasszikus jelentőségű sorrendet állított fel:
1. alapvonal létrehozása (hogyan juthatunk az információhoz, milyen kommunikációs környezetben);
2. milyen technológiával szervezett tanulás sajátosságai;
3. milyen informatika és kommunikáció meg az új tanulási technológiával;
4. milyen eltérés van az elektronikus tanulás és a hagyományos, nyomtatott eszközökkel támogatott tanulás között.

2.3.2 Nyelvtanítás-nyelvtanulás

A nyelvtanítás minden idők egyik kulcskérdése, az emberek közötti kapcsolatok építésének fontos feltétele. Az Európához való csatlakozás előkészítésének fázisában különösen fontos, hogy az idegen nyelvek tanításának és az egyéni tanulás támogatásának minden pedagógia-technikai lehetőségét kiaknázzuk. De nagyon lényeges a nyelvtanulás keretrendszerének vizsgálata abból a szempontból is, hogy először a nyelvi területen terjedtek el széles körben a számítógéppel támogatott, számítógéppel készített tesztek, feleletválasztásos kikérdező programok.

Jellegzetes területről van szó, hiszen a ma még túlsúlyban lévő tankönyv-centrikus tanítási módszer ellentétes az élő beszéd, a mindennapi kommunikáció akár nyelvtani-nyelvészeti hibákat is eltűrő (elviselő) környezetével. A mai iskola csak kiegeszítésként nyúl a párhuzam lehetőségéhez, a tanítási órákra és a tanulóknak kiadott feladatokra az olvasás, a fordítás, a szótanulás és a nyelvtan prioritása a jellemző. Ebben a világban jelent meg az egyéni tanulás új lehetősége, a számítógéppel támogatott kikérdező program, amelyet a tanuló saját tanulási környezetében szabadon használhatott ahhoz, hogy a következő nyelvi órán a begyakorolt szövegekkel és nyelvtani formulákkal megfeleljen a sokszor frontális-autokratikus követelményeknek.

8 idézi Varga Lajos – Pék András, LSI, 1988
Oktatástechnológia a szakképzésben

Tehát a tesztek jelentették azt az áttörést, amelyet a keretprogramok segítségével könnyen és jól meg lehetett alkotni, amely az iskolai számonkérésre és annak gyors értékelésére éppen úgy lehetőséget nyújtott, mint az otthoni (egyéni) tanuláson belüli gyakorláshoz.

2.3.3 Taneszközök, feladatlapok, adminisztráció számítógéppel

Az előzőekhez viszonyítva legalább olyan fontos a tanügy-igazgatási és a pedagógusi munka informatikai támogatása, az egyre nagyobb méreteket öltő, folyamatosan bővülő körű adatszolgáltatás „gépesítése”. Sokak véleménye az, hogy az iskolától elvárt statisztikai adatszolgáltatás volumene néhány év alatt a többszörösére nőtt, a tanügyigazgatással és az egyes osztályok, tanulócsoporthoz tulajdonított munkájával összefüggő adminisztráció olyan nagy teher, hogy az adatszolgáltató-rögzítő-nyilvántartó háttér munkáját számítógépek nélkül már el sem lehetne végezni. Ehhez kapcsolódik a kiegészítésül a szaktanárok azon felismerése, hogy a számítógéppel szerkesztett (elsősorban szövegalapú) tesztkérdések kiértékelése és statisztikai analízise is remekül elvégezhető a gép segítségével.

Először a szövegszerkesztők előnyeit kezdtük kihasználni, amely a kézírással, a gépert és vágott-ragasztott, majd fénymásolt változatokkal szemben nem csak esztétikailag jelentett többletet, hanem lerakhatók lették a számítógépes feladatbankok alapjai is. Ma már előre megtervezett formátumok, sablonok használata könnyíti a feladatlap-készítést és a szöveg a beszúrt képekkkel, szerkezeti és kapcsolási rajzokkal, táblázatokkal és diagramokkal igazán korszerűnek mondható. Mindez „nyomdakész”, könnyen átvihető, másolható és sokszorosítható, percek alatt módosítható, korrigálható.

További „gépesítésre” nyílt lehetőség a nyilvántartások, statisztikák készítése és kezelése terén. A mai programcsomagokban a szövegszerkesztők mellett természetes szolgáltatás a táblázatkezelés, a grafikai felület, a diagram-varázsló és a szerkesztés kivánság szerinti megoldása is. Az elkészült munka a háttértárakról CD-ROM-ra égethető, vagy kisebb adatsor lemezre mozogható a különböző felhasználói helyek között.

A szkenner, a jó minőségű színes nyomtató, a digitális fényképezőgép és a videokamera olyan perifériákat kapcsolnak be a tanári előkészítő munka környezetébe, amelyek lehetővé teszik bármelyik hagyományos audiovizuális eszközhoz professzionális szoftver (nyomtatott lap, film, transzparens fólia, animáció stb.) készítését. Egy ilyen komplex munkahely mind az iskolai szertárban, mind pedig a lakóhelyen felszerelhető. (A relatív magas költségek forrásainak elemzése és a megterülés mérlegelése most nem feladatunk.) Annyit minden esetben hozzák kell tennünk, hogy ez a kiépítés még elő kapcsolatot is igényel. Iskolai hálózat, Internet-csatlakozás teszi teljessé az új informatikai és kommunikációs környezetet, ahol a kapcsolattartásra éppen úgy megvan a lehetőség, mint a „határok nélküli” keresésre, tájékozódásra, adatgyűjtésre és rendszerezésre.
2.3 Az egyéni tanulás környezetének elemzése

Nagyon sokan foglalkoznak a tantermi, tanműhelyi - általában az osztálykeretek között és kiscsoportos formában folyó oktatás tartalmi és oktatástechnológiai modernizációjával, ugyanakkor kevesen vallják, hogy a befektetett munka, a motiválásra, javításra, támogatásra való törekvés hatásfoka rossz, ha nem ismerjük az egyén: a tanuló tanulási szokásait és nem próbálunk meg azokhoz alkalmazkodni. Az egyéni tanulás szokványos módszereivel szemben a virtualis tanulás nem minden esetben jelent előnyt a hagyományos tanulással szemben. Bár kedvező, hogy a tanuló függetleníti magát a helytől, az időtől és a személyektől, de számos technikai probléma, metodikai és didaktikai hiányosságról merülhet fel. Hiányoznak a személyes kapcsolatok, elszemélytelenítik az oktatás (Schorb, 1999). Comenius megalapozta a szemléltetéssel szinesített iskolai oktatást. A századfordulón a nagy tudós nevét címszóként és jelszóként felvevő program a szöveg és a kép szinkronját tervezi bevonni az oktatási környezetbe. Ezzel létrejöhet a tanulás újfajta kommunikációs modellje, amelyet Németországban az 1994/95-ös tanévben kíséreti céllal vezettek be és vetettek vizsgálat alá. A tanárok és a tanulók a központi adatbankból szerezhetik be a szöveges és képi információt. Tartalmilag a természettudományi, a társadalomtudományi és a zenei-esztétikai területen vizsgálták az audiovizuális technika számítógépes megvalósításának alkalmazását - a tanítás minőségének javíthatósága szempontjából. A kísérlet elemzői megállapították, hogy új munkaformák kialakítására nyúlt lehetőség, ahol jellemző a nyitottság, a tantárgyblokkoktól független tanítás-tanulás és a tanulók hatékony cselekvésre orientálása (Kamm, 1995).

A tanulás folyamata körvonalazható ismeretszerzési és alkalmazási sorozatok programozott rendszereként is. A legtöbb esetben az ismeretek feldolgozásának útja az egyes ismeretekből az általános adatok, tények, fogalmak, szabályok felé halad. Ez az inductív módszer, ahol a tanulók a feldolgozott, az általános adatokból, az egyes összetevőkből építjük fel a rendszert, a szerkezetet, és az építkezés végén szabályokat, összfüggéseket alkotunk a komplex egység jellemzésére, jellegzetességeinek összefoglalására. (Corábban így folyt az autóműszaki képzés is, de sok párhuzamos szakterületen ugyancsak alkatrészekből, ezek anyagismeretével és rajzos elemeivel építették fel a működő egységet, párhuzamosan oktatva a fizikai-kémiai-gépészeti alapelveket és szabályokat.) A deduktív módszer, a lebontó jellegű feldolgozás az általánostól, az egésztől halad az egyes részek, azok alkotóelemeinek irányába. Alkalmazástechnikai példákon keresztül ad magyarázatot az egyes jellegzetességekre, melynek megerősítésére tovább bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan. (Az autóelektronikai szakterületen bevált a deduktív-koncentrikus módszer. A pszichológiai-didaktikai-metodikai alapot az adja, hogy az autóhoz egy kicsit a kezdő is ért, a közlekedés egy résztvevőjének és elkötelezésére való bont, befelé bővít, magyaráz és hivatkozik a kiindulási helyzetre, majd az egészerre vonatkozóan.
között az önálló tanulási módszerek a legértékesebbek” (Tóthné, 1996). Már Herbert Spencer is kifejtette, hogy a cselekvés előkészítése, támogatása az oktatás célja, nem pedig a tudás illuzórikus szintjének elérése. Cselekvésre, konkrét tevékenységek végzésére kell alkalmassá tennünk a szakképzésben a tanulókat. De hogyan tegyük ezt? Meg kell ismernünk a tanulási szokásokat, az ezt támogató vagy hátráltató otthoni környezetet és - ha ez nagyon nehéz, akkor is - alkalmazkodnunk kell mindezekhez. Maga a tanulás a legtöbb esetben egyszemélyes, individuális, egyénre szabott feladatok sajátos megoldását jelenti.

2.4.1 Nyomtatott tananyagok, jegyzetek, szakkönyvek között

A hagyományos tanulási környezet a Gutenberg-galaxisra épül. A szédületes fejlődés ellenére tananyagaink megjelenési, feldolgozásra (tanításra és tanulásra) előkészített formája mind a mai napig elsősorban a nyomtatott változat használata. A mondanivaló, a gondolat rögzítésének igen sok formája van, az egyszerű képírástól a stilizált jelekig (Brookfield, 1995). A tanítási-tanulási folyamat alapfunkciói az információgyűjtés, az információ feldolgozása, a felidézés és az alkalmazás. Alapelv, hogy az oktatási gyakorlatban növelni kell az alkalmazás arányát az ismeretszerzéssel szemben (Szántó, 1984). A tankönyvalapú oktatás évszázadokig megfelelt a tanulónak, a szülőknek, az iskolának és a társadalomnak egyaránt. A tankönyv a pedagógusi előadással, magyarázattal, az otthoni feladatok kiadásával és a megoldások ellenőrzésével válhat hasznossá. A hagyományos tankönyv szerkezete lineáris, az információ épül az előzményre és előkészíti a következőt. Jó és hasznos, ha a fejezetek végén összefoglaló kérdések szerepelnek, amelyek megkönnyítik a tanulói rögzítést, de segítséget nyújthat a pedagógusnak is a számonkérés megszervezésénél.

A tankönyvekben felhalmozott ismeretanyagot iskolai keretek között a munkafüzet, a szöveggyűjtemény vagy egyéb segédletek egészítik ki. Az iskolai tanulás támogatására szolgál még a korrepetálás, a szakkör, a könyvtár is. Az otthoni tanulás alapja a könyv és a tanulói füzet (jegyzetek), melyet a saját könyvek egészíthetnek ki. A XXI. század küszöbén egyre általánosabb az otthoni videó és számítógép, melyre ugyan nagyon ritkán terveznek a tankönyvalapú tanulási környezetbe illeszkedő oktatóanyagot, alkalmazása mégis egyre inkább terjed. Sok pedagógus belátta, hogy a mai iskolás nem nagyon hajlandó olvasni, ezért a kötelező olvasmányok megfilmelésített változatait videokazettával kölcsönzik a tanulóknak. Az informatikát tanulók sokszor kapnak olyan házi feladatot, amelyet vagy az otthoni számítógépen, vagy a délután az iskolai gépteremben lehet megoldani. Alakul, változik a tanulási környezet, ezzel párhuzamosan a tanulói szokások, időbeosztás és a tanítási órákra való felkészülés módszere is.

A munkaerő-piaci elvárások a szakképzők mezőszervezésével kapcsolatosan a megváltozott kognitív és pszichomotorikus képességek mellett afféktív képességeket is feltételeznek. Ma már a szakképzésben oktatók hangsúlyozzák a flexibilitás, az önállóság, a határozottság, a kooperációs beállítottság, a konfliktuskezelő és a kompromisszumkereső képességek
fontosságát (Szekeres, 1997). Az elvárások fokozatosan töltődnek fel konkrét tartalommal az új oktatástechnológiai környezetben munkálkodó pedagógus és diák személyiség-formálódása során. Kiemelhetjük a kooperatív tanulást, mely nem egyszerűen a csoportmunka egyik változata, hanem több annál. „A pozitív interdependencia, a megosztott vezetés és megosztott felelősség fűzi szorosra a csoport tagjainak együttműködését” (Szekeres, 1997). A kooperatív tanulás kompenzáálhatja az individuális munkával együtt járó „elmagányosodás” hátrányait és elsősorban a tantermi, tanműhelyi foglalkozásokon teremthet optimális „szakmai” hangulatot, hozhat effektív eredményt.

2.4.2 Mit adhat az iskola az otthoni tanuláshoz?

Elemeznünk kell, hogy a megtérülés és a hatékonyság szempontjából mire képes az új technika az egyéni tanulás támogatásának érdekében. Az úgynevezett „multimédiás” és „telekommunikatív” tanulás támogatásának első próbálkozásai felfokozott várakozással kerültek a közutatba. Minden kutató arra tette le a voksát, hogy a divatosan új elnevezések tartalmi, a „telelearning” vagy a „teleteaching” megoldja majd a hagyományos tanulás valamennyi problémáját. Sajnos harmar bebizonyosodott, hogy a multimédia környezetem sem mindenható, valamiféle ambivalencia esete forog fenn, azaz az információszáradás újabb útjai, az „információs sztráda” nem jelenti a tanulási folyamat automatikus lerövidülését és a hatásfok nagysárgöndédel való javulását. Tulajdonképpen beigazolódott, hogy a tanulás nem egyszerűen az információs adatok egyszerű sorozata, felhalmozása, hanem az új ismeretek elsajátítása és alkalmazás képes rögzítése. Tehát az új technikai lehetőségekről elmondhatjuk, hogy egyszerű eszközökkel van szó, amelyek nem válhatják ki a tanuló konkrét erőfeszítéseit a tanulás során, mert az ismeretek elsajátítása és a képességfejlesztés folyamata egyéni motiváció hiányában csak hiú ábránd marad (Euler, 1998).

A lifelong learning (élethosszig tartó tanulás) divatossá vált kifejezése lényegi tartalmat takar. A legfontosabb elem az lehet, hogy még az iskolai tanulással párhuzamosan, vagy a tanulmányok befejezése után akar-e, tud-e az egyén a további tudás, újabb képességek elsajátítása érdekében energiát befektetni a folytatódalos tanulásba. Kérdés, vajon eléggé
hatékony-e az eddigi tanulás a módszer tekintetében és kedvezők-e a tanulási környezet paraméterei? Eszközök, célok, tanulási stratégiák határozzák meg azt, hogy az információ-áradatban mennyire mosódik el a határ a kötelező és a szabadon választott tanulási kategóriák között.

A tanulás képessége intelligenciát, megfelelő hozzáállást és motivációt tételez fel. Döntő fontosságú, hogyan támogathatja az oktatáspolitika, a lakókörnyezet, végső soron maga az iskola a tanulást. Hogy mihez szükséges ez a segítség, erről Szemere Pál fordításában tájékozódhatunk:

♦ „...önmagukra figyelő, önmagukkal szemben kritikus tanulókká válni;
♦ hozzáférni azokhoz az eszközökhöz, amelyekkel eredményesebbek lehetnek;
♦ tanulási képességüket áthelyezni egyik helyzetből a másikba;
♦ felkészülni arra, hogy a jövőben várallan helyzetekkel találkozhatnak.” (EU, 1999)

Péczely Dóra szerint az oktatás területén az egyik legfontosabb kérdés a jövő évezred iskolamodellje (Péczely, 1999). Minden pedagógusnak szembe kell néznie azzal, hogy a hagyományos oktatás lassan, de irreverzibilisen a háttérbe szorul. Fokozódik a tanulás és a gondolkodás módszertanának fejlődési üteme, amely a tények és adatok egyszerű megtanulását a háttérbe szoríthatja. Tehát újszerűen feldolgozott tananyagokra, új tanítási és tanulási módszerekre van szükség.

2.4.3 Alkalmazkodás a tanulási szokásokhoz

A tanulási szokásokhoz való alkalmazkodás éppen úgy nem lehet egy átlagos, általános és sablonos, mint a tanítási órára való felkészülés során a módszer, az eszközök, az új anyag közvetítésének és számonkérésének technikája (technológiája) sem. Comenius véleménye szerint ha a tanuló semmit nem tanul, az csak a pedagógus hibája lehet, aki vagy nem ért hozzá, vagy nem törődik azzal, hogy tanítványai tanulékonnyá váljanak (idézi Fuchs, 1969). Move out of chalk-age - kifelé a krétakorból; a cél a hatékony tanítás megvalósítása és az aktív, értelmes tanulás körülményeinek biztosítása. Paracelsus szerint az adag nagyságán, a dózison múlik, hogy méreg-e valami, vagy pedig orvosság. A tanítás során és a tanulók fokozatos terhelésének gyakorlatában a befogadó képesség és a haladási ütem ellentétes elvárása miatt kénytelenek vagyunk kompromisszumot kötni.

Neves gimnáziumokban tanító kollégák véleménye szerint a tanulók otthoni munkája napi és tantárgyankénti 1-1 óra tanulással vezethet jó eredményre és a biztos egyetemi felvételhez. Skinner az apró lépésekre bontott tananyag tanulásához a segítség fontosságát is hangsúlyozta. 1958-ban naponta és szakonként 15 percben határozza meg a tanulásra fordítandó idő minimumát (Fuchs, 1969). Tapasztalataink szerint az autóelektronika szakelméleti tantárgyainak tanulásához nem ajánlható a tankönyvalapú rögzítés, inkább a szerkezeti vázlatok, kapcsolási rajzok többszörösi elemzése, további változatok

9 A minőség tizenhat mutatója, Európai jelentés az oktatási hatékonyságáról, Európa Tanác, 1999

A tanulás támogatására szerkesztett programok, de már a tanítási órán alkalmazott egyszerű szemléltetés is hátrányt jelenthet a közepes tanulóknak abban az esetben, ha túl sok a közútt információ, ha nem logikus a tananyag belső felépítése, vagy éppen túl gyors a közlés, az ismeretátadás üteme (Gyaraki, 1980). Különös jelentőséggel bírnak ezek a megállapítások az egyéni felhasználás számára készített gyakorló, vagy adatbázis jellegű programoknál, ahol akár a nyomtatott formában közreadott tananyag szinesítésére, akár bizonyos - nehezebben érthető, tanulható - gondolatmenet áttekintésére és rögzítésére éppen maga a pedagógus készített programot, vagy állított össze multimédiás blokot. A tanári munkában az egyik legnehezebb feladat a tanulók motiválása és inspirálása. A hatás különböző tanult és egyéni technikákkal érhető el. Néha sztochasztikus vagy rögtönzéses koncentráció fenntartására tett kísérlet. Ezzel párhuzamosan mind a tanári, mind pedig a tanulói oldalon bizonyos attitűdök befolyásolják az elvárható cselekedéseket, vélemény-nyilvánításokat. Attitűd támogathatja a rendelkezésre állást, a tananyaghoz való viszonyt, az eredményességre való törekvést, a társas viszony minden egyes elemét. Mindez talán elfogadható, érthető, de hogyan funkcionál a tanulni készülő diáknak individuális környezetében?

Az OECD kommunikációs és információs technológiákkal foglalkozó nemzetközi kutatási programjában praktikus kettős jelszó sugallja a számitógépes környezetben megszervezett tanulás kereteit: „Learning to use” (az informatika használatát megtanulni) és „Using to learn” (a számitógépes módszerek alkalmazása a tanulásban) (Kárpáti, 2000). A lehetőség és a módszer csak akkor lehet eredményes, ha az alapképzés, az át- és továbbképzés, de már a tananyagkészítés, a kötelező tett tantervek szerkesztése során is fontos cél az informatikai kultúra terjesztése, az informatika technikai eredményeire alapozott tanítás-tanulás.

az iskolai környezetre igaz. Be kell vonni a tanulókat a feladatlapok kérdéseinek szerkesztésébe, a kapcsolási rajzok adatbázisának összeállításába, ellenőrzési és minősítési feladatokkal kell ellátnunk őket ebben az átmeneti időszakban.

Az egyszerű otthoni feltételek türelmet, megértést követelnek, de nem fogadhatjuk el a sok iskolában általános tapasztalatot, mely szerint a tanulók többsége ki se csomagolja a táskáját egyik napról a másikra. Következetesek kell lennünk az olvasni-tanulmányozni-tanulnivaló kiadásában, a feladatok ütemezésében, és - nem utolsósorban - a színvonalas iskolai munka előkészítésében.
3. A tananyag programozott feldolgozása

3.1 Tantervek, tananyagok, központi programok, kerettantervek

A szakközépiskolák és a szakmunkásképzők 2000-ben már nem képeznek az OSZJ (Országos Szakmai Jegyzék) szerint. A 8 osztályos általános iskolára épülő 3 éves szakképzés megszűnt, helyére egyszerűbb szakmai kockázatban a 8 + 2 + 2 rendszer lépett (10 osztály és 2 év szakképzés), vagy - ami az autós szakterületen általános: érettségi után 2 év alatt lehet az OKJ (Országos Képzési Jegyzék) előírásainak megfelelő szakképesítést megszerezni. A NAT több változata utána olvasható, hogy azok az előírások látták napvilágot, amelyek új témaköröket, ismeretanyagot és ennek megfelelően új tantárgyból kifejezés tette a két 9-10. évfolyamon, de nem maradt változatlan a szakközépiskola utolsó két (11-12.) évfolyama sem. Folyamatosan módosul az érettségi tartalma és keretrendszere, tantárgybólka és értékelése is. Mindezek megvalósítását nehezíti és néhány hónapon belül új szerkezetbe ágyazza a pedagógiai programok aktuális felülvizsgálata és a kerettanterveken alapuló (jóváhagyott) helyi tantervek belépése.

Az autótechnikai szakképzés területén előnyök és hátrányok egyaránt tapasztalhatók.
Feltétlen előrelépést jelent, hogy az OKJ-ben szereplő szakmákon, szakokon belül a követelményrendszer az európai normákra épül, azaz a tananyagtartalmak korszerűek és naprakészek (sok esetben egyetemi-főiskolai színthez is mérhetők). Ugyanakkor gondot okoz a mindennapi oktató-nevelő munkában, hogy pl. az autószerelők 13. évfolyamán sem az elméletben, sem a gyakorlaton nem kap konkrét szerepet az autó, amiért tulajdonképpen - sajnáljuk - a fiatalok ezt a szakmát választják.

Az autóelektronikai műszerészek valamikor európai szinten újdonságnak számító tananyaga a megvalósítás-közvetítés-értékelés szintjén sok iskolában sérül, mert a rendelkezésre álló szakoktatói és tanári gárda nincs későleg felkészülve az ismeretek átadására, a programban szereplő képességek felismerésére, egyáltalán az előírt szakmai színvonal biztosítására.

A megoldást a jól megszervezett kimeneti szabályozás jelentheti. Az állam delegálja a szakvizsga elnökét és a kamara védi, képviseli a szakmai szintet a szakmunkásvizsgán és a képzés folyamatában általában. A szakképesítést csak azoknak a jelölteknek lehet eljutni, akik az államilag előírt cél- és követelményrendszerben szereplő elvárások megfelelnek. A második szűrő, minősítő közeg a vállalkozói szféra, ahol a munkára jelentkező fiatal szakember néhány napon belül bebizonyíthatja, mire képes. Ha baj van, a vállalkozó, a szakszerviz gondosan utánanéz majd annak, hol tanult, hol végzett a szakmunkás, a technikus, és a természetes kiválasztódás törvénye értelmében tesz majd különbséget a szakképző intézmények között.

3.2 A programozás klasszikus változatai

Szántó Károly a tanítási-tanulási folyamat programozásának történetét Platon és Menon munkásságára vezeti vissza. Időszámításunk előtt is szabály volt, hogy a tanítónak értékelnie kellett a válaszokat, a tanuló által elkövetett hibákat ki kellett javítani. Mindez úgy volt lehetséges, ha a tanulóval lépésenként, csoportosított tudnivalók formájában tárgyalták meg, és a tanítási-tanulási folyamat során kiemeltek az egyes tudnivalók közötti kapcsolatot. A tanítás akkor volt hatékony, ha a tanítás munkáitme kedvezően illeszkedett a tanuló felfogóképességéhez. (Szántó, 1984). Comenius idejéből is maradtak feljegyzések, melyek igazolják, hogy a tanár és a tanuló közötti interakció során a tanító nem csak előad, hanem megmutat is, sőt: egyenként el is ismételteti a tudnivalót. 1924-ben Pressey a hangsúlyt a helyes válaszokra és azok megerősítésére helyezte, amikor az egyéni ütem szabadsága ellenére csak úgy engedte tovább a tanulót a programba, ha jól válaszolt. Akkor még valószínűleg anakronisztikusnak tűnhetett az egyéni haladási ütem biztosítása és az ismétlések korláttalan száma.

A korai tanításelméletek a tanulásnak három lehetőségét ismerték: a cselekvés, a tapszatalás és a próbá-tévedés útjait. Scholz Gyula Zemanek (1961) alapján szélesebbre tárja a tanítási folyamatok kapuit, mely szerint a tanítási folyamatot logikai változataik szerint a következőben lehet összefoglalni:
1. osztályozás (válasz a jelekre);
2. tanulás bevésés útján;
3. tanulás feltételes hozzárendelés alapján (a feltételes reflex elvén);
4. tanulás sikerélmény útján;
5. tanulás optimalizálás útján (a legsikeresebb próbálkozás);
6. tanulás utánzás útján;
7. tanulás tanítás útján;

A programozott tananyag-feldolgozás a feladatrendszeres tanításhoz hasonlóan a tanulók önálló munkáját biztosítja a tanórán, vagy a tanórán kívül (Tóthné, 1996). A programozott feldolgozás klasszikus jellegzetessége az egyéni képességek figyelembe vétele, a rugalmas módszer alkalmazása és a lépésenkénti tanulás támogatása, a pozitív vagy negatív megerősítés elméleteinek alapján. Ha a tananyagot és annak a tanulói szférában történő feldolgozását elemezzük, a tanulás lépéseit négy elemre építhetjük:
1. információ adása,
2. kérdés feltevése,
3. válaszadás (választás),
4. értékelés (negáció vagy megerősítés).

Ha programozott tananyagban haladunk előre a programozó által megadott lépések és választási lehetőségek sorrendjében, nem csupán a logikusan egymásra épített tananyagelemek sorozatával találkozunk, hanem a kontinuitás is adott az interaktivitás tekintetében azáltal, hogy folyamatosan kapjuk azokat a kérdéseket, amelyek a teljesített tananyag rész után a továbbléptést engedélyezhetik. Maga a tudásszint ellenőrzése is jelentős taktikai jegyeket hordozhat magán a megerősítés érdekében, mert a szakszerűen felállított kérdés-sorozat sugallhatja a helyes választ, és ez a megerősítés (reinforcement) területén részeredményt hozhat a felfedezéses tanulásban.

A programozott oktatásban a kibernetika és a pedagógia sajátos kölcsönhatására lépnek. Jellemző paraméterei ennek megfelelően:
1. strukturális - annak a rendszernek a paraméterei szerint, amelyben megvalósul;
2. funkcionális - a tanulási folyamat adott sémája szerinti irányításában (irányítás, vezérlés, szabályozás - feltételezetten folyamatos visszaszorítással);
3. információs - információ minden olyan közlés, amely új ismeretet tartalmaz (Biszterszky, 1993).
3.2.1 Lineáris program

A kutatók munkájának eredményeként a tanulás folyamatában különös hangsúlyt kap az ellenőrzés. Ennek programozott változata Pressey tudás-ellenőrző tesztgépével már az 1920-as években megvalósult. Pressey programjai az ismétlést préferálták, ami azt jelenti, hogy az adott esetben a tanulási cél a tananyag pontos, „szó szerinti” elsajátítása, a szigorú memoriázás. Jó példa erre a nyelvtanulás, ahol a szórend, a ragozás, a nyelvtani szabályok tekintetében semmiféle engedmény nem adható, vagy műszaki példával élve: a hegesztő-berendezések üzembeüzemben kívül helyezésének technológiai folyamatában egyetlen lépés sem hagyható el, mert ez beláthatatlan következményekhez vezethet.

A tanítás-tanulás szférájában a lineáris programozás alapjait Skinner rakta le. 1950-ben közölt munkája, A tanulás pszichológiája és a tanítás művészete című előadásában addig még nem alkalmazott módszert mutatott be. Köztött lépéssorra fűzte fel a tanulási folyamatot. A *kis lépések módszere* azt jelenti, hogy az egyes tananyag-elemek egymásutánjában a hibázás, a rossz válasz adása szinte kizárható, a sorrend kötött, a tanulás a pozitív megerősítés (reinforcement) elvére építve folyamatos (Tóthné, 1996). A szakirodalom azt a lineáris oktatóprogramot, amelyben az alapot az S-R (inger és megerősítés) képi és a felismerési képességet fejleszti, külső programozás néven tárgyalja (Biszterszky, 1993).

3.2.2 Láncszerkezetű program

Ha a tananyag olyan kis egységekre, elemekre, lépésekre van bontva, amelyek csupán egy-egy plusz információt adnak az előzőhöz képest, láncszerkezetű programról beszélhetünk. A láncprogram *elem a szekvencia*, amely több szakaszt, lépést magában foglaló egység (Szántó, 1984). Az egyes szekvenciák alkotóelemei az információk, kérdések és a helyes válasz esetén élnyerhető megerősítés. Ismétlésre, betanulásra napjainkban is alkalmazzák, amihez a keretet a *Power Point Presentation* néven közismert bemutató-szerkesztő program szolgáltathatja.

3.2.3 Elágazásos program

Oktatástechnológia a szakképzésben

Crowder 1963-ban közzétett megállapításai szerint az elágazásos programok számtalan variációja közül öt alkalmas arra, hogy a tanulás támogatására hasznosan bevezethető legyen. Ezek a következők:
1. az egyszerű felelet-választós megoldások (simple program);
2. az ismétlődő program (review passage) és az ezen belül megvalósított visszalépő elágazás (backward branching);
3. az egyszerű program és a visszavezetés kombinációi;
4. a komplex visszalépő eljárás (a szakirodalomban: kerülőút-program);
5. az előrelépő elágazás (forward branching) (Fuchs, 1969).

3.2.4 Vegyes és speciális programok

Az alap-változatok, a klasszikus értelemben „egyfélé” programozási mód lényegében csak a kutatásokban, az eredeti módszereket elemző, összefoglaló és rendszerező szakirodalomban létezik. Bár a programozók nem a feltaláló-kutató-tudós nevére és munkásságának eredményeire gondolva választanak programozási módokat az egyes témák feldolgozása során, mégis jellemző, milyen megjelenítési formát, tartalmi feldolgozást, számonkérési módszert választanak. Elmondhatjuk, hogy a tudományos alapokon és informatikai módszereken alapuló tananyag-feldolgozás a legtöbb esetben az újdonság erejével is motivál, a saját fejlesztésű vagy készen kapott program mindenképpen előbbre viheti a tanár és a tanuló feltehetően közös célját: a hatékony és eredményekkel kecsegítő tanulást.

Brückner Huba a programok szerkezetére alapján alkotta meg az alaptípusok rendszerét:
♦ egyszerű program;
♦ visszavezető program;
♦ komplex visszavezető program;
♦ egyszerű mellékprogram (kerülőutas);
♦ előrelépő program (Brückner, 1978).

A CAI (Computer Aided Instruction - számítógéppel támogatott oktatás) rendszer bevezetését sokan az egyénre szabott oktatás alapjának tekintik. Már a gép tárolta az oktatóprogramot és - különböző stratégiák szerint - dinamikus kapcsolat létesült a tanuló és a program között. A tanulás kérdés-felelet formában folyt, amelynek során a gép minden választ analizált és az eredményeket rögzítette. Technikailag lehetőség volt arra, hogy a számítógép külsőleg csatlakoztatott oktatási eszközöket is működtetett. Talán a multimédia ősének is előléptethetjük a CAI rendszert, amikor diavetítőt, filmvetítőt kapcsolt be a kérdés-sorozattal szinkronban. Az on-line tanulás is megvalósult a tanulói termináloknak egy számítógépre kapcsolásával.

Ahhoz, hogy a számítógéppel kommunikálni lehessen, azaz megvalósuljon az interakció, a gépet erre programozni kell. A program keretrendszerébe be kell ágyazni a tananyagot és ugyancsak programozói lépések annak eldöntése, milyen tanulói reakciókra hogyan válaszoljón a számítógép. A reakció „üzenet” formájában jelenik meg a képernyőn. Az
ilyen típusú oktatóanyagokat a *teacher-programmed* (a tanár által programozott) kategóriába soroljuk. Másképpen fest az az interakció, amikor a tanuló szinte kötetlenül kommunikál a számítógéppel, a feladatok megoldását saját elképzelései (vagy rögtönzései) szerint alakítja. Ez a *student-programmed* programcsalád, ahol az interaktivitás a tanuló felhasználói szabadságában mutatkozik meg (Brückner, 1993).

A különböző céljai, más és más programozástechnikával szerkesztett oktatóprogramok a Bloom-féle taxonómiának megfelelő oktatási célok szerint is csoportosíthatók. Az egyszerű gyakoroltató program az ismeretszerzést, annak is a felismerési szintjét támogatja. A magasabb szintű *ismeretszerzés* új információi a megértést is elősegíti. A *tesztelő* programok többsége - az önálló tanulást támogató programok egy részével - csak az alkalmazási kategóriára van tekintettel. A *szimulációs* program felhasználója a valós helyzeteket utánpótolja alkalmazásban erősödhet, de jártasságot szerezhet az analízis és a szintézis szakmaspecifikus területén is. A legmagasabb szint a *problémamegoldó* program, ahol az alkalmazás, az analízis és szintézis mellé az értékelés is belép. Ez már akár napjaink programozási modellje is lehetne.

3.3 A tananyag elemzése és rendszerezése

Műszaki jellegű tananyag feldolgozásának megkezdése előtt a kitűzött célokat és a követelményeket kell elemeznünk. A feldolgozás vezérfonala lehet *szakelméleti* vagy *gyakorlati dominanciájú*, azonban a mindennapos oktatónkában ezek legtöbbször vegyes rendszerben öltének testet. Mindenképpen célserű a kimenetnél elváratlan jártasságokat, készségeket és célszerűen fejlesztett képességeket rendszerbe foglalni és ezeket szakmai sorrendben a tananyag leendő elrendezésének gerincéül kijelölni.

Oktatástechnológia a szakképzésben

Valamiféle tendenciának mindenkiéppen érvényesülne kell az elsajátítási szintek és a célrendszer szinkronizációja során. A programozott oktatásban erre jó példa a CD-ROM segítségével közvetített tananyag fejezeteinek végéhez csatolt, önellenőrzésre kialakított kérdéssor, gyakorlati mérés-sorozat vagy döntési modell.

Kárpáti Andrea a digitálisan feldolgozott oktatási anyagok tekintetében a következő felosztást ajánlja:
1. mechanikusan begyakoroltató feladatok, ellenőrzéssel (drill and practice);
2. oktatási segédlet, magyarázatokkal (tutorial);
3. interaktív információs rendszer (multimedia dialogue system);
4. oktatásszervező programok (management) (Kárpáti, 1999).

Alapkérés: mire jók, mit támogatnak és milyen hatásfokkal alkalmazhatók a digitálisan feldolgozott tananyagok? A szakképzésben dolgozó tanár és szakoktató kollégák jelentős hányada még nem találkozott a digitális technikával. Az ő tájékoztatásukat és motiválásukat is szolgálhatja az a felsorolás, amely az oktatóprogramokkal kapcsolatos legfontosabb kérdéseket veti fel:

♦ Milyen nevelési-oktatási, illetve tanulásméleti alapokon (kognitív, konstruktív, humanisztikus, posztmodern) készült a program?
♦ Milyen pedagógiai környezetben működik?
♦ Milyenek a felhasználó benyomásai?
♦ Javítja-e az alkalmazás a csoportdinamikát, elérhető-e az alkalmazással közösségképző hatás? (Kárpáti, 1999).

A számítógépre szerkesztett, programozott tananyagok ajánlása, felvezetése és a használathoz szükséges instrukciók adása a képzés rendszerét mind a mai napig kézben tartó tanár feladata. Az ő szerepe, személyes motiváltsága és érdekeltsége is különböző fokozatokban mutatkozhat meg a számítógéppel, a programozott oktatással kapcsolatosan. Lehet kezdő, aki még csak ismerkedik az új eszközzel. Lehet fel professzionális felhasználó, aki az informatikában már jártas és rengeteg időt a képernyő előtt töltve igyekszik minden lehetőséget kiaknázni a tananyagok feldolgozására, tesztkérések szerkesztésére, szemléltető anyagok előállítására. A profinak számító (harmadik) tanártípus elemez, szerkeszt, programoz, keze alól számtalan digitális taneszköz kerül ki az évek során.

3.3.1 A rutin dominanciája

Aki már néhány évig a katedrán állt és a tanításban eltöltött idővel, személyes ambícióival (tehetségével) arányosan bizonyos rutinra tett szert, perszevearációval fogad minden feladatot, problémát, kihívást az oktatás területén. Úgy gondoljuk, hogy a pozitív értelemben vett rutin, a gyakorlottsággal arányos azonnali állásfoglalás és az „egyedül üdvöző” próféciáját a pedagógusokat nem az
foglalkoztatja, hogy mit kell megtanulniuk, milyen új kategóriáként bevezetniük, hanem elsősorban azt értékelik, vizsgálják, elemzik, hogyan tudják az új keretek között a régi, begyakorlott módszereket és tanítási tartalmakat megtartani, az eddig befektetett munkát mintegy „átmenteni”. Az ő meggyőzésükhöz a következőkben néhány módszer, lehetőség megismerését ajánlunk.

3.3.2 Foglalkozáselemzés, tevékenységi lista

Az átalakulás alatt, a folyamatos megújulás folyamatában is látszólag zavartalanul funkcionáló szakközépiskolai-szakiskolai oktató-nevelő munka lényeges belső és -kapcsolatrendszerét, annak minőségét illetően - külső átalakulásánban van. Míg korábban az állam, az oktatópolitikusok és az oktatás tényleges irányítói írták elő a szakmai tartalmakat, szinte, adták meg az elmélet és az gyakorlat arányát, az orasákmokat és a tantárgyi blokkokat, addig a piacgazdaság keretei között ez a relatív időtálló keretrendszer nem látszott megfelelőnek. A szolgáltató szektor - benne az autószervizek és típusjavítók munkája - előbbre került, a valóságos munkaerő-piac átstrukturálódása következtében változik a kurrens és elavult szakmák jegyzéke, de lényegesen módosulnak a szakmai tartalmak és az elvárások is. Előtérbe került a korábban már kimunkált modulrendszer, azaz több szakma rendelkezik azonos tananyagtartalmakkal, ugyanakkor élesen elkülöníthető speciális jegyekkel is. Az új körülmények között formálódó szakképzés úgy igazodhat jól az elvárásokhoz, ha a szakterület igényeit adaptálja a képzési folyamatba.

Az amerikai és kanadai modellek (pl. DACUM, MANTEL) alapja a foglalkozáselemzés, melyet szakemberek (nem pedagógusok!) végeznek el. A tételes és részletes elemzésekből egy tevékenységi listát állítanak össze10. Milyen feladatokkal kell szembenéznie, mit tesz, mivel, hogyan dönt - mindezektől kialakul a foglalkozási profil. Itt léphet be a modul-rendszer, amelyekből a foglalkozásokhoz szükséges képzést blokkokat össze lehet állítani, meg lehet szerkeszteni az adott szakmai képzés standardizálható cél- és követelményrendszerét, a szakmai vizsga elvárásait, részeit, tételeit - egyszóval mindazt, amit Magyarországon évek óta a szakmai kamaráknak kellene végezniük.

3.3.3 Szemléltetés, bemutatás, gyakorlás, szimuláció

A napjainkban korszerűnek számító szakmai óra vagy műhelyfoglalkozás minősítésére több kritérium áll rendelkezésünkre. Mindenekelőtt az államilag előírt órakereteket és a tanítási órák mindennapos gyakorlatát befolyásoló szempontokat kell betartani. Új irányítási dogma, hogy a személyes elképzelésekeket, terveket és kivitelezési megoldásokkal párhuzamatosan ma már tényleg nem az iskolának tanítunk-tanulunk, hanem az állandó változásban lévő munkaerő-piaci elvárásoknak kell megfelelnünk. Az elvi fogalom-kategória a napi gyakorlatban úgy öltöztethető fel gyakorlati tartalommal, hogy a modul-rendszerű képzés szinte minden egyes órájában valami pluszt kell adjunk a leendő munkahelyen való megfelelés érdekében.

A számítógépes szimuláció lényegét Brückner Huba a folyamatok, rendszerek viselkedésének utáznásában látja (Brückner, 1978). Ch. Doerr gondolatai szerint az oktatásban a szimuláció az egyik leghatékonyabb módszer a számítógéppel támogatott környezetben. A valós helyzetek leegyszerűsíthetők, a szimulált jelenségek könnyebben kezelhetők, a tanulói döntéshozatalnak nincs káros (anyagi jellegű) következménye, a folyamatok sokszor ismételhetők, ennek alapján hatékony stratégia alakítható ki11. Fontos elem, hogy a szimulációs folyamatok pozitív motiváló hatása minden esetben jelentkezik. A tanuló maga is cselekvő része lesz a tevékenységnek, a jelenséggel kapcsolatos fogalmak és a döntésmechanizmus eredményei interiorizálódnak.

Varga Lajos és Pék András szerint a szimuláció a folyamatok lassításának/gyorsításának a lehetősége. Olyan működő modelleket lehet alkotni, amelyek szemléleteznek, aktivizálják a kezelőt és eredmény-elemző képességgel rendelkeznek. Mindez a természet- és társadalomtudományok területén egyaránt fontos lehet (Varga-Pék, 1988).

A készségtanulás folyamatának szakaszai Vendégh Sándor szerint:

♦ megismerési szakasz - az érzékszervek működését jelenti, megfigyelést feltételez; választ keres a felmerülő gyakorlati kérdésekre; próbákkal kutatja a megoldást; a problémát feltételezések alapján igyekszik megoldani;
♦ a tananyag elemzése - az általánosításra, a fogalomalkotásra való előkészülést jelenti;
♦ fogalomalkotás - a műszaki folyamatokban az általános érvényű fogalmakat csak a gondolkodás útján ragadhatjuk meg (a lényeges jegyeket fel kell fedezni); a fontosabb lépéseket kell meghatározni - összehasonlítás és megkülönböztetés céljából; a hasonló és a közös jegyek keresése; a megkülönböztető jegyek kiválasztása; a fogalom meghatározása az ismertető jegyek alapján (ez a szintézis); a megismert fogalom újból felhasználása más helyzettekben;
♦ a tanultak rögzítése - az általánosítás útján szerzett ismeretek még nem elég tartósak (nem csak az emlékezettől, hanem a bevésődés mértékétől is függ a rögzítés) (Vendégh, 1980).

3.4 A tananyag feldolgozása matematikai módszerrel

Az általános képzésben és a szakoktatásban szinte valamennyi pedagógiai jelenségre vonatkozóan bebizonyítható, hogy az oktatás tényezői és az elérhető (élérhető) eredmények között kvantitatív jellegű matematikai kapcsolat van A statisztikai elemzés módszerei alkalmasak arra, hogy ezeket a jelenségeket feltárjuk, elemezzük és a korrekcióhoz, további munkához következtetéseket vonjunk le (Itelszön, 1967). Mindezzel akkor hatókony, ha a folyamatok információtartalma és logikai struktúrája kötött, algoritmizálható (Gyarakí, 1980).

A matematikai modelllezés során irányítási és szabályozási folyamatokról beszélhetünk. Az autóelektronikai szakképzés irányítástechnikai alapokat tárgyaló elméletében az irányítás, a vezérlés és a szabályozás fogalmait közötti összefüggés és különbség tartalmilag és a hagyományokon alapuló megnevezési anomáliákkal egy kicsit megnövelheti az algoritmusokkal való operálást. (Példaként említhetjük az előgyújtás fordulatszám-, illetve terhelés-változást követő automatikus korrekcióját, melyet a szakkönyvek többségében szabályozás definícióval találhatunk meg. A fogalom szigorú értelmezésében vezérlésről beszélhetünk, mert visszacsatoló elem nincs. Ennek ellenére nem teljesen rossz a szabályozás oldaláról történő megközelítés sem, mert pl. az emelkedő fordulatszámmal szinkronban automatikusan megnövelt előgyújtás a terhelhetőségre és a fogyasztásra éppen úgy hatással van, mint a motor hő-egyséngyújtásra.)

Az irányítási folyamatot programozni akkor lehet, ha megterveztük az elsajátítandó ismeretek mennyiségét és mélységét, a segítséget még feltételező jártasságok és az önállóságot jelentő készségek sorozatát, rendszerét, amelyeket előre megtervezett módszerrel közvetítünk a tanulóhoz, a felhasználóhoz. A programozott tananyagban az észlelés, a figyelem tervezett felkeltése, az átgondolásra való késztetés éppen olyan fontos, mint az emlékezés támogatása, a felidézés elősegítése és a gyakorlati alkalmazások sokoldalú megvalósítása. A szisztematikusan elrendezett tananyagelemek a programban elemi feladatsorozatban jelentkeznek, amelyeket lépésenként sajátíthat el a tanuló a programban való előrehaladás során. Az egyes fejezetek között, vagy folyamatosan megtervezett ellenőrzés az elsajátítás szintjét hivatott meghatározni és a programozó által meghatározott kritériumrendszer szerint lehet tovább haladni, gyakorolni, teszteni, vagy ismételni.

Az oktatóprogramokban a felhasználó irányításának folyamata az információ közlésén, annak átadásán és feldolgozásán alapul, amely feltételezi a tanultak későbbi aktív hasznosítását. Az információt a legtöbb esetben matematikai (kibernetikai) modellek és algoritmusok segítségével dolgozza fel a programozó. Az algoritmus pontos, egyértelmű előírás, amely az elemi (programozói és felhasználói) műveletek sorrendjét határozza meg. Az algoritmusokkal szemben felállított követelményrendszer legfontosabb elemei a determináltság, a tómeges jelleg, a produktivitás és a formalitás (Biszterszky, 1993). Szántó Károly szerint az algoritmus a programok egyfajta modellje, a műveletek utasításrendszere, amely megadjá a műveletek optimális sorrendjét (Szántó, 1984).

Az algoritmust a képletek átalakítási szabályainak rendszere fogalmi kategóriájába sorolja Ádám Sándor. Lépésenként adott, hogy milyen szabályt kell alkalmazni a következő lépésben, azaz kis adagokban haladunk a kezdettől a befejezésig. Megállapítása különösen értékes annak kijelentésével, hogy „...minden olyan számítás, amely algoritmusra vezethető vissza, elvégezhető számítógépen” (Ádám, 1983). Az elemei műveletek rendszerezett láncolatának szerepe a tananyagelemek feldolgozásában és programozásában nagyon fontos.

Didaktikai értelemben az algoritmus három területen képezheti vizsgálat tárgyát. A tananyag szerkesztés egyes fázisaiban a fogalmak hierarchikus rendje határozható meg az algoritmusok segítségével, a műszaki jellegű tananyagokban a tananyagokba beépülve aknázhatja ki a matematikai modell előnyeit és a tanítás-tanulás egyes fázisaiban nagy jelentőséggel bír a döntési módszerek és a felhasznált eszközök tekintetében (Gyaraki, 1980). Wilbur Schramm úgy ítélte meg, hogy az oktatógépek iránti, kezdetben óriási lelkesedés és érdeklődés pont a lényeget, magát a programot szorította háttérbé (Schramm, 1977). A számítógépes környezetben megvalósított tananyag-feldolgozás és programozás során a mai kutatók már nem követhetik el ugyanazt a hibát.

3.4.1 A tanulás hálós tervezése

Fercsik János munkásságának jelentős fejezete a pedagógiai műveletek időrendjével foglalkozó kutatás-sorozat. Az ún. „hálós tervezés” hatásos lehet az összetett rendszerek tervezési és ütemezési munkáinál, egyes rendszerek irányításánál és optimalizálásánál. A hálótervek a tevékenységeket és a bekövetkezett eseményeket veszik alapul (Fercsik, 1982). Az autóelektronika tananyag-bontási és programozási feladatainak matematikai algoritmusai, modelljei után kutatva megvizsgáltuk ezt a lehetőséget is. Megállapítottuk, hogy Fercsik János tanulási hálóterve (tanulási programja) a következő elemekből áll:
1. csatlakozó (motiváló) lépéselem;
2. ismeretközlő lépéselem;
3. gyakoroltató lépéselem;
4. irányító lépéselem (vezérlő vagy szabályozó, kérdező vagy feleletválasztó) (Fercsik, 1982).

3.4.2 A mátrix-gráf módszer

A tananyag részletes és tételes áttanulmányozása alapján meg kell ismerni annak logikai szerkezetét, a fogalmi struktúrát és fel kell térképze az anyagrészek egymásra épülésének célzott sorrendjét. Mindez a legtöbbször nem vezet egyértelmű eredményre, mert pl. a sorrendiség kérdésében a felmerülő didaktikai-metodikai-szakmai kérdések sok esetben nem általános érvényűek, hanem szakma-specifikusak. Az autóvillamososság témaköréből vett sorrend sorrendi lehetőségek jó példát mutatnak erre. A hagyományosan első témát a legtöbb tankönyvben, tananyagban az alapfogalmak és a gépkocsi villamos berendezéseinek rendszerét körvonalazó ismertetés, majd ezt követi az első fejezet, az akkumulátor. Részletes tárgyalása után a generátorok és a feszültségszabályozók következnek, melyek együtt a gépkocsi villamos energia-ellátó blokkját képviselik. Más aspektusból szerkesztett tananyagban a gyújtás az első témakör. Ennek a változatnak kézenfekvő előnye a tanulók motivációja, a deduktív építkezés támogatása és az autó lényeges működési paramétereinek mielőbbi feltárása.

A tananyag matematikai feldolgozása során relációmátrixot állítunk fel az általunk ismert logikai kapcsolatok alapján. Olyan $n \times n$ elemű négyzetes mátrix létrehozásáról van szó, ahol n a tananyagélek, fogalmak száma. Az ezek közötti logikai kapcsolat feltárása érdekében a mátrixelemeik (pl. a_{cd}, a_{de}, ... a_{nn}) oszlopáiból és soraiból képzett logikai térképen „0” szerepel, ha nincs kapcsolat az egyes elemek között, és „1” jelzi a meglévő összefüggést. Az indexelésen belül a betűk sorrendje is fontos: a_{cd} esetében a c-edik sor tartalmára épül a d-edik sora tartalmi mondanivalója (Peresztegi, 1996). A módszert eredetileg Gyaraki F. Frigyes vezette be Szakmai tanterv-struktúrák és a konvertábilis szakemberképzés című publikációjával (Gyaraki, 1970). A Budapesti Műszaki és Gazdaságtudományi Egyetem oktatói közül sokan foglalkoztak a témával kutatásaik és előadásaik anyagában (Biszterszky Elemér, Rapp János, Fejős Csaba, Sz. Lukács János). Más egyetemenek is alkalmazták a módszert (Falus Iván, Fercsik János). A 90-es években a világbanki szakközépiskola létrehozásakor a tananyag-feldolgozás és a moduláris tankönyv-szerkesztés ciklusában az NSZI munkatársai vették alapul a relációmátrixos metódust (Laczkovich Jánosné, 1991, Peresztegi Éva, 1996).

A GYÚJTÁS című autóvillamosossági témá elemeinek vizsgálatával és a mátrix-gráf módszer gyakorlati alkalmazásával tekintsük át a legfontosabb lépésekét. A gyújtórendszer vizsgálatához az alábbi hármash kritérium-rrendszer nyújthat segítséget a sorrendiség, a hangsúlyosság és a minősítés témaköréiben:

1. Hogyan szakítja meg az adott gyújtóberendezés a primeráramot?
2. Hogyan korrigálja automatikusan az előgyújtást a terhelés és a fordulatszám változásakor?
3. Hogyan osztja el a nagyfeszültséget az egyes hengerek között - gyújtási sorrendben?

Emeljük ki a primeráram megszakítása témakörét, és végezzük el a matematikai jellelgű feladatokat. (A mátrix kifejtését és a gondolatmenet magyarázatát a mellékletben adjuk meg.)

12 Audio-vizuális technikai és módszertani közlemények, 1970/1-2
A matematikai kifejtés eredményének megfelelően a témakörök helyes sorrendje:
1. Feszültség, áramerősség, ellenállás
2. Mágnesesség
3. Gerjesztés
4. Indukció
5. Tekercsek, transzformátorok
6. Kapesolótranzisztor áramkörei
7. Akkumulátoros gyújtás
8. További gyújtórendszerek
9. Jeladók
10. Gyújtásszabályozás

3.4.3 Témaspecifikus, vegyes elemzés

A matematikai modellek, általában a keretrendszerek és az algoritmusok sohasem adhatnak mindenre és mindenkor érvényes matematikai megoldásokat. A sablonok egyébként sem jellemezők a pedagógiai problémák megoldásában. Ugyanakkor rengeteg munkát, fáradságot takaríthatunk meg azzal, ha több párhuzamosan alkalmazott módszert vizsgálunk meg a végleges megoldás kiválasztása előtt. Az alapvetően különböző három koncepció a szakmai, a pedagógiai és a kivitelezés-technikai szempontsor. Itt kell kompromisszumra törekedve olyan megoldást keresni, ami a végtermékből, a multimédia oktatóprogramban úgy navigálja a felhasználót, hogy a pedagógiai megoldot indokolt alapelvek érvényesülésének keretein belül sajátíthassa el és gyakorolhassa be a szakmai tartalmat.

Az oktatást segítő-támogató programok immár másfél évtizede rendelkezésre állnak. Az alapvető programtípusok didaktikai-metodikai szempontból keretrendszerbe sorolhatók:

♦ motivációs;
♦ demonstrációs, szimuláló, modellező;
♦ gyakorló;
♦ rendszerező;
♦ alkalmazó-problémamegoldó;
♦ a mérési kultúrát fejlesztő;
♦ ellenőrző-önellenőrző;
♦ teljesítményértékelő;
♦ a tanítási-tanulási folyamatot diagnosztizáló;
♦ oktatási hatékonyságot vizsgáló (Varga-Pék, 1988).

Tekintsük át a 2000/2001-es tanévben az autóelektronikai szakképzésben az iskolai, tanműhelyi munkában segítséggel hívható, vagy az otthoni tanulás támogatására alkalmas segédleteket, programokat, egyáltalán az oktatástechnológia által kinált lehetőségeket (lásd a mellékletet). A teljesség igénye nélkül végzett vizsgálat és elemzés alapján megállapítható, hogy a taneszközök túlnyomó többsége a tanórai munkát és a tanműhelyi
foglalkozásokat támogatja, a tanítás-tanulás szervezett formájában nyújt hatékony segítséget a csoportmunkában az ismeretátadás és a képességfejlesztés területén, de még nagyon kevés az otthoni munkát, az egyénre szabott programú tanulást megcélszó technikai-pedagógiai megoldás.

3.5 Prezentációk, komplex programok

3.5.1 Hagyományos audiovizuális környezetben

A Schramm által konkrétátt tett tanácskoz-kategóriák az audiovizuális technikában, a legtöbb szakiskola gyakorlatában még érvényesek. Nagyon sokan használnak írásvetítőt, alkalmanként videó-bejátszásokat, a jobban felszerelt szakiskolákban egyre gyakrabban videoprojektorokkal vetítik ki a számítógépen futtatott prezentációs, bemutató és szimulációs programokat, vagy azok egy-egy jellemző részletét. Az átlag-iskola ma még nem tart itt. Ugyanakkor nem nevezhető audiovizuális technikának az a megoldás, amikor csak egy érzékszervre hatunk a bemutatással, szemléltetéssel. (Az eszköz ettől még lehet audiovizuális, csak a megoldás, az alkalmazási kategória megnevezése téves.) A hagyományos audiovizuális környezet lényege egy technikailag bonyolult, de a tanulók motivációja szempontjából motiváló összetett rendszer, ahol a pedagógus a „karmester”, amikor „levezényli” a segítséggel, vagy saját maga által előkészített „műsort”. Nagy munka egy írásvetítővel, videolejátszóval kombinált tanítási óra előkészítése, megszervezése!

Napjainkban az autóelektronikai szakórákon a leggyakrabban alkalmazott technikai eszköz az írásvetítő és a videolejátszó. Mindehhez a hagyományos szemléltetés hatékony és olesz kiegészítésével élünk, amikor eredeti alkatrészeket, kisebb szerkezeti egységeket készítünk elő és megfelelő időpontban körbeadunk a tapasztalás támogatása érdekében. Az írásvetítőre helyezett fólia tartalma semmiképp nem a vázlat, amit a tanulóknak le kell írnia. Idő-megtakarítási szempontból használjuk a transzparens-projektort egy-egy szerkezeti elem vonalas rajzának, vagy egy-egy áramkör kapcsolási rajzának kivitítésével. Ez a hibakeresés, a méréstechnika gyakorlati lépéseinek szemléltetése szempontjából fontos. A rövid szakmai video-bejátszások a szakműhely hangulatának felidézése, a gyakorlati példák szaktermei előhívása és a magyarázatok alátámasztása szempontjából jelentősek.

3.5.2 Lineáris bemutató programok

Bár a lineáris és láncszerkezetű programok ideje a kutatók egy részének véleménye szerint már lejárt, mégis új lehetőségek bontakoznak ki a tanítási órakat meglehetősen nagy idő-ráfordítással előkészítő pedagógusok körében a szakmai prezentációs munka során. A szakképzés területén először azoknak a programoknak oktatástechnikai változatai jelentek meg, amelyeket eredetileg cégek, intézmények bemutatására, népszerűsítésére készítettek. Egyszerű láncrendszerű sorozatokról van szó, ahol a szöveg dominál, de az állóképes és grafikus (táblázatos) kiegészítés is szerepet kap. Az információ tagoltan, képernyőre méretezett adagokban jelenik meg. Ezek a képernyők közérthetőek, szemléletesek, egymásra épülnek de önállóan is hordoznak mondanivalót. A logikus sorrend idő-beállítással automatizált vetítést is lehetővé tesz. Az előre haladás
kötött, csak az előre lépés vagy a kilépés (és újra kezdés) lehetséges. Ilyen programot, bemutatót a *Power Point Presentation* program segítségével minden tanár-kolléga el tud készíteni, aki a számítógépes alkalmazások terén már túl van az alapfokú gyakorlati időszakon. A láncrendszerű sorozaton van a hangsúly, amelynek megtervezésénél el kell dönteni a képsorok információ-tartalmát, a képek sorrendjét és a lehetőleg rövid szöveges magyarázatot (1.ábra). Néhány jellemző kép:

1. ábra. *Power Point Presentation* példa
3.5.3 Láncszerkezetű gyakoroltató programok

Sokan vallják, hogy a Pressey-féle láncprogramok ideje lejárt, a mai (modern) korban az információ-fűzérek helyett a multimédia, a szabad információ-hozzáférés, a széleskörű interaktivitás a jellemző a tanulási környezetre. Elfogadva az általánosítás már sokak által bizonyított voltát meg kell jegyeznünk, hogy kizárólagosságról ez esetben sem lehet szó. Mind a mai napig hasznos és lehetséges megoldás a tévedést kizáró, adagonként tanító módszer, ha napjainkban nem is képvisel nagy volument. Autós szakterületen éppen úgy megtalálható a láncszerkezet a tankönyvi lineáris és kötött sorrendű gondolatmenetben, mint a lépésenként ismertetett, általában gyári előírásokon alapuló hibakeresési technológiában (2.ábra).

Pressey a trial and error elmélettel úgy foglalt állást, hogy a tanulás lényegében próbálkozások és tévedések sorozata. A programot úgy kell megszerkeszteni, hogy a felkínált lehetőségek közül az egyetlen helyes válasz kijelölése a hibázás tanulságait következzék. Az autóelektronikában ezt úgy kell értelmezni, hogy kis lépésekből haladunk előre a tananyagban és az elágazások-tévedések lehetőségének feltételezésével vezetjük a felhasználót a megértés és a memorizálás folyamatában.

2. ábra. Láncszerkezetű program (szöveg nélkül)
3.5.4 Elágazásos programok - limitált interaktivitással

Az elágazást Crowder óta a legtöbb oktatóprogram magától értetődően alkalmazza. Nem lenne helyes, ha a zseniális felfedezés didaktikai-pedagógiai-metodikai előnyei (és hátrányai) mellett szó nélkül elmennénk. Crowder elméletének lényege az, hogy a kis részekre bontott tananyag-felhasználás során a komplex tananyag logikája károsodást szenvedhet, az ellenőrzésre pedig csak egyes részenként, pl. a fejezetek végén van szükség. *Hibázhat, és hibázzon is a tanuló, mert a kisebbségi magyarázatokkal, az útmutatásokkal elő tudjuk segíteni a helyes válasz kikerülését. Elvének lényege tehát az elágazások rendszerének programozása.*

Fauszt Tibor averzióval viseltetik a multimédia programok egyik alaptulajdonságával, a szabad navigáció lehetőségével kapcsolatban. „A tanulók sokszor nem a fogalmi rendszerben soron következő tananyag-egységet tekintik meg, hanem azt, mely számukra valami miatt motiváló hatása” (Fauszt, 1998). A szabad navigálás korlátlansága a lexikon-jellegű és az adatbázis-programokban magától értetődő. Oktatóprogramokban tervezési kritérium a szabadsági fok meghatározása, azaz mennyire szigorú (vagy szabad) az előre haladás sorrendje, üteme, szakaszolása. Ha a program minden egysége (képernyője) kinálja a különböző kapcsolódási pontokat, elágazásokat, kiszámíthatatlan (és csak kismértékben befolyásolható) a felhasználói tevékenység (3.ábra).

![3.ábra. Limitált interaktivitás (bemutató, demó-változat)](image-url)

Az 1997 óta működő EU Leonardo da Vinci PEGASUS Program

Az 1997 óta működő EU Leonardo da Vinci PEGASUS Program multimédia készítő team-munkájának résztevéveként konkrét példát mutathatunk be. A feladatrendszerben a fejezetekre bontott tananyagban a kínált kapcsolódási pontok minimálisak: előre, hátra, fejezet elejére, fejezet végére, lexikon, kilépés. A fejezet végén: vissza a fejezet elejére, vagy teszt. A teszt megoldása után tételes vizsgálatra, a jó és a rossz válaszok áttekintésére van lehetőség. A teszt 90% feletti megoldása esetén: továbbléphet a következő fejezetre. 90% alatt: vissza a fejezet elejére, vagy kilépés. (Megjegyezzük: az oktatóprogram futtatásakor megadandó azonosító kód kizárja annak a lehetőségét, hogy

13 Vom ‘1-Marker-Mechaniker’ zum ‘EU-Allround-Diagnostiker’
Oktatást és technológia a szakképzésben

eyi más alkalommal belépve „átugorható” legyen a nem kellő mélységig elsajátított elméleti-gyakorlati blokk.) Azaz: erősen „korlátozott” interaktivitás, szigorú haladási sorrend, magas követelményszint - sok gyakorlati példával és magyarázo későrekkal (4.ábra). Jellemző tulajdonság, hogy csak az induktív jeladó mérése után engedélyezi a program a továbblépést.

4. ábra. A limitált interaktivitás autóműszaki példája

3.5.5 Feladatok, szabad navigálás, teszt a kilépésnél

Az oktatógépek, mint a mai számítógépes interaktivitások elődei automatikusan közölték a feladat-sorozatokat. Ellenőrizték a kapott válaszokat és visszacsatolással szabályozták a tanulói tevékenységet a célul kitűzött ismeretek, jártasságok és készségek elsajátításának megfelelően (Itelszon, 1967). Az oktatógépek repetítorok (gyakorlattató gépek), examinátorok (vizsgáltató szerkezetek) és elágazásos programú oktatógépek típusait képviselték. Ez utóbbi alapja már a számítógép volt, amelynek segítségével szövegek, képek, táblázatok voltak előhívhatók diavetítő és magnetofon működtetésével, amelyek a tanulás támgatását technikailag végezték el. A tanulás befejezése után a tanuló ellenőrzésre kapcsolt, ahol a jó választ elfogadta a gép, a rossz válasznál magyarázatot, kiegészítést fűzött az eredeti mondanivalóhoz. Fő szabály volt, hogy csak a helyes válasz megadása után haladhatott tovább a tanuló a programozott tananyagban.
Az eredeti programozásstechnika a tanulók tanulási tevékenységét igyekezett keretek, szabályok közé sorítani azáltal, hogy a kérdések, probléma-felvetések után elemezte a tanulói reakciókat (Itelszon, 1967). Fontos volt, hogyan reagált a felhasználó 1. a szituáció várható megváltozására (közvetett jelek utalhatak arra, hogy hamarosan gond lesz a továbbhaladással); 2. a szituáció megváltozására, hogyan reagál erre a tanuló (a gép közben „átszervezi” a programot); 3. az elkövetett és kijelzett hibára (fontos, hogy a program nem a szituációt, hanem az előrehaladás eredményét figyeli).

A programozók olyan irányítási programokat írtak, ahol a változatok a témának és a tananyagtartalomnak megfeleltek, az elvárt nehézségi fokot képviselték és különböző didaktikai szituációkat reprezentáltak. Az elemei programok automatikusak voltak, az inger-akció sémáit és kötött volt a cselekvési sorrend. Az általános program jellegzetessége volt a többször felhasználható (közös) algoritmus, a számláló-jellegű kiértékelés. A heurisztikus program a felfedezés élményére apellált, az algoritmusok választékát kínálva értékelte a választást (működése sok játékautomata programjával analóg). A pragmatikus program minimális útmutatást nyújt a felhasználónak, sok-sok próbálkozással lehet csak eljutni a helyes megoldásig (Itelszon, 1967).

A hagyományos, több évtizedes múltra visszatekintő szakképzési struktúra arra az elvre épül, hogy az elmélet próbaköve a gyakorlat, azaz az elméletben megtanultakat a gyakorlatban alkalmazva alakul ki a tanulóban a szakértelem, amely a konkrét gyakorlati probléma megoldásában - gyakorlati idejével és rutinjával időarányosan - segítségére lehet. Az egyéni tanulás támogatására szerkesztett-tervezett oktatóprogramok ma még szerény választékban állnak a felhasználók rendelkezésére. A döntő mindig az, hogy milyen céllal és milyen felhasználói csoportnak készítettek egy-egy oktatóanyagot - és persze az is fontos, hogy az eredetileg kitűzőtt célokat hogyan sikerült megvalósítani.

Döntő változást jelentett a multimédia készítő programok megjelenése. Gyors elterjedésének csak a hihetetlenül magas készítési költség szab határt. Bár szó sem lehet arról, hogy a professzionális multimédia-gyártó cégekkel bárki is versenyre kelhetne, ugyanakkor új távlakat nyílnak a szakmai és a humán oktatási szférában azáltal, hogy különösebb informatikai ismeretek nélkül is lehetséges egészen jó programokat összeállítani. A lehetőségek bövülése abból áll, hogy a rendelkezésre álló kép- és hanganyagból, szövegelemekből magasabb színvonalon lehet válogatni, rendszerezni. Magának az interaktivitásnak a biztosítása a program-változatok szerint adott, de a táblázatos forgatókönyvben (kapcsolati tervben) szigorúthatunk a szabad lépegetés részleges vagy teljes letiltásával és pl. csak meghatározott sorrendet engedünk meg. Erre a megoldásra álaltában akkor van szükség, ha a fejezetek végére illesztett tesztekkel dolgozunk és ezek megoldásához kötjük a továbblépés engedélyezését.

A német Autóklub, az ADAC tájékoztató CD-ROM-ja éppen ezt az előnyt: a szabad navigálást ajánlja, teszt és egyéb bonyodalmak nélkül. Interaktív tájékoztató anyagról van
szó, ahol a felhasználó a menü irányítási lehetőségei alapján szörfözik, de a lépések az ajánlati kategórián belül maradnak. A főmenüből az egyes típusok adataira léphetünk, bármelyik autótípust kiválaszthajuk, video-klipeket tekinthetünk meg és további adatok megtekintését választhatjuk (5.ábra).

5.ábra. Tájékoztató, kereső-rendszerű program

3.6 Didaktikai, metodikai szempontok

3.6.1 A didaktikai alapelvek érvényessége

A szakképzésben, a műszaki- és mérnöktanárképzésben évtizedek óta egységesen és azonos jelentőséggel foglalkozunk a didaktikai feladatokkal, azok sorrendjével, tartalmával, jelentőséggével és realizálásával. A napjainkban divatos telekommunikációs környezetben folyó tanulás feltétlenül új dimenziójú távlatokat, didaktikai és módszertani szempontok szerint még fel nem dolgozott lehetőségeket kínálhat fel. Lényegében megszűnik a földrajzi határok közé szorított barangolás, mert megjelenik a virtuális és szimulált számítógépes kultúra is, ami csak a hálózatokra kitekintéssel rendelkező számítógép-felhasználók környezetében értékelhető (Murphy, 1996).
A lehetőségek kibővülése oktatásszervezési megközelítést is involvál, különös tekintettel arra, hogy az oktatási kultúra ebben az esetben nem homogén, hanem összetett és az interaktív lehetőségeket kikényszeríti felhasználói lépéseknek megfelelően nagyong széles sávon mozog.

Az új tanítási-tanulási környezetben a didaktikai struktúra-modell az elemzés, a tervezés és a folyamatiirányítás területén jelenthet változást:

♦ komplexebbek, bonyolultabbak a probléma-szituációk;
♦ a tanulói tevékenység probléma-analízissel indul;
♦ a tanulási folyamatokat a tanuló irányítja;
♦ a probléma-szituáció a rendszerszemléletet támogatja (Varga-Pék, 1988).

A számítástechnika a tanítási-tanulási módszerekre döntő jelentőségű hatást gyakorolt. Előzménye, a jóval korábban megjelenő programozott oktatás és az oktatóprogramokkal végzett kísérletek megelőzték és előfeltételezték a számítógépek tömeges megjelenését. Olyan érdekes vélemény alakult ki, hogy a programozott oktatás széles körben való elterjedésének akadálya az oktatógépek magas ára és a túlságosan felfókkozott várakozás volt.

Itelszon szerint a tananyag struktúrája három célrendszer szerint alakítható ki:

1. osztályozó struktúra (az ismeretek bevésése a lényeg);
2. operatív struktúra (az alkalmazási készségek kialakítását célozza);
3. implikatív struktúra (a hatékony megértés a cél).

Az oktatógépek környezetében a tanulási tevékenység szabályozása nagymértékben hasonlít a feladatlapok, tesztkérdések szerkesztésének és a válaszadás megtervezésének munkamenetére. Ha a tanuló önma fogalmazza meg a választ, a szerkesztés „szabad végű”, a számítógépes kiértékelés nehézségekbe ütközhet. Az alternatívák közötti választás géppel könnyen értelmezhető, a multiple choice évtizedek óta alkalmazott és bevált minősítő kategóriáit is érvényesek. A hibát közvetlenül kijelíthetjük (lásd nyelvi tesztek), vagy közvetett úton rávezethetjük a tanulót a rossz választást után a helyes útra - az összehasonlítás hatékony módszerével. A programokban az elkövetett hibákat folyamatosan, utólagosan javíthatjuk, vagy bizonyos segítéssel lehetőséget adunk a hiba kijavítására, esetleg a felkutatás módszerét ajánlunk, ahol a tanuló a hibázás után a helyes felelet megkeresésére kap lehetőséget (Itelszon, 1967-es elmélete alapján).

Minden olyan esetben, amikor a tanítás-tanulás célja pontosan körülhatárolható, azaz nem osztályzatban, vizsgaeredményben, hanem jártasságokban, késéségekben, kifejlesztett képességekben (győjtővé váltan alkalmazható szaktudásban) mérhető, a kimeneti szabályozás visszahatathat a napi oktató-nevelő tevékenységre.

A számítógép alkalmazásától valaki még nem lesz jobb tanár. Az iskola, a tanulók csak akkor tudnak „hasznos húzn” a számítógépesített oktatástechnológiából, ha azt szervezeten és rendszerezően alkalmazzák. Motiváció kell a tanári oldalról is, de az sem mindegy, a szülői szektor hogyan fogadjá a rendszeres számítógép-használat irányába elhangolódó oktatást (Beattie, 2000).
Oktatástechnológia a szakképzésben

A program akkor számíthat nagyobb sikerre, gyorsabb befogadásra, ha a felhasználót már a tervezési stádiumban bevonjuk a munkába, mert ez a participatív elv később előnyt jelenhet a bevezetési folyamatban. Sovány István kijelentésével kell egyetértenünk, mely szerint „...a multimédia alkalmazása elsősorban technikai kérdés” (Sovány, 2000).

3.6.2 Speciális szakképzési programok

Az autótechnikai szakképzésben lassan teret hódítanak a különböző CD-ROM-ok. Elsősorban a katalógus-jellegű korongok alkalmazását tapasztalhatjuk, mint pl. a SACHS cég alkatrészlistával kombinált szerelési utasítása, vagy a már hivatkozott ADAC autókatalógus adatokat és magyarázatokat magában foglaló CD-ROM-jai (6.ábra).

6.ábra. Hasznos katalógusok, leírások autószervizek részére
3.6.3 Kognitív struktúrák vizsgálata

A gondolkodás és a tanulási képességek párhuzama, összefüggése már sok kutatót foglalkoztatott. Arnheim14 véleménye szerint az észlelés során a gondolkodás sokréttő művelet-sorozatokkal funkcionál. A felfedezés aktivitása, a szelektív, a kiemelések és az általánosítások, az azonosságok és a különbözőségek mellett a specialitások felfedezése, az induktív és a deductív módszerekkkel szerkesztett képsorok mind-mind elemei az észlelésnek. A magasabb rendűnek számító kiegészítés és korrekció, az összehasonlítás és érvény-alkotás, a szelektálás és a célmatettsítmény tulajdonképpen a valós vagy szimulált problémák megoldásának szolgáltatása állíthatók. Tóth Béláné kijelenti, hogy a vizuális észlelés vizuális gondolkodás között bonyolult, sokoldalú összefüggés mutatható ki (Tóthné, 1996). Ennek óriási jelentősége lehet akkor, amikor az autóműszaki szakterületen a vizuális gondolkodást keresve programot szerkesztünk, amelyet csak kis terjedelmű szöveges információ kísér, azaz lényegében a képi gondolkodás segítségével próbáljuk majd a képernyőt műszaki tartalommal feltölteni. Nincs lényeges különbség az észlelés során funkcionáló gondolkodás és az emlékképek közötti gondolkodási műveletsor között. Kognitív a kézetekkel végzett gondolkodás vizuális gondolkodást jelent, ami a műszaki szakterületen bizonyíthatóan a fogalmi, a képi és a valós tapasztaláson alapuló gondolkodás zseniális szinkronját tételezi fel.

Az információ feldolgozása összetett kognitív folyamat. Az ismeretszerzés programozása azt feltételezi, hogy a programozó (team) ismeri és alkalmazza a gondolkodáshoz és a tanuláshoz szükséges stratégiaikat és képes azokat alkalmazni is (Tompa, 1995). A programozott tananyaggal szemben jogos az elvárás a következő készségfejlesztési kategóriákban: gondolkodás, probléma-megoldás, döntéshozatal, felelős helytállás. A metakognitív stratégiai támogatásra a valós probléma-helyzeteket teremtő szimulációs programok a legalapvetőbbek. A számítógépes program óriási előnye, hogy szabályozási folyamatok automatizálására is képes, azaz nemcsak adatfelvétel, feldolgozás és közlés a folyamatok lényege, hanem az adatbázis elemeivel olyan műveleteket is végez a gép, amely kimeríti az elemzés, értékelés, rendszerezés, transzformálás, integrálás, döntéshozatal valamennyi lehetőségét (Brückner, 1996). Ezek alapján belátható, hogy a számítógép tudatosan leképezhet emberi folyamatokat, alkalmazkodhat a felhasználó reakcióihoz és a lépések minőségéhez, alkalmaz az intellektuális képességek megváltoztatására és aktiván mozgósíthatja a kognitív stratégiaikat (Tompa, 1995).

A programozott oktatással foglalkozó kognitív elméletek hangsúlyozzák a következőket:
- fontos a lényeges mozzanatok bemutatása;
- a programban legyen átmenet az egyszerűtől az összetett felé;
- az értelmesen szerkesztett ismeret-atadás tartósabb;
- a „megismerő visszafordulás” gyakorlottássához vezethet;
- a tanuló érje el a maga elé kitűzött célokat (Biszterszky, 1993).

14 Arnheim, R.: Visual Thinking. Berkley and Los Angeles, University of California Press, 1969
Walter R. Fuchs a tanuláselmélet legfontosabb fogalmait Hull elmélete alapján a következőkben foglalta össze:

1. a tanulónak valamit **akarnia kell** (drive);
2. valamit észre kell vennie (**cue**);
3. valamit **tennie kell** (**response**);
4. meg kell kapnia, amit akart (**reward**) (Fuchs, 1969).

Vizsgáljuk meg, hogyan támogathatók a tanulói aktivitások a különböző tanulási keretek, körülmények között. Ha a belépési érdeklődést, a kezdésnél legtöbbször meglévő motivációt feltételezzük, a hatásfok most már a tananyagfeldolgozás és programozás sikerességétől függ. Sovány István úgy foglal állást, hogy „*a multimédia a gyakorlatorientált-dinamikus tudással korrelál*” (Sovány, 2000). A kognitív értelmezhető és feldolgozható élmények forrása a gyakorlat, a tanuló (hallgató) a megtapasztalt műszaki problémákkal, a látott és megértett autóelektronikai működésekkel és hibaforrásokkal fokról-fokra gazdagabb ismereti-gyakorlati tárházzal rendelkezik, amely a problémák megoldásában óriási előnyt jelenthet.

3.6.4 A motiválástól az aspirációig

Motiváció alatt késztetést, energia-befektetést, érdekeltté tételt értünk valaminek az elérése, vagy valaminek az elkerülése érdekében. A motiváció, mint a didaktikai feladatok között az első, lényegében bevezeti a tanítást-tanulást, megteremti azt a környezeti alaphangulatot, amire azután építeni lehet. Nem elég a motiváció felkeltése, ezt a különböző technikákkal és módszerekkel fenn is kell tartani az elsajátítási folyamat teljes időtartama alatt. Ha a tanítás-tanulás hatékony, ez inspirálja a tanulót (hallgatót) a további tanulásra, ismeretszerzésre, érdeklődéssel fordul az újdonságok felé és keresi a magyarázatot az új technikai-szerkezeti-kivitel megoldások megértésére.

A megújult oktatástechnológia kihívásainak környezetében természetesen változik, módosul a tanári-szakoktatói feladatsor is. A mindennapi munkában ez éppen úgy jelenthet könnyebb séget (pl. adminisztráció, adatkezelés, statisztika), mint plusz ráfordítást (médiánok, információhordozók előkészítése, legújabb információk gyűjtése, adatbankok és képprendszer folyamatos frissítése). Tompa Klára egyértelműen kijelenti, hogy *napjainkban a privilegizált tanári szerep megszűnt*, a tanár csak az információ egyik forrása. Ehhez globális tulajdonságokkal kell rendelkezzen az eligázódás, az értékelés, a kommunikáció terén. Ilyen bázison az adatokra támaszkodó, azokat hagyományos módszerekkel oktató és visszakérdező iskola információs iskolává válhat. A legfejlettebb kategória a tudásalapú iskola, melynek létrehozása egyelőre még csak utópiai tűnik. Mindenképpen el kell fogadjuk, hogy ebben a gyorsuló folyamatban a számítógép az iskolában, a munkahelyeken és otthon általánossá válik (Tompa, 1995).
Az Európai Unió 2000-ben újra hangsúlyozta a knowledge society (tudásalapú társadalom) megvalósításának jelentőségét. Program-ajánlásait összefoglaló kiadványában fő helyen szerepel, hogy a virtuális mobilitás lehetőségét meg kell teremteni az IKT (Információs és Kommunikációs Technikák) sokoldalú és több szempont szerinti felhasználásával (Komenczi, 2000).

Multimédia programok készítését tervbe véve először elemezni kell a cél- és követelményrendszer, a rendelkezésre álló technikai feltételeket, a programkészítés időszükségletét, a tervezett munka technikai hátterét. Mindez nem elegendő az indításhoz. A megcélzott felhasználói köről is információkat kell gyűjteni az általános intelligencia, a feltételezett belépési szint, a számítógép-használat gyakorlottsága és még további fontos szempontok szerint. Az alapkér dés természetesen az: hogyan adjuk át az ismeretanyagot, milyen eszközöket alkalmazzunk, melyik program-változatot részesítsük előnyben. Az ismeret-elsajátítás folyamatos ellenőrzésének módszerét is körül kell határolni, megint csak a célok és követelmények alapján. Most már csak egyetlen kérdést kell megválaszolni: érdemes-e, gazdaságos vagy feltétlenül szükséges-e a tervezett multimédiás programot megvalósítani?

A multi-cégek nyereségük jelentős részét forgatják vissza a marketing szférájába. Az eredmény, a megcélzott fogyasztói társadalom „elkápráztatása” legtöbbször sikeres az autók eladásának fellendítése terén is (7.ábra). A készítők a MACROMEDIA DIRECTOR és a QUICK TIME for WINDOWS programokkal dolgoztak.

7.ábra. Representatív tájékoztató és reklám program képei
4. A tananyag feldolgozása a multimédia rendszerben

4.1 Lehetőségek, kiviteli megoldások

Akár államilag szabályozott, szakhatóságok által pontosan körülhatárolt tananyagok, akár egy őriáség továbbképzési programjában szereplő részfeladathoz tartozó tudásanyag elsaajátit(tat)ása a cél, a rendelkezésre álló tananyagot a célok, a képzés jellege, a személyi és tárgyi feltételek, az időkeretek és az egyéb vonatkozások figyelembe vételével tételesen fel kell dolgozni. A tananyag feldolgozása a szakmai és pedagógiai vonatkozásokon túl technikai és visszacsatolási kérdéseket is felvet. Minél összetettebb, szerteágazóbb az ismeretek és elvárt képességek halmaza, annál nagyobb körültkintést igényel már az egyes részek sorrendjének meghatározása is. Olyan tananyagot lehet programozott formában feldolgozni, amely zárt (köttöt) logikai rendszerű, bizonyos szempontsor szerint elemezhető és részekre bontható. Ezek a részek matematikai és didaktikai segítséggel algoritmizálhatók, amelynek értelmében a szakmai, pedagógiai és programozástechnikai elvárások bizonyos kompromisszum árán realizálhatók.

Az oktatástechnológiában az egyes médiumok szinkronban vagy aszinkronban lépnek be a tanítás-tanulás folyamatába - a pedagógus és (multimédiánál) a programozó elképzelései szerint. A legutóbbi időkben az adattárolásra, a feldolgozásra és a megjelenítés változataira a digitális technika nyomja rá a bélyegét. A számítógépes környezetben párbeszéd, interakció folyik az ember (a felhasználó) és a gép (vagy hálózat) között. Itt már nem lineáris az információ elérésének útja. A különböző interakciós technikák támogatják a megbízható és hatékony keresést, választást és rendszerezést, de ez sok esetben egyáltalán nem egyszerűsíti le a felhasználó dolgát. Könnyű elkalandozni, belefejteni, nagyon hosszú időt tallózással, szörözőségnyi eltölteni - csak azután az eredeti problémához való visszatérés jelenthet gondot.

4.1.1 Programkészítés hagyományos oktatástechnikai környezetben

Hagyományos oktatástechnikai környezetben azoknak az audiovizuális eszközöknek a betervezését és alkalmazását értjük, amelyek a szaktanteremben (és az előkészítés során a tanár környezetében) folyamatosan rendelkezésre állnak. Tulajdonképpen számítógép alkalmazása nélkül is teljesíthetjük a multimédia-környezet kritériumait, kihasználhatjuk számtalan előnyét - és „birkózhatunk” a megvalósítás gyakorlati nehézségeivel. Ekkor saját „programunk” alapján kapcsolatot juk az előkészített eszközöket, színesíjuk magyarázatunkat, szemléltetünk és előkészítjük a tanulókat az elméletet követő gyakorlásra.

Emlékszünk még az audiovizuális eszközöket praktikusan elhelyező TANÉRT asztalra, az interaktív videóval folytatott kísérletekre (a vezérlő berendezést az OOK bocsátotta rendelkezésre) és a SZITEK írásvetítőre készített speciális taneszközeire. Meg kell állapítanunk, hogy az oktatómunka ma már nem nélkülozheti a számítógépes lehetőségek kiaknázását.
4.1.2 Alapelvek és módszerek

A programozott oktatás alapvető, klasszikus kritériumait Biszterszky Elemér öt pontban foglalja össze:
1. a tanulási cél pontos meghatározása;
2. a lépésenkénti előrehaladás megadása;
3. saját tanulási ütem biztosítása;
4. a feleletek azonnali ellenőrzése és értékelése;
5. a program információ-közvetítő szerepe (Biszterszky, 1993).

Érvényesülnek a didaktika alapelvei, feladatai. Nagyon fontos, hogy a tanuló legyen aktív, az érdeklődést fel kell kelteni. Az új információ közlésének módja és részletessége épüljön az előzményekre és vezesse fel a következőket. A „megtanulás”, a memorizáció egyik legfontosabb támogatását a megerősítés adja, melynek lehetőségét folyamatosan és ki kell használni. A begyakorlás, az alkalmazás alapozása sikeres, ha az általánosításban és a megkülönböztetésben a Hilgard-féle konfliktusok elvét is alkalmazzuk.

Ha a tanítási órán, vagy a tananyag-feldolgozás során döntünk az eszközök, a technika, a programozási módszer választásáról, a maximális válaszlekBól indulunk ki, akkor a reális keretek között valósítjuk meg azt, optimális ráfordítással. A multimédia környezetben a 8.ábra szerint összefoglalt bemenetek és kimenetek, auditív és vizuális elemek állnak rendelkezésünkre:

8.ábra. A teljes multimédia-választék

15 ídézi Biszterszky Elemér, 1993
4.1.3 Az eredmény: a multimédiás tanítási óra

A multimédia többek között arra is kiváló keretet biztosít, hogy a frontális osztálymunkában a szemléltetés, bemutatás, gyakorlás magas színvonalú kivitelezői keretrendszerét megadjja. Arra gondulunk, hogy mivel a számítógép kiválóan alkalmaz valamennyi eddig megismert és bevezetett tanaszkoz szerepének átvételére, már csak a közreadás, a kapcsolatteremtés módozatán múlik, hogy bevezethetjük-e az új technikai megoldást az osztályterembe. Két megoldás kínálkozik: vagy a képernyős (tanulónként 1-1 számítógép), vagy a vetítetteképes módszer.

4.1.4 Multimédia az egyéni tanulási környezetben

Csak néhány éve beszélhetünk arról, hogy az on-line hálózatok, a CD-ROM-ok és egyéb informatikai lehetőségek komoly változásokat, előnyöket involválhatnak az egyéni tanulás egyébként nagyon aktív, de sokszor sivár környezetébe. Már szóltunk arról, milyen fontos az, hogy mivel tudja az iskola a tankönyv-alapú egyéni (otthoni) tanulást színesíteni, támogatni. Elismertük, hogy ma még hat a Gutenberg-galaxis, azaz az informatikai forrásra még inkább a nyomtatott dokumentáció, a könyv. „Az elektronizálás megkönnyítő az oktatástechnológia globalizálását” (Hawkridge, 1997). Az oktatás, nevelés új feladatrendszere új tartalmak, módszerek, technológiák, gondolkodásmód emberi dimenzióinak tudatos pedagógiai programmá alakítása (Varga-Pék, 1988).

Néhány, a különböző tanulásemléleteken, oktatástechnológiai tervezetek alapján alapuló program:

- **CAI** – *Computer Assisted Instruction* (számítógéppel támogatott oktatás),
- **CML** – *Computer Managed Learning* (számítógéppel irányított tanulás),
- **CMI** – *Computer Managed Instruction* (számítógép alapozott gyakorlás),
- **CBI** – *Computer Based Training* (számítógéppel közvetített kommunikáció).

Napjaink tanulói (hallgatói) még nem jutnak hozzá rendszeresen a professzionális multimédiás oktatóprogramokhoz. Ennek megfelelően az otthoni tanulási környezet már akkor is korszerűnek számít, ha a számítógép a tanuló rendelkezésére áll. Az átmeneti időszakban azok a megoldások kerülhetnek előtérbe, ahol a tanuló az iskolai foglalkozásokon kerül kapcsolatba a hálózati munkával, az információ-keresés korszerű technikájával, és a „letöltött” anyagot (adatot, szakcikket, képet, rajzot, kapcsolást) mágneslemezen vagy CD-ROM-on viszi haza a saját tanulási környezetébe. Így megteremthető az önálló munka magasabb színvonalú feltételekrendszere, ahol a digitálisan rögzített anyag és a tanulói saját munka tanulmányokat, esszéket, rövidített leírásokat és praktikus képsorokat eredményezhet.

Ugyanígy hatékony lehet egy-egy begyakorló láncprogram, néhány *Power Point* program, amelynek segítségével a tanuló áttekintést kaphat egy-egy szakmai témáról.
4.2 Számitógépes multimédia rendszerek

A pedagógiai munkát nagymértékben támogathatják, eredményét jelentősen befolyásolják azok az eszközök, amelyek először a munkahelyeken, majd a háztartásokban - szórakoztató célra - jelentek meg. A videó, az otthoni számitógép, a hangfelvételeket kiváló minőségben hordozó CD ma már az oktatás területén is elfogalhatja a megfelelő helyet. A tanítási gyakorlat csak nehezen változik meg, mert az iskolai hagyományok nagyon erősek, de a programozott ismeretanyag és az ezen alapuló oktatási segédeszközök választéka új iskolai és otthoni környezetet teremthet (Bouveret, 1995). A hagyományos oktatástechnikai eszközök alkalmazási és felhasználási módjának begyakorlása ma már nem elegendő a fejlődni akaró pedagógus számára. A választéknak bővítése módszertani megújulást is feltételez.

4.2.1 Program-kínálatok, jellemzők

Alap kérdés lehet a tanítás-tanulás megszervezése során, hogy a multimédia ne utólag, kiegészítő vagy szinesítő célokkal kapcsolódjon be az oktatási folyamatba, hanem a tankönyvekkel, egyéb információ-forrásokkal együtt komplex rendszer képeze. Az a véleményünk, hogy a multimédia nem a már meglévő oktatástechnológiai lehetőségek kibővítése, hanem egy teljesen új pedagógiai-metodikai struktúrát feltételező környezet, lényegesen eltérő alkalmazói és felhasználói paraméterekkel.

Multimédia programok elemzése, értékelése jóval könnyebb feladat, mint a készítés. Az elemző-összehasonlító munka - amely napjainkban több tudományos kutatás, PhD dolgozat témája - első lépéseként azt kell megállapítani, hogy milyen szakmai, tanuláselméleti szisztéma szerint készült a program. Sokszor ez a kezelési utasításból is kiolvasható, de inkább a gyakorlott felhasználó rutinja árulja el a felépítmény filozófiáját. Kárpáti Andrea szerint a programkészítés alapjául szolgáló pedagógia kognitív, konstruktív, humanisztikus vagy posztmodern lehet. Releváns az is, hogy milyen környezetben való működésre tervezték a programot (iskolai munka, át- és továbbképzés, tudományos ismeretterjesztés, szolgáltatás, stb.). Mindezek alapja és kiviteli keretrendszerze az UIKT (Új Információs és Kommunikációs Technológiák) megvalósítása a gyakorlatban (Kárpáti, 1999). Vizsgálni kell a következőket:

♦ milyen az előkészítés fázisa (a probléma bemutatása és feldolgozása);
♦ milyen tanári útmutató készült a felhasználó számára;
♦ milyen konstruktív környezetben működik a program;
♦ hogyan és mikor lép be a tanár (moderátor);
♦ milyen a visszacsatolások és a leágazások rendszere;
♦ milyen az értékelés módszere.

Kárpáti Andrea további kérdéseket is feltesz: mennyire releváns és milyen mértékben valid a vizsgált program? Mennyiségi és minőségi paraméterek gyűjthetők a hipotézisezérelt vizsgálatokkal. Az átlagos programban az egymás után megjelenő képernyők sugalmazók, vagy gondolkodásra készítetők lehetnek. Ehhez kihívható kiegészítő...
információ, de nem minden fázisban. (Pl. saját programjainkban a tudásszint-ellenőrzés során az informatív vagy lexikális hozzáférések le vannak tiltva., csak a konkrét kérdés feleletválasztós megválaszolására és továbblépésre van lehetőség.) Előbbiek alapján egyet kell értenünk azzal a véleménnyel, hogy jóval könnyebb multimédia programok kritikájával, minősítésével, bírálatával foglalkozni, mint akár egy rövid, de ténylegesen működő és alkalmazható multimédia programot létrehozni.

A multimédia szerkezete és kivitelezett változatai azzal a közös jellemvonással rendelkeznek, hogy a tartalmi mondani változás vagy többszörös, többszörös információval rendelkező lehetőséget biztosítanak a felhasználó számára (9.ábra). Az elvi felépítés a következő:

9.ábra A multimédia technikai szerkezete
4.2.2. Műszaki, pedagógiai, metodikai koncepció

A szakmai képzés fontos motívuma, hogy a tanuló az iskolálatlán keresztül elvonatkoztatva minél több gyakorlati ismeretre és képességre tegyen szert. A hangsúly az alkalmazásképes gyakorlati tudáson, a kreativitáson, az önállóságon és a felelős döntéshozatal megalapozásán van.

A képzéspolitika céljai között szerepel, hogy a tanuláshoz minél szélesebb körben kell lehetőséget teremteni. Új média születik, amely elsősorban az individuális tanulás szempontjából jelenthet előnyt. Új távlatokat fedezhetünk fel, amelyek elsősorban a multimédiás ismeretszerzésnek köszönhetők. (Kooperatív tanulási formák, várható szerkezetváltás az egyetemi és főiskolai oktatásban, a munkaerők rugalmas át- és továbbképzése a munkaerőpiacon lévő változásainak megfelelően, általában: a független tanulás feltételeinek megteremtése a távoktatásban.) (Bulmahn, 1999).

Problémát jelenthet, hogy az interaktív multimédiák különös hatással vannak a családi együttéléssel, a generációk közötti kapcsolatokban. Ezzel párhuzamosan a távoktatás és a távaulas területén is új lehetőségek kínálkoznak arra, hogy a tananyaghoz való hozzáférés mindennapos módja lehet az iskolai (központi) komputer lekérdezése. Lényegesen csökkenthető az ember-ember kapcsolat volumene, amely fokozatosan ember és számítógép közötti interakcióvá tagolódik el. Amikor ez előnyöket mutat a tanulás individualizációja tekintetében, ugyanakkor megvalósítja az eddig sejtelmes és meszesérű gyermekei világ, egyelőre kiszámíthatatlan változásokat okozva a kognitív és az érzelmi fejlődés területén. Változik a szülői szerep is, berobban a családi életbe a gépi interakció, a számítógépes kapcsolatteremtés és információszerezés újszerű technikája (Petzold, 1994).

A professzionális oktatóprogramokat szakmai csoport, team hozza létre, amelyben szerepet kap a témak szakértője, az oktatástechnológus, a tananyag-elmző pedagógus, a látványtervező, a grafikus, a fotós, a videós, a hangmérnök, a szerkesztő, a programozó, a gyártó - és legtöbbször a jövőbeni terjesztési és szerzői személy kereskedő is. A felszerelés, a technika a legkorszerűbb. Professionális multimédia-készítő programmal dolgoznak, amelynek kiválasztása és az alkalmazások kínálata sok esetben jellemző az adott cégre, műhelyre, egyetemi tanszékre. A munkatársak ugyanakkor nem lelkes amatőrök, terveiket és tevékenységüket nem a pedagógiai hatékonyság, hanem a gazdaságosság szempontjai inspirálják.

Oktatóprogramoknál szerencsés esetben a szerkesztő-tervező, pedagógiai-módszertani és a tanulói-felhasználói szempontok és elvárások a legtöbb esetben egyensúlyban vannak. A megjelenési forma és a látványérték motiváló hatású, a menürendszer könnyen átépíthető és jól kezelhető, a hattér-információk gond nélküli hihetők, az interaktív lehetőségek választékosak. Az információtechnológia korábban az ismeret-átadás folyamatával és ennek a folyamatnak a jellegzetességeivel foglalkozott. A kapott (szerezett) információ-feldolgozás folyamata: a megértés, az interpretálás, az analizálás,
a tételes feldolgozás, a szintetizálás, a rögzítés, a bemutatás, az alkalmazás (Szűcs, 1991). Napjaikkban is nagyon fontos, hogy az egyes tevékenységek milyen szerepet kapnak az oktatási folyamatban. Ha nem csak az információ, az ezekből alkotható ismeret (fogalom, törvényszerűség) rögzítése az oktatás célja, hanem a gyakorlati tevékenységre is fel akarunk készíteni, akkor a hangsúlyt egyre inkább a gyakorlásra, annak didaktikai-metodikai előkészítésére és arányának növelésére kell helyezni. Szerencsés szakterület, ahol már megoldott a számítógépes szimuláció, mint a gyakorlati (valós) ismeretekeket a digitális technika eredményeinek kihasználásával CD-ROM-on vagy mágneslemezen „haza is vihető” lehetősége, amely követheti, de meg is előzheti a tényleges szakmai gyakorlást. „Az ismeretek és a képességek hatékonyan együttműködő rendszerbe szerveződnek, ezáltal válik lehetővé a tudás alkalmazása, új helyzetekben való felhasználása” (Csapó, 1999). „Minden képességünk tudásrendszerek által meghatározott, tudásrendszerekhez kötődik, ezért alapvetően az adott kontextusban működik csak” (Nahalka, 1999). Tehát nincs speciálisan méréstechnikai, vagy hibakeresési problémamegoldó képességünk. Mindig a feladatra jellemző (összetett) tudásterület kapcsolódik be, és ennek megfelelő a szellemi-fizikai munka, a kapott feladat megoldásának eredménye is. Nahalka István konstruktivista pedagógiai rendszere „…. az emberi pszichikumot, s benne a kognitív működéseket meghatározó kognitív struktúrákat a tudáselemekre alapozza” (Nahalka, 1999). A gondolkodás, a problémamegoldás rendszerét az egyén - tapasztalatai, tanulása, a környezet hatásai alapján - nem befogadja, hanem saját maga alakítja ki. Tehát „…. az emberi kogníció...semmi másból nem áll, mint tudáselemekből, azok rendkívül bonyolult struktúrája” (Nahalka, 1999). Ha elfogadjuk, hogy ezek a tudáselemek nem csak rendszerezett információkból, fontossági sorrendben és összefüggéseiben megtanulandó ismeretekből állnak, hanem a gyakorlati tevékenységek tekintetében (túlsúlyban) jártasságok, készségek és speciálisan kifejlesztett képességek rendszerét alkotják, megtaláltuk azt a célt, amelyet a mai szakiskolának el kell érnie.

A tanári szerep átértékelődését fontosnak tartók véleménye szerint egy olyan konstruktív folyamatról van szó, amelynek megvannak a saját törvényei az ismeretek elsajátítása és a képességek fejlesztése területén. „A tanuló a különböző tevékenységekre során maga építi fel, konstruálja meg saját belső tudását. Az oktatás szakemberei tehát ezzel a belső tudással foglalkoznak, annak a mérnökei, építészei, technológusai, technikusai. Az iskolai oktatás így nem egyszerűen a kulturára különböző tartományait közvetíti, hanem a tanulók kognitív kompetenciáit fejleszti” (Csapó, 1999). Forgó Sándor publikált véleménye szerint alapos informatikai és oktatástechnológiai alapozás szükséges ahhoz, hogy a főiskolai hallgatók a tényleges multimédia-készítő munkában hatékonyan részt vehessenek. Valójában a multimédia gyakorlatokon mutatott affinitás lehet a záloga annak, hogy a „végtermék”, a hallgatói program használható legyen (Forró, 1998). Elhez csatlakozva kijelenthetjük, a kereskedelmi eredetű multimédia programok széles választékának megjelenésére még sokat kell várni. A megoldás a saját fejlesztésű multimédia lehet, amelyet a szakterület művelői feltételezhetően örömmel fogadnak és alkalmaznak majd.
4.2.3 Néhány program elemzése

Az ELTE-TTK tanárképző szakos hallgatói színvonalas és gyakorlatias oktatástechnikai és oktatástechnológiai képzést kapnak. Ennek számunkra érdekes és tartalmas fejezete a taneszközök értékelése, kész CD-ROM-ok oktatástechnológiai elemzése. Korábban már több szempont szerint áttekintettük azokat az ismérveket, elvárásokat, amelyek a bevezetésre, programba iktatásra alkalmassá tesznek egy-egy digitális taneszközt. Most tekintsük át az ELTE-TTK Oktatástechnikai Tanszéke által az elemzésekhez a hallgatók számára megadott vizsgálat gerincét:

1. Az anyag címe, kiadója
2. Az információhordozó fajtája, jellemzői
3. A felhasználói kör
4. Mely tárgyakhoz és hogyan használható?
5. A média kiválasztásának indokoltsága
6. Tartalmi, szerkezeti korrektség; didaktikai felépítés, használhatóság
7. Eredetiség, ötlet
8. Nyelvhelyesség, stílus
9. Forráshasználat
10. Navigációs rendszer, kezelhetőség
11. Kép-, videó- és hangminőség
12. Design, grafikai kivitel, olvashatóság
13. Pozitív/negatív pontok
14. Általános szöveges értékelés (Nádasi, 2000).

A szempontsor tételes elemzése és értelmezése alapján próbaképpen ellenőriztük az EU Leonardo a Vinci PEGASUS Projekt eddig elkészült két CD-ROM-ját, és a szempontsor alapján a következő megállapításokat foglaljuk össze:
1. „Az első osztályú autószerelőtől az össz-európai diagnosztikusig” c. program kiadója az EU autóklubok közössége, ezen belül az ÖAMTC (Osztrák Autóklub).
2. Az információhordozó három CD-ROM, melyek jellemzője a jelszavas belépés, a korlátozott interaktivitás és a szigorú teszt a fejezetek végén.
3. A felhasználók az autóklubok „sárga angyalai”, a későbbiekben a szakképzés.
4. Az autós szakmai gyakorlat, a hibakeresés és a gyors-javítás támogatására készült.
5. A média kiválasztását a már előkészítés alatt álló kiegészítés indokolja, mely szerint a hajózó szerelők az Interneten keresztül kérhetik le az adott típus adatait.
6. Speciális didaktikai koncepcióval, kötött haladási ütemmel, tanulási módszerrel találkozunk a program elemzése során.
7. Még nem jelent meg az elektronikus gyújtás és a benzinefecskevedés témaköreiben ilyen átfogó, részletes és gyakorlatias oktatóanyag.
10. A navigációs rendszer csak lineáris előrehaladást, esetleges visszalépést engedélyez. A fejezetek végén csak a tesztkérdések megválaszolása után lehetséges a továbblépés.
11. Az álló- és mozgóképek, a grafikák és a hangalámondások minősége jó.
12. A grafikai tervezés egy kicsit sötét alapszínű, sok esetben kismeretű betűket használ.
13. Értékes anyag, de a szakképzés résztvevőinek átdolgozott kiadás szükséges.
14. (Az általános értékeléstől most eltekintünk.)

Remélhetőleg néhány éven belül annyi multimédiás oktatóprogram jelenik meg, amely kifejezetten megnehezíti a programot választani akaró pedagógusok dolgát. Sajnos a szubjektivitás nem nagyon zártható ki, ami elsősorban a vizsgálató személytől (vezető, tanár, tanuló), az értékelés-választás kritériumaitól és a kapott preferenciáktól függ (Reiser-Kegelmann 1994). Szerencsés, ha a leendő felhasználó is hallatható véleményét a tanítás-tanulás támogatásához megválaszlandó eszköz kijelölésekor. Nagyon értékesek lehetnek egy-egy próba-futtatás tanulói észrevételei, általában a felhasználói vélemények. A felhasználói szempontból vizsgálat alá vethető programok a „nyúzópróba” eredményei tekintetében nagyon tanulságosak. Fontos lehet az elénnye, a látványt, a tartalom, a navigálási lehetőségeket, egyáltalán a felhasználói vélemények.

A tananyag programozott feldolgozása

A multimédiás oktatóprogramokban célszerűen elhelyezett blokkok kinálják a választható műveletsort. Következő példánkban választható a VR6 típusú motor működése, az AndWin program futtatása, vagy az interfész működésének megismerése. Valós szakmai mérések végezhetők digitális műszerrel és oszcilloszkóppal, betekinhetünk a kapcsolási rajz részeibe. A háttér-információk támogatják a programfutást, a videó-bejátszástól az animációig minden egyes technikai megoldásra találunk példát a demóból (10.ábra).

10. ábra. Autós demó-program jellegzetes képei

A számítógépes programok, szoftverek vizsgálatának megkezdése előtt célszerű az eszköz-jellegeket meghatározni. Kárpáti Andrea (ELTE) a következő (angol eredetű) választékot rögzíti:

- **alkotó eszköz (tool)** - képekkel és szövegekkel dolgozik;
- **kommunikációs eszköz (communication application)** - a szervezés és a megvalósítás kategóriájában levelez, prezentál, konferenciákat szervez;
- **demonstrációs eszköz** - az illusztrációban és a szimulációban kap szerepet;
- **információs forrás (information resource)** - interaktív multimédia és hálózati anyag;
- **tananyag (tutorial, courseware)** - összetett szerkezetű feldolgozásban feladatokat és teszteket is tartalmaz;
♦ értékelő eszköz (assessment tool) - interaktív tudásszint-ellenőrző szoftver;
♦ oktatási játék (educational game) - játékos keretek között megvalósított tanulás;
♦ egyéni tanulási eszközök (computer-assisted instruction) - gyakorló és szimuláló programok a hagyományos képzés kiegészítésére;
♦ integrált oktatási rendszerek (ILS – Integrated Learning Systems) - komplex oktatási környezet, alkalmas a hagyományos oktatás kiváltására;
♦ oktatásszervező (management tool) - szervezési és oktatási szoftver, nyomon követ és tájékoztat (Kárpáti, 2000).

Az értékelés a tervezői, kivitelezői munka bírálatát, a felhasználói észrevételek kiértékelését jelentheti. Minden esetben tekintettel kell lenni a taneszköz céljára, az oktatásban betöltött (tervezett) szerepére és a kivitel sikerességére. Jó támpontokat nyújthat a német szoftver-minősítő cég, a SODIS szempontsora16. A minősítésre kerülő taneszköz vizsgálatát a nélkülözhetetlenség, a képzési cél, a tartalom és annak megjelenítési módja, az oktatási módszerek, a nyelvek, a felépítés és az esetleges kiegészítő anyagok szerint kategorizálja. Görcső alá kerül a keresőrendszer, a multimédia relevanciája és a szerzői jogvédelemmel, további szolgáltatással kapcsolatos kérdések is. Annak érdekében, hogy az amúgy is nagyon költséges fejlesztések ne kerüljenek a minősítéskor a kínálat utolsó szektorába, célszerű a fejlesztés fázisaiban megszervezni a kritérium-orientált ellenőrzést. Ehhez már a tervezés fázisába be kell vonni a felhasználót és a pedagógusok széles körét, a szakmai relevanciát képviselő szakembereket a próbafuttatások sorozatába. A "repasz", az ilyenkor elengedhetetlen korrekció a majdani végtelmék minőségénél és felhasználhatóságának szempontjából döntő lehet.

Napjaink konkrét multimédia-fejlesztő munkája egy-egy professzionális program segítségével folyik. Az ELTE-TTK Oktatástechnikai Csoport Multimédia fejlesztő laboratóriumában készült a Tanszmúzeum című CD-ROM, a MACROMEDIA AUTHORWARE 3.0 változatával (11.ábra). A program ikon-vezérelt, a munka alapja az előre elkészített, részletes forgatókönyv.

\textbf{11.ábra. Objektum-orientált, hipermedia szerkezetű program}

16 http://www.sodis.de
12.ábra. Az enciklopédikus program képernyői

A Kandó Kálmán Műszaki Főiskola multimédia készítő kollektívája az AUTHORWARE 2.0 programmal hozta létre az Eszközeink című interaktív anyagot, amely az enciklopédia-jellegen túl történeti áttekintést, és a kezeléshez hasznos útmutatót is ad (13.ábra).
4.3 Hipertext, hipermédia, interaktivitás

A multimédia-jellegű, vagy tényleges multimédia programok jellemzői és jellegzetességei a szakirodalomban nagyon sokféle magyarázattal, felosztással, leírással lelhetők fel. Mind a frontális (direkt) képzéshez, mind a hálózati munkához vagy a távoktatáshoz készített szakanyagok alkalmazzák a többsatornás információ-közlést, azaz megvalósítják, megalapozzák a többsatornás tanulás körülményeit és kereteit. Sovány István a különféle médiumok együttes, egyidejű használatát, célirányos összekapcsolását nevezi multimédiának (Sovány, 1999).

A különböző programokban a navigálás a „képernyők” meghatározott helyén konzekvenciaismétlődő kapcsolódási pontokon, „kezelőszerveken” keresztül lehetséges (14.ábra). „Ha a lapokat pontokkal, a kapcsolatokat pedig a pontokat összekötő irányított vonalakkal ábrázoljuk, akkor eljuthatunk a multimédia program gráfnak reprezentációjához” (Fauszt, 1998). A két alap-lehetőség a szekvenciális előrehaladás, illetve az elágazás felülvizsgálása.

14.ábra. A programban való előrehaladás alapesetei

4.3.1 Hipertext: a szövegcentrikus multimédia alapszerkezete

A hipertext nem csak az Internet speciális és jellegzetes kivitelezési módszere. Már az 1997-től vásárolható Microsoft Word programok is alkalmazásak voltak arra, hogy a szövegblokk egyes elemeit kereszthivatkozásokkal láncszerkezetűvé, vagy elágazásokat megvalósíthatóvá (programozhatóvá) tegyük. Ugyanakkor bizonyos értelemben szövegcentrikuságról is beszélhetünk, amely a mai iskolának sajnos még természetes jellemzője: sok tanári beszéd - kis tanulói munka. Úgy gondoljuk, a közeli jövőben
mindkét megállapítás alaptalanná válhat, ha erre a technikai feltételek mellett a megújult oktatástechnológia is partnerekre talál.

Vizsgáljuk meg először a klasszikus megoldást, a hipertext Internetes verzióját. A szövegben eltérő színnel, vagy *kiemelten-aláhúzottan* jelenik meg az a szó, vagy szófüzér, amely mögött a további részletek, illetve további mondanivaló helyezkedik el. Az egérrel ide kattintva egy *következő képernyőre* lépünk át, ahol esetleg további linkek (elágazások, kapcsolatok, ugrási lehetőségek) szerepelnek a kínálatban. Pedagógiai értelemben egyre részletesebb információhoz jutunk, azaz saját (interaktív) elképzeléseink szerint lépegetünk a felkínált lehetőségek nem minden esetben könnyen áttekinthető rengetegében.

A legegyszerűbb Internetes program is megadja a visszalépés lehetőségét. Ez akkor nyújthat nagy segítséget, ha a linkek linkjei után már nem is nagyon tudjuk, honnan indultunk ki, néha azt sem, mi volt az erdetileg felvetett probléma. Fontos tehát, hogy *a növekvő információ-tömeget áttekinthetővé kell tenni*, azaz úgy kell működnie számítógépen, mint ahogyan az emberi agy kezeli az információkat és létesíti a szükséges asszociációkat (Komenczi, 1997). Írott-nyomtatott szövegek esetében lineáris szerkezetről beszélhetünk, amelyet szavanként sorról sorra olvasunk (15.ábra). Ha keresünk valamit, vissza kell lapoznunk és időigényes ráfordítással juthatunk el a keresett szövegrészhez. Általában a kötött szófüzérek, szekvenciák, határozottan lineáris sorrendben haladó gondolatmenet jellemzők a szöveges megjelenítésre.

Ha hipertextről beszélünk, a nyomtatott szöveg kötött, lineáris sorrendjéhez és szerkezetéhez képest olyan szerkesztési-programozási megoldást kell megvalósítanunk, ahol a különböző szövegegységek szinte végelen lánccola áll a felhasználó rendelkezésére (16.ábra). A lényeg egy olyan lehetőség biztosítása, amivel a hagyományos szövegrendszer dimenziót kitágítva minden egyes továbblépéssel (linkkel) bővíthetjük az információszerezés körét, további szövegblokkokba lépünk be és ezek még további lehetőséget kínálnak a hálózat szerkezetének megfelelő elágazásokhoz, azaz újabb információkhoz.
A hipertext tehát *inhomogén*, a bejárható utat a programozó szerkeszi meg, illetve teszi lehetővé, a bejárandó utat a felhasználó szabja meg, élve az interaktivitás lényegében kötetlen lehetőségével.

16.ábra A hipertext-alapú szöveg szerkezete

Újabban egyre gyakrabban találkozunk olyan - CD-ROM kivitelben megvalósított - programokkal, ahol az egyes linkekkel külső hálózatokba, elsősorban az Internet szolgáltatásaira kapcsolhatunk át. Szokványos módba ez a további tájékozódásnak, a hálózaton keresztül kérhető további információknak, adatbázisok letöltésének vagy igénybevételének, és - autós gyakorlatban is - ez a módja az alkatrész-rendelésnek, de az egyszerű nyilvántartásba vételek is.

Az információk keretei a fentieknek megfelelően annyira kitágíthatók, hogy tulajdonképpen és potenciálisan végletes univerzumba léphetünk, ahol a tematikai és szekvenciális választási lehetőségek köre határtalan (Komenczi, 1997).

4.3.2 Különbőző kiviteli megoldások

Jellemző, hogy a szóban forgó program milyen céllal, milyen szerkezettel és az interaktivitás melyik módszer-csoportjával dolgozik. Abból a szempontból lényeges a
A tananyag programozott feldolgozása

külnöbség, hogy mi volt a programkészítő eredeti elképzelése, hogyan képzelte bele magát a leendő felhasználó helyébe, milyen szabadsági fokokat engedélyezett és mire helyezte a hangsúlyt.

Tekintsük át azokat az alapvető multimédiás rendszereket, amelyek az autóelektronika képzésében, vagy egyáltalán az autós szakterületen ma hozzáférhetők. Az oktatási programok készítése mindeneképpen tudományos alapokat, ezenkívül az oktatástechnológia hagyományos szakterületével való jártasságot tetelez fel. Tulajdonképpen egy olyan speciális tudományág műveléséről van szó, ahol a tervezés a tananyag elemzésén és speciális feldolgozásán alapul, a végtermék speciális jellemzőkkel rendelkező oktatási anyag lesz, amely legalább néhány szempontból hatékonyabb a hagyományos tanítástanulás környezetében végzett munkánál és speciális pedagógiai minőség-jellemzőkkel rendelkezik (De Diana, 1993).

Ha a multimédia programok teljes választékát elemzezzük, három fő forrás (vagy ezek kombinációja) szolgálhatja ki a prezentációt: 1. nagy tárolókapacitású számítógép, illetve helyi hálózat, 2. CD-ROM, 3. külső hálózat, on-line kapcsolatteremtéssel (itt elsősorban az Internet szolgáltatásaival gondolunk). Az adatok, információk tárolási-mozgatási-közvetítési formája minden esetben digitális. A felhasználó a korlátozott, vagy szabad interaktivitással élve a következő információk közül választhat, illetve ezek egy csoportját hívhatja elő: kép (fotó, grafika, videó, animáció) vagy hang (beszéd, zaj, zörej, speciális hangsúly)

Különleges jelentőséggel bír minden olyan program, amely az autóelektronikai tananyag feldolgozásával tulajdonképpen a gyakorlat támogatására és semeléletetésére készítenek, mégis az egyszemélyes tanulási környezetben találkozhatunk vele a leggyakrabban. Szó sincs az alapszabály megváltozásáról, mely szerint tevékenységet csak gyakorlással lehet elsaajtítani. Ugyancsak kizárható a vita arról, hogy a legmagasabb szintű gyakorlati tapasztalatot is elméleti ismeretekkel, magyarázatokkal és az összefüggések feltárásával kell bővíteni ahhoz, hogy az „alkalmazásképes tudás” szerezés állapotába hozzuk a tanulót. Az iskolás korú előbb memoriálja a tanulnivalót, csak később kerül a felismerés, a felidézés és az alkalmazás aktuális szintjeire. Az át- vagy továbbképzésen résztvevő felnőtt úgy ismeri megérteni a látottakat-hallottakat, és csak ezután fektet energiát a memoriálásba.

A szakmai képzés lényeges, semmivel nem helyettesíthető eleme a gyakorlás, a gyakorlat. Az államilag elismert szakmai képzés rendszerében pontosan előírják az elmélet és a gyakorlat arányát. (Ez az autóelektronikában 55-45% az elmélet javára.) Új fejlemény lehet, hogy a gyakorlás egy része, az elméleti és a gyakorlati oktatás határterületére helyezhető modellezés és szimuláció lassan elhangolhatja az eddigi arányokat. Arról van szó, hogy a számitógépes szimuláció és annak interaktív környezete jó hatásfokkal készítheti elő az ismeretek tényleges gyakorlati alkalmazását, új elemekkel és módszerekkel teheti hatékonyabba a gyakorlatot követő elméleti ismeret-átdást. Minden egyes lépés, amely a szakoktatás folyamatában az elméleti ismeretek és a gyakorlati alkalmazások ötvözésére, összehangolására szolgál, az alkalmazásképes tudás, a célpont
szereplő szakértelem megszerzését támogatja, ennél fogva nagy jelentőségű. A közvetlen jövő egyik feladata a számítógépes környezet lehetőségeinek jobb kiaknázása, és egy kicsit vissza is lehet élni azzal, hogy a tanulóiifjúság könnyebben és szívesebben fogad mindent, ami „képernyő-formátumú”.

Ismeretszerzési, a szakmai információkhoz való hozzáférési, vagy tanulási céllal installáljuk fel a CD-ROM-ot. A Budapesti Műszaki Főiskola Mérnökpedagógiai Intézetének munkája az első két kritérium alapján böngészhető (17.ábra). A fejlesztők a MACROMEDIA AUTHORWARE 3.5 programmal készítették el a főiskola jubileumi kiadványát.

17.ábra. Jubileumi CD-ROM, rendezett adatokkal és információkkal
4.3.3 Multimédia: az értelmezések disszonanciája és színkronja

A multimédia olyan számítógép által vezérelt, többsztorítás információköztől és feldolgozó rendszer, ahol a különböző médiumok felváltva, vagy párhuzamosan támogatják a mondanivaló optimális közreadását. A felhasználó a programban meghatározott szabadsági fokok keretei között párbeszédet folytat a számítógéppel, a program működésébe beavatkozhat, ennek megfelelően tájékozódhat, ismereteket szerezhet, tanulhat. A folyamatos párbeszéd, a képek-szövegek-hangok különböző módon közvetített kombinációi hatások kiváltására, tartalmak felidézésére kiválóan alkalmasak. A működés befolyásolását és az ennek hatására bekövetkezett prezentációs változásokat nevezzük interaktivitásnak (Komenczi, 1997). A multimédia egyrészt egy speciális fogalmi kategória az informatika és a média szakterületén, másrészt utal az információ-szerzés és a tanulás folyamatának jellegzetességeire is.

17 Pedagógia lexikon, szerk.: Báthory Zoltán és Falus Iván, Keraban, Budapest, 1997
18 idézi Tompa Klára, 1995
Minden információt digitális formában kell feldolgozni, és a bemutatás, gyakorlás, egyéni tanulás támogatásának is ez az elfogadott formája. Az egymást kiegészítő, erősítő és a célszerű tananyag-feldolgozás Thomas Welsh szerint: 1. többféle média szervezése, 2. a lényegi információ kiemelése, 3. az információ átültetése digitális környezetbe, 4. az információ szisztematikus elrendezése, 5. az ellenőrzés. Nem csak az elméleti alapok lényegesek, hanem az eszköz megbízható alkalmazása, a média választékának praktikus variálása is (Welsh, 1997).

4.3.4 Hipermédia, azaz hipertext-alapú multimédia

Minden olyan területen, ahol a hipertext-szerkezet dominál, ugyanakkor a szöveges mondanivalót többségével dolgozzák fel, a hipermédia rendszerébe tartozik. Abban az esetben, amikor a *hipertext rendszerben a szöveges egységek mellé eltérő kódolású információegységek társulnak*, hipermédiáról beszélhetünk (Komenczi, 1997). Ezek az eltérő kódolású információk a hordozók jellegének megfelelő videószakadékokká, valamilyen szerkesztőprogram segítségével létrehozott (vagy amatőr módon, kockánként megszerkesztett) animációk, különböző kiterjesztésekkel rögzített grafikák, képek, hangfelvételek beszédről, zenéről, zajokról-zörejekről (18.ábra).

18.ábra A hipermédia elvi szerkezete

Más megfogalmazásban a *hipermédia olyan környezetet jelent, amelyben az információt szolgáltató multimédia egységek hálózata köré épül, amelyek kapcsolatban, összeköttetésben állnak - meghatározott és előre programozott szempontsor szerint (Barab, 1997). Tanulságos és a feed-back területén nagyon sokat mondhat a programozónak annak feltérképezése, hogy a felhasználók egy-egy csoportja hogyan és milyen irányban él a navigáció lehetőségeivel. Valószínűnek látszik, hogy azok keresik és találják meg hatékonyabban az információt, akik az információ-rendszer szerkezetről képet alkotnak maguknak. Bizonyára minden egyes felhasználónak kialakulnak a
személyére jellemző navigációs szokásai és a CD-ROM-ok használati sűrűségével arányosan alkot véleményt és ettől függhet az információ-keresésben és a tanulásban az előrehaladás gyorsasága és hatékonysága is.

4.3.5 Interaktivitás a CD-ROM és az on-line hálózatok relációjában

Mi a két megoldás között a lényeges különbség? Interaktív mindkét korong, mégis alapjaiban eltérő a felhasználónak biztosított szabadságból és az ismeretszerzés, illetve a tanulás metodikája is. Fontos, hogy a két példa ugyan jellemző, de korántsem öléli fel a CD-ROM választék minden lényeges kategóriáját, a számos megoldási lehetőség közül a szerkesztő-tervező úgy is gyekszik az optimális kiválasztani.

Az egyre korszerűbb tömörítő programok ellenére kötött, adott tárolókapacitású CD-ROM-ok meghatározó jelentőségük az információhoz jutás, a szaktanári szemléletetés és még inkább az egyéni tanulás támogatása szempontjából. Az adott kapacitás kibővítése a korlátlan lehetőségek irányába a csak néhány éve hozzáférhető adatbázis és információforrás: az Internet. Míg a számítógép-használat egyszerű ember-gép relációban megvalósított kapcsolatrendszert jelent, a számítógépek összekapcsolásának helyi vagy globális változatai hihetetlenül szélesre tárják az információkhoz való hozzáférés kapuit. Az ARPANET, mint az Internet őse 1969-ben még csak négy amerikai egyetem számítógépes kommunikációját hangolta össze. Ma már nehézségek nélkül beléphetünk egy-egy távoli könyvtár adatbázisába, és ha a hozzáférés számunkra engedélyezett, szabadon „lapozhatunk” a különböző dokumentumokban és saját gépünkbe letölthetjük a kívánt szöveges és képi tartalmakat. Néhány esetben fájlokba ütközünk, azaz a megtekintés engedélyezett, de a letöltés, a mentés szerzői jogvédelmi vagy egyéb szempontból le van tiltva. Ugyanakkor rendelkezésünkre áll a legtöbb számítógépre alap- konfigurációként telepített Corel program valamelyik változata, amelynek „capture” alprogramjával a képernyőtartalmat rögzíthetjük a további felhasználás érdekében. (Komenczi, 1997), (Sz. Lukács, 1999).

A World Wide Web (.www) olyan globális hipermédia rendszer, amelynek alapja az Internet, az egész világra kiterjedő számítógépes hálózat (Komenczi, 1997). A navigálás, a tallózás külön erre a célra kifejlesztett program (browser) támogatásával könnyen és
megbízhatóan végrehajtható. Egy-egy képernyő (WEB-lap) szöveges és grafikus információkat tartalmaz és vizuális információkkal tájékoztatás nyújt arról, hová és hogyan léphetünk tovább. A továbblépés lehetőségeit a hipermediánál bevált módszerrel (színtérréssel, aláhúzással) megadott linkelési pontok, felületek kinálják. Itt már nem egy adott adatbázisban találunk, hanem tulajdonképpen az egész világ valamennyi Internetre kapcsolt szerverével kapcsolatba léphetünk. Az már csak a hozzáférés engedélyezésétől függ, hogy hová és milyen részletességgel hatolhatunk be a kutatott vagy véletlenszerűen felkinált információhoz való hozzáférés érdekében.

Tehát hipertext-rendszerű, végtelen méretűre bővített kinálattal állunk szemben, amelyben az adatbázisok, szöveges és képi információk éppen úgy hozzáférhetők, mint az Internetes honlapokhoz csatlolt multimédiás prezentációk és a kommunikációs kapcsolatteremtés számos változata. A kapcsolatok kiépítésének és megbízható megvalósításának jellemző alternatívája az Internetes alapon megtalált lemez, a kapcsolatteremtés országokat és földrészek közötti távolságokat átlépő közkedvelt változata, az E-mail.

A CD-ROM tulajdonképpen egy korlátozott tárolóeszköz. A tankönyvek és nyomtatott segédlet lineáris szerkezetűek, a CD-ROM szabályozott hálóstruktúrában készül. A tankönyvekről elterjedt, hogy szerzőközöspontuk és szerkezetük alakítható a folyamatos visszacsatolásra, ezzel szemben a felhasználó-központúra tervezett CD-ROM a maga multimédiás lehetőségeivel és interaktivitásával kötött felhasználásra, „szűrőfeszére” is alkalmaz (Sretonovic, 1999).

A World Wide Web rohamos elterjedése, az információ-technika gyors fejlődése szükségessé teszi az információ keresésének, feldolgozásának és elsajátításának megújult technikáját. Az elvárás a tanulóval szemben nem egyszerűen az információ-források használatának begyakorlása és elsajátítása, hanem az értelmezés és a minősítés (a releváns információk kiszűrése) döntési mechanizmusának elsajátítása is. Mérlegelő, azaz reflektív gondolkodási készségre van szükség ahhoz, hogy az adott technikai keretrendszerben mit használ a tanuló és mikor fordul a hagyományos (nyomtatott) információ-forrás felé. A reflektív gondolkodási készség elméleti kereteit szociokognitív elméletek adják meg, ami azt jelenti, hogy az aktív megfigyelés, az ezt követő adatgyűjtés, az adatok értékelése és értelmezése új koncepciók alapján valósítható meg (Xiadong, 1999).

A 2000-es év slágere az oktatásszervezés témakörében megjelent publikációkban a hálózati munka, elsősorban annak kiaknázhatatlan lehetősége: az Internet, és annak szélesebb körű felhasználása. Németországban is jellemző a multimédia és az Internet tanítás-tanulás folyamatába való integrálására való törekvés. Gondot okoz a hagyományos egyetemi szervezetben és bevált módszerekkel működő felsőoktatás keretében illetékenység, az új médiumokat és az ezzel térkép áttekintését, a hosszú távon való hatékony tanítási módok és lehetőségek teremtése (Sorb, 1999). A világszerte folyamatoknak a virtuális szemináriumok alkalmazásának lehetőségeiről és hatékonyaságról. A magyarországi próbálok és tapasztalatai is igazolják, hogy a valós és a virtuális kapcsolatok lényeges különbségét a tanulási szituáció eltérése okozza. Amikor előnyként említhetjük, hogy a hallgató helytől, időtől és személyektől függetlenül kapcsolódhat be a hálózati alapon szervezett oktatómunkába, egyelőre nagyon sok a
technikai probléma, a didaktikai értelemben vett eltérés és borsosak a korszerű technikát alkalmazó virtuális szeminárium üzemeltetési költségei is. A magyar szakaszútban már többször vélemeztek a kutatók és a tudósok, hogy az új oktatástechnikai bázison megvalósított tanítás-tanulás a verbális kommunikáció drasztikus csökkenésével, az egyébként nagyon fontos és tartalmas személyes kapcsolatok hiányával jár együtt. A tanulás individualizációjára az elszemélytelenedés egyik változatát eredményezheti, a szubjektum intellektuális szükségleteit a legtöbb esetben egyáltalán nem elégti ki.

Edelgard Bulmahn az előzőektől eltérő véleményt képvisel. Azt vallja, hogy az új információs és kommunikációs technikát bevezető és támogató oktatáspolitika bővíti a tanulásban résztvevők körét. Előnyként értelmezi, hogy az információ gyors és könnyű elérhetősége, a helytől és időtől függetleníthető tanulás többek számára előnyös. Új távlakok nyílnak a multimédiás ismeretszerzés általánossá válása eredményeként, amely öt ponton foglalható össze:

1. új kooperatív tanítási-tanulási formák születnek,
2. hatékonyabb lehet az egyén szakmai felkészítése,
3. szerkezetváltás következhet be a felsőoktatásban,
4. a munkaerőpiaci változásait a képzés rugalmasabban követheti,
5. a távtanulás sokak számára lehet előnyös megoldás.

A multimédia és az on-line hálózatok prosperitásának időszakában a szociális szituációk, a családok mindennapjai is megváltozhatnak. M. Petzold német kutató a multimédia és az interakció vizsgálatát vitatéma szerint csoportosította. Az alapvetőnek ítélt szempontok:

1. a „home terminal” megvalósítása együtt jár azzal, hogy az individuum szakmai és személyes ambícióival arányosan módosul az otthon és a munkahely kapcsolata,
2. individualizálódik a tanulás, gépi interakcióval változik a korábbi emberek között kapcsolatrendszer a távtanulás, a hálózati információszerzés környezetében,
3. elhangolódik a gyermekvilág, amelynek a jövőre vonatkozó kognitív hatásai még nem ismeretesek,
4. a számítógép előtt játszó gyerek és az otthoni terminálon dolgozó szülő kapcsolatrendszerében lényeges változás következik be (Petzold, 1994).

Az Európai Unió 2002-ig felvázolt akciótervében a kiemelt teendőket foglalta össze. Az 1999 decemberben készített programtervezet többek között az Internet prioritását igyekszik hangsúlyozni. A terv szerint 2001 végéig el kell érni, hogy valamennyi iskola, tanár és diák rendelkezzen megfelelő Internet-kapcsolattal és hozzáférjen a multimédia tanulási tartalmakhoz (Komenczi, 2000). A napjainkban egyre inkább terhet hódító új információs és kommunikációs technikák (IKT) nem csak az iskola falai között érvényesülnek. Elsősorban az iskolán kívüli interakció (pl. otthoni tanulás) során realizálódhatnak hatékonyabban a pozitív hatások. Az iskolai multimédiás munka is lehet hatékony, ösztönző a további idő-ráfordításra. Néhány főiskolai és egyetemi team remek eredményeket ért el az írott és digitálisan rögzített képanyagok multimédiás
kombinációjával (Elsayed, 1998). Az Irisz-Sulinet 2000.szeptemberben közzétett, a nemzetközi tapasztalatokat összefoglaló gyűjteményében19 úgy ítéli meg, hogy a 80-as évek jólalai beváltak, a gondosan tervezett, számítógéppel segített gyakorlat programok használatával hatékonyabb a tanulás, azaz a hagyományos tanulás lassan áthangolódik, később a háttérbe szorul. A nemzetközi kitekintés készítője megállapításokra is vállalkozik:

1. a számítógéppel támogatott tanulás a hagyományosnál hatékonyabb,
2. a szövegszerkesztő programok használata az íráskészség, a stílusgyakorlat és a folyamatos javítás miatt nagyon hasznos,
3. a számítógépek használata pozitív hatásokkal jár, motivációja a tanulás szükségsességének elfogadását segíti,
4. a számítógépek előtt eltöltött idő eredményessége eltérő a különböző képességű, nemű, anyagi helyzetű tanulók tekintetében (v.ö. Gyaraki F. Frigyes, 1983),
5. nagyon kedvező a kognitív struktúra formálódása az emlékezetbe vésés, a feladatmegoldás és általában a rutinnunka területén.

Visszatérve az interaktivitás fogalmi értelmezésére és a CD-ROM-ok, valamint az on-line hálózatok környezetében való érvényesülésére, meg kell vizsgálnunk, vajon mi a különbség a két, egymást kizáró, vagy egymást feltételező és támogató rendszer alkalmazási és használati stratégiája között. Beavatkozásról, alkalmazástéchnikai szabadságról beszélünk, ami elsősorban a hagyományos, tankönyv-alapú környezethez való viszonyítást értelmezheti. A hagyományos tanulási környezetben a tanulást még elméletileg sem nevethetjük az intellektuális kiváncsisággal kielégítését célzó műveletek sorozatának. Ha a motiváció oldaláról közöltjük meg a kérdést, lehetséges a jó eredmény elérése érdekében befektetett energia, vagy a sikertelenségtől való félelem alapján a kudarc elkerülésére törekvő aktivitás. Ha ekközben további adatok, információk megismerésének igénye merül fel, a tankönyvek környezetében ez lexikon-használatot, szülőtől vagy idősebb testvértől való segítség-kérést, esetleg az otthoni, vagy az iskolai könyvtában való böngészést jelenthet.

Az előbbiekhez nem hasonlítható az a multimédia-hipermédia környezet, ahol az információk késedelem nélkül, pontos és megbízható leírással és szemléltetéssel, reliális és szereztárgazó variánkok közvetítésével jeleníthetők meg, ahol csupán az okozhat problémát, hogy a felhasználó rendelkezze-e a szörfözés szabadságát fékező, a konkret keresőprogramok logikájával dolgozó képességekkel, azaz folyamatosan tudja-e szükiteni a kínálatat annak érdekében, hogy mielőbb megtalálja a keresett adatot, leírást, képet, információt stb.

Az interaktivitás szabadon, de nem kötetlenül megvalósított információ-keresést jelent. Mindez elsősorban az egyéni információkeresést vagy tanulást támogatja. Jellegzetes lehet az interaktivitás egy-egy szakterület speciális témához szerkesztett multimédia programokban. Rudas Péter az Állatorvostudományi Egyetem célorientált programjairól beszámolva elsősorban a nehezen érhető anyag részek beszúrálásának alkalmazását

19 Az új információs és kommunikációs technikák oktatási-nevelési folyamatban történő felhasználásának nemzetközi tapasztalatai, http://www.sulinet.hu

19.ábra. Internetes multimédia ajánlataik
4.4 A képcentrikus multimédia szerkezete

A vizuális kultúra általános iskolások oktatásához készített tematikájában külön helyet kap a mozgóképek anyaga, a speciális kifejező-eszközök, a média társadalmi szerepe és még sok érdekes témát. Kiemelten szól a tananyag a technikai úton rögzített képről és hangról, a mozgásábrázolás hatékony eszközeiről. Az élmény, a tér és az idő jelképes megragadása, a közlés és kommunikáció számtalan változata, a gyakorlottabbak számára magyarázott mágikus és szimbolikus funkciók olyan világba viszik a tanulót, ahol szakszerű „idegenvezetéssel” még nem járt. A képi bemutatás előnyei, a képi közlések sorozata a megőrzést, a felidézést, az átélést és az azonosulást erősíti, következésképpen jól alkalmazhatók az oktatási célú programokban.

Kapcsolat létesül az érzéki tapasztaláson keresztül megismert világ, a környezet és a távoli tájak, emberek, szerkezetek irányába, ugyanakkor a média által reprezentált világ is új tartalmakat kaphat. A 20-as években fejleszthetők fel először azok a törekvések, amelyek a vizuális technika oktatásba való bevezetését célzották meg (Falus, 1980). A filmek olyan lehetőséget kínáltak, amelyek segítségével a korábban szerzett tapasztalatok gazdagabbak lettek, és a szemléltetés újszerű módjával megnőtt az ismeretek rögzítésének hatásfoka is.

4.4.1 A szövegközpontúság és a képközpontúság összehasonlítása

Ha a szöveg a mondanivaló legfontosabb láncszeme, és ennek alarendelve működik a többszotarnás információ, akkor valósínní, hogy a tanítás-tanulás célja is a szövegkönyezetbe ágyazott mondanivaló elsajátítatása, azaz a szövegalkapú tudás, az ismeretcentrikusság. Nagyon sok ilyen témakör, tantárgy, kulturális és általános művetségi terület van, ahol ez a módszer, ez a kifejtés és tálatás célzott. Szóbból ért az ember - a mindennapi kommunikáció, az emberek közötti érintkezés is szövegalkapú, az iskolai keretek között vagy az át- és továbbképzésen elsajátítandó ismeretanyag nagy volumene írott-nyomtatott formában jelenik meg. A frontális osztálymunka
kommunikációs csatornája is a szó, a szőfűzér, a mondat, mindezt csak kiegészíti az illusztráció, a magyarázó és szimuláló képanyag.

Az első írógép még fából készült, William Austin Burt építette 1829-ben. Ezt követte 1867-ben Christopher Latham Scholes már sorozatgyártásra is alkalmas szerkezete Brookfield, 1995). Az elektromos működtetésű írógépek megjelenése, a 20. század eleje óta a szöveges információ megjelenítése már nem csak nyomtatással volt megvalósítható. A számítógép és a perifériájához illesztett nyomtató azután végképp kitágitotta a szövegek közrendezőttségének horizontját. A képi mondanivaló kifejezésére megválasztott ábrák - rajzok, fotók, animációk, videoklipek - azt az absztrakciós szintet kell képviseljék, amivel a felhasználó már feltételezhetően rendelkezik. Közölhetünk reális, teljes mértékben valósághű képet is, azonban a tömény mondanivaló sokszor megnehezíti az azonosítás, a megértés és az általánosítás folyamatát. A pedagógusnak, a programozónak a leendő felhasználó szempontjából kell választania, az ő szemével nézve és az ő kognitív struktúrájához illeszkedve kell leegyszerűsítenie az egyébként bonyolult, összetett képet annak érdekében, hogy a bemutatandó állapot, folyamat, jelenség még bemutatható legyen, de a redundáns elemek ne vonják el a figyelmet és ne hátráltassák az elvárható koncentrációt. A megfigyelés, a megértés és a kapcsolódás folyamatáról van szó, ami nem azonos a tanári közlést passzívan elfogadó tanulói magatartással, hanem a felfedezés élményét célul tüzeve kell vezesszen a folyamatos motivációs környezetben az önálló véleményalkotás felé.

A szöveges vagy képi mondanivaló feladatok elé állítja a tanulót, a multimédiás program felhasználóját. Hatékonyabbak azok a prezentációk, amelyek a gondolkodás fejlesztését tűzik ki célul20. A kérdések, feladatok fő típusai:

♦ elemi műveletvégzést kívánó kérdések (analízis, szintézis, összehasonlítás, absztrakció, általánosítás),
♦ következtető kérdések (okságai, ill. szerkezeti összefüggésre utaló),
♦ fogalmak, törvények megértését vizsgáló (meghatározásra, felosztásra, felismerésre szólítanak fel),
♦ értékelő, elemző kérdések,
♦ variálásra felszólító kérdések,
♦ problémakérdések.

A szövegközpontúság egyáltalán nem jelent feltétlenül másodrendű, kisebb jelentőségű programozói koncepciót. Amennyiben a közvetítendő ismeretanyag elsősorban leírással, adatok rendszerével és elméletek közreadásával jellemezhető, tulajdonképpen nincs túl nagy jelentősége a vizuális tűlhangsúlyozásának és a program a hipertextre épített szövegbázison kiválóan alkalmas lesz rendeltetésé betöltésére. Hazel Jobe olyan amerikai rendszert ajánl az iskolák figyelmébe, amely tárgyközpontú környezetet kínál sokoldalú pedagógiai felhasználásra. A rendszer MÖO néven hozzáférhető, a virtuális valóságot biztosítja a tanulás környezetében (Jobe, 2000). Olyan szövegbázisú rendszerről van szó, amelyben a résztvevők konferenciákat szervezhetnek, vitatkozhatnak, tárgyakat is felhasználhatnak. A kifejezett oktatási témákkal foglalkozó résztvevők, tanárok és

20 Kelemen László: A gondolkodás nevelése az általános iskolában. Tankönyvkiadó, Budapest, 1970

idézi: Tóth Béláné, 1996

89
diákok közös projektekben működhetnek közre, szakértők bevonásával együtt hozzák létre, közösen teremtik meg a virtuális környezetet. Az

duced MOO

kölböző tanítási módszerek összehasonlítására és értékelésére is alkalmas. Belső hálózatra épülő levelezési rendszere van, dokumentumok és írófelületek állnak rendelkezésre és virtuális osztályteremként jelképezi a tanuló-központú tanulási környezetet.

4.4.2 A vizuális élmény pszichológiai megközelítése

Amikor vizualitásról beszélünk, arra gondolunk, hogy az információ szerkezetileg és tartalmilag elsősorban képekkel, azok logikailag összefüggő sorozatával fejezhető ki hatékonyan. A képi demonstráció, a vizuális élményt eredményező szemléletet Comenius óta eredményes hatással van az oktatás gyakorlatára. „A vizuális nyelvi képesség kifejezés dinamikus folyamatként jellemzi az interpersonális és intraperszonális kommunikációt” (Sovány, 2000). A vizualitás első megjelenési formái az írások, a jelképek, sokkal később a rögzített (rajzolt, festett, fotózott, filmezett, videózott) képek és az ezekkel kapcsolatos speciális értéktusok, hatások értelmezése.

Az írás történétét vizsgálva Kr.e. 3000 körül már képírásos jelekkel találkozhatunk, amelyeket piktogramnak nevezték. Az ilyen típusú közléshez az idegen nyelvet ismerni nem szükséges, *elegendő a jelképeket felismerni* (Brookfield, 1995). Később a képírást (az egyiptomiaknál már rendszerbe foglalt jelrendszert, a hieroglifának neveztett „szent vészet”) a különböző betűrendszerek, abc-k változták fel. A képi jelentés ekkor már „elveszett”, de napjainkban a mondanivaló képekben (is) jól kifejezhető blokjaiban, programozási egységeiben új jelentést nyerhet a szó, a jel, a jelkép és a kép.

Gyakorlással elérhető, hogy a valóság belső képének átstrukturálódása következtében a probléma-szituáció megoldásához a képezek vizuális sorozata kínálja a megoldást, amely a legtöbb esetben heurisztikus élményt jelent. Ahhoz, hogy a probléma felvetése és a feltételezhetoen korrekten megkötés valós helyzetet szimuláljon, meg kell szerszteni a probléma helyzet konceptuális modelljét, azaz a képzeletben lefuttatott cselekvésekkel megerősíthető, képsorozatokon alapuló valós történelmű szituációban megvalósított (leegyszerűsített) változatát. Itt az interaktív multimédia kínálatának kiaknázása szinte korlátlan lehetőségekkel áll rendelkezésünkre.
Levie és Lenz (1982) a képi illusztrációval kapcsolatosan a következő szempontokkal adják meg elképzeléseiket:

♦ a képek kapcsolódnak a szöveghez,
♦ a képek segítsék az olvasott szöveg megértését,
♦ a képekkel kiváltható a szöveges elemek egy része,
♦ a képek jobban segítik a verbális képességeket (82% vizuális típus!)

Úgy gondoljuk, hogy a képekben megtestesített vizuális információ az asszociációk révén járulékos hatásokat is kiváltat. Jelen nem lévő, be nem mutatott információra is utalhat, mert a felhasználó azt is hozzáképzelheti, amit közvetlenül nem is lát (Ádám, 1983).

4.4.3 A kép, mint a szakmai mondanivaló kifejező eszköze

Szakmai foglalkozásokban, szakelméleti- és műhelyfoglalkozásokon a tapasztalás örössége jelentőséggel bír. Autós példát hozva nem a magyarázat a legfontosabb egy-egy hibajelenség leírásánál és megoldásánál, hanem a logikus hibakeresés, behatárolás, hibaelhárítás és a végellenőrzés (minősítés). Ezt szövegkörnyezetben csak akkor lehet megvalósítani, ha a kommunikáló felek mindegyike ugyanarra a szerkezetre, hibára, alkatrészre, mérési eredményre gondol. Ehhez nélkülözhetetlen a képekben való gondolkodás.

Autós szakterületen számoshatunk azzal, hogy az autóról sokan és sokféle (elsősorban gyakorlati, vezetéstechnikai) ismerettel rendelkeznek. Ilyenformán a kívülről befelé haladó irány, a deduktív-koncentrikus elsajátítási módszer a maga fokozatosan részletező, egy-egy szerkezetre, hálózatra a tananyagban való előrehaladás során vissza-visszatérő filozófiaja jó eredménnyel kecsegthetet. Fontos a figyelem felkeltése a már felfedezett jellemzők folyamatos centrumban tartására és így elvárható, hogy az egyre részletesebben feltárandó szerkezeti, működési és hibákra utaló közlések, az egyes méréstechnikai eljárások hatékonyak lesznek. Lényeges az is, hogy a kisebb tájékozottsággal és gyakorlati rendelkező felhasználó felhasználó több információhoz juthasson annak érdekében, hogy ne akadjon meg, kellő alapot kapjon a fogalmi struktúrák és az egymással összefüggő hibajelenségek rendszerezéséhez.

A képi mondanivaló, a látvány tervezője szakmai és pedagógiai értelemben legyen professzionális. Ugyanakkor valamennyi műszaki érzékkel is kell rendelkezzen, amely elsősorban a képernyő célszerű beosztásában, bizonyos arányok tartásában és a következetességben kell megmutatkozson. Ha a vizuális szerkesztést az üzenet tervezésének tekintjük, könnyen belátható, hogy itt nem egyszerűen esztétikai formálásról van szó (Rimar, 1996). Elrendezési rutinra, kreativitásra is szükség van abban a munkában, amikor a látványtervezők mindvégig a majdani felhasználó szemével kell néznie a létrejövő multimédia programot. A képi elrendezésnek külön ergonómiai szabályai vannak, melyek ugyan nem köbe vésett paragrafusok, de valójában az ajánlásnál többet mondanak (Izsó, 1998). „A mi fogalmaink szerint a vizuális nevelés az élményszerű vizuális megismerés (megértés) és a vizuális kifejezés (közlés) műveletköré, 21 idézi Komenczi Bertalan, 1999
ami végereedményben a vizuális úton szerzett ismeretek, a vizuális képelet minél magasabb szintű működtetését teszik lehetővé” (Sovány, 2000).

Az egymás után következő képernyőket úgy kell megtervezni, hogy a legfontosabb információk azonnal kiugorjanak (Rimar, 1996). Nem a nyomtatott szöveg és annak oldalbeosztása a mértékedő, mert a képi megfogalmazásban az igazán hatásos az, amikor egyszerre csak egy témát mutatunk be. Természetesen szöveget is alkalmazunk, de ennek beépítésére és megjelenítésére külön ajánlásokat célszerű figyelembe venni. A szöveg helye a legtöbb programban a képernyő bal oldalán van. Szakértők úgy tartják, hogy a szövegblokk mérete optimális esetben nem haladhatja meg a képernyő 25%-át (Rimar, 1996). A kép álló- vagy mozgóképi megjelenítésben kerül a felhasználó elé. Ezen a felosztáson belül is több megoldás közül választhat a programozó a tartalmi mondanivaló optimális kifejezésének alátámasztása érdekében (20-21.ábra).

20. ábra. Fekete-fehér és színes állóképek

A szöveges betétek is kivitelezhetők szövegg kombinációk formájában, ugyanakkor magát a szöveget is „megmozgathatjuk” animációval, speciális hatások elérése érdekében szín- és fényeffektusokkal, megjelenítési kombinációkkal. Mindezek - tehát a kép és a hang, valamint a szerkesztett szöveg együttesen kiválóan alkalmazható arra, hogy a vizuális terv szerinti kivitelezési megoldásokat optimalizáljuk.

21. ábra. Fekete-fehér és színes mozgóképek

A képi megjelenítésre elsősorban ott és akkor van szükség, ahol és amikor hiányozhat a közvetlen szakmai (műhely-) tapasztalat, vagy ahol a hivatkozásokat támogató gyakorlottság élmény-választékáról még nem beszélhetünk. Ugyancsak jelentős a szerepe a képi megjelenitésnek olyan esetekben, amikor láthatatlan (nehezen hozzáférhető) szakmai részleteket kell bemutatni, esetleg valamint csak többszörösesre nagyítva vagy eredeti méreteinél kisebbre kicsinyítve lehet a tanuló (felhasználó) elé tárn.
4.4.4 A képek sorrendje - a mondanivaló gerince

A képcentrikus multimédia leírható úgy, mint a mondanivaló centrumát kifejező egyszerű képsor, a jellegzetes vizuális kiemelések és kapcsolódó egyéb információk jól szervezette, meghatározott sorrendje. Ha elfogadjuk, hogy a tananyag programozása során az „üzenettervezés” a választott médiumtól csak részben függ, a hangsúly mindvégig a legfontosabb információk kielégülésén, a megszerkesztett gondolatmenet prioritásának megvalósításán van. Ha a képet választjuk a fő információhordozónak, minden további médiumot ennek kell alárendelnünk. Segítségünkre lehet az írott szöveg, a hangalámondás, az auditív információ-közlés további változatai (zajok, zörejek, hangok). A Figyelem felkeltésének és a kiemelésnek számos megoldása is alkalmas lehet arra, hogy a mondanivalót, a képek sorrendjében tükröződő információ-sorozatot a felhasználó hatékonyan fogadja be. A figyelmet tehát mind auditív, mind pedig vizuális kiegészítésekkel tarthatjuk a kívánt szinten. Jó példa a kiemelés (vastagítás, villogás) a szövegblokkon belül, megoldás lehet a színváltozás (esetleg villogással kombinálva), vagy hangéffektusok is kísérhetik a hangsúlyos mondanivalót.

Mondanalónkat tehát a képcentrikus szerkesztési változatban a vizuális észlelések és emlékezetre építjük. A multimédia program egységét, a „képernyőt” úgy tervezzük meg, hogy a haladási sorrendet az adott szerkezet, anyagrészre jellemző, egyértelműen azonosítható képekből álló horizontális sorozat adja. Sorrendben az első kép egyben címkép is. A cím az azonosításon kívül jellemző a következő programrész tartalmára és a program használatának céljára. A képernyőn mindvégig adott lehetőség az előre- vagy visszalépésre, a kiinduló menü választására, vagy a lexikon (a magyarázó alapismeretek) előhívására. A vizuális sorozat valamennyi eleménél a következő lehetősége közül lehet - vertikális irányban - elágazni: működés, kapcsolási rajz, mérés, hibák. Szósem lehet passzív olvasásról vagy motiváció nélküli tanulmányozásról, mert a képserég egyben műveletek sorát is jelenti, mérési, hibakeresési, döntési feladatokkal. Ezt a képernyőn folyamatosan jelen lévő javaslat, ajánlás is támogatja (pl. „visszalépés”, „lexikon”, „tovább léphet”, „próbálja újra”, stb.).

Az összetett programok többségében választhatunk az ismeretszerzés, a tanulás, a gyakorlás és a vizsgázatás lehetőségei közül. A választással lényegében minőségi kategóriát jelöltünk ki, amely a folyamat szabadsági fokát, interaktivitását, egyáltalán a munka (tanulás) célját is meghatározza. A tanulás kategóriát választva először a belépéshez szükséges ismeretek meglétét ellenőrzi a program. Néhány egyszerű feleletválasztós kérdés teljesítéséről van szó, amelynek célja nem a „vizsgázatás”, hanem a „helyzetbe hozás”. Taktikai meggondolásból a helyes válaszok szinte kínáltak magukat, ugyanakkor nagy szerepet játszanak a figyelem orientálásában, az emlékképek felidézésében és az új ismeretek, gyakorlati fogások, mérési technikák felvezetésében. Ezt követi a 4...8 képben összefoglalt vizuális információ-sorozat, az adott blokk mondanivalója, lényegében a tanulás célja. (A programozó építhet arra, hogy a valós feladat az érdeklődésre számot tartó autó valamelyik szerkezeti egysége, annak egy-egy hibája, a hiba feltárásának

93
módszere vagy a szabályszerű működés ellenőrzése - és ez minden esetben valós feladat.) A képi mondanivaló lényege annak feltételezése, hogy a felhasználó már látott ilyet, vagy hasonlót és tud mit kezdeni a kép információ-tartalmával. Ebben a fázisban fontos a ráismerés vagy a magasabb szintű felidézés (emlékezés) kategóriája, melynek alapján a már tapasztalt (látott) műszaki jelenségek, problémák felvetése elvárhatóan a képességfejlesztést támogatja, a horizontálisan építkező információ-sorozat gyarapíthatja a rutint, az alkalmazásképes szakértelmet.

A gyakorlás minden esetben konkrét probléma, működési hiba felvetését jelenti, ami kihívás-értékű. A feladat a probléma megoldása a képernyőn a segítségül hivható kapcsolási rajz, a mérőeszközök, az alkalmazás eredményeként kapott mérési eredmények és azok elemzése alapján meghozott döntés. Az általában állóképes demonstráció-sorozat ajánlja a vertikálisan kiegészített (kiegészítő) információs rendszert, ahol a bizonytalanság további részletek megismerésével feloldható. A keresett hiba megoldása néhány perc alatt abszolútvaló lehet. A megerősítést összefoglaló, magyarázó - lényegében ismétlő - képernyő támogatja, ahol a hiba, a mérési eredmények és a hiba elhárításának módja valamennyi vizuális rögzítésre alkalmas formában kínálják magukat.

A vizsgáztatás teszkérédek megválaszolásából és konkrét (gyakorlati) mérési feladatok megoldásából áll. Az adatbázisból véletlenszerűen kapjuk a 4 x 4 kérdést és a két mérési (hitelesítési) feladatot. A kiértékelés részletes és tetteles, de az eredmény közlése után - általában 90% alatt - a program csak a fejezet elejére való visszalépést engedélyezi. A tesztek, mérések részletei, a feladatok és az értékelés természetesen kinyomtathatók.

4.4.5 A képekben megfogalmazott mondanivaló kritériumai

A kép a vizualitásra, a jobb felteke aktivitására épít. Maga a kép tömörségével vagy szerteágazó mondanivalójával, színeivel vagy részleteivel segítheti és ugyanakkor hátráltathatja is a megértést, a befogadást, a későbbi ráismerést, felidézést és szakmai gyakorlati alkalmazást. A képíleg megfogalmazott mondanivaló állóképi (fotó, rajz, grafika) vagy mozgóképes (videó, animáció) relációi ugyanakkor nem nélkülözhetik a szöveges magyarázatot sem. (Sok esetben a multimédia készítés költségkimelése céljából a szükségesnél egy kicsit több szöveg is beépülhet a programba.) Nem szabad a szöveges blokk tervezését a nyomtatott szöveg analógiájaként kezelni. Lehetőleg egyféle betűtípus válasszunk, amelyet különböző nagyságban alkalmazunk a mondanivaló kifejezésére illetve a korlátozott terjedelmű magyarázatok megjelenítésére.

A szövegelhelyezés döntő eleme a képernyőre kerülő, megfogalmazott üzenetnek (Rimar, 1997). Szöveg jelenik meg a fejlécen, a képek mellett, egy-egy szó vagy szimbólum adja meg a navigálás lehetőségeit. Szöveges elem a menü, a cím, a felsorolás és a hivatkozás, és - lehetőleg a legritkább esetben - a mondanivaló kifejezésének eszköze. A magyarázó-leíró-hivatkozó szöveg akkor hatásos, ha egy blokkban, a korábbi képernyőkkel azonos helyen, méretben és megjelenési dinamikával tűnik fel. Rövidítéseket, betűszavakat ne használjunk, a sortávolságot növeljük meg legalább
másfélszeresre. Tapasztalataink szerint az aláhúzott szöveg nehezebben olvasható (Rimar, 1977).

Külön kell foglalkoznunk a színek jelentőségével és a színhasználat alapszabályainál. Maga a szín ugyanúgy lehet a kiemelés, mint más esetben az esztétikai látvány élményét fokozó eszköz is. A multimédiás programokban az erőteljes színhasználat nem ajánlatos. Ugyanígy a kíváнатoshoz képest ellentétes hatást érünk el a túl világosra választott háttér-színekkel. Próbálkozzunk a fekete alapon sórga, narancs alapon fekete, vagy a világoszöld alapon vörös színkombinációk a szövegblokk megjelenítésénél. Ugyanez az elvek érvényesek a grafikai megjelenítések kategóriájában is. Nem jök a vékony vonalak, a finoman és egyébként széne tűnő áttetszően megszerkesztett grafikák, ábrák, diagramok és táblázatok. Sőtét háttéren határozott világos vonalak, erős kontraszt fokozza a hatást. Az alkalmazott színkombinációk egyes elemei legyenek erősen kontrasztosak de ne „üssék egymást”.

G.I. Rimar elméletét alapul véve foglalhatjuk össze a multimédia megjelenítésének alapegységeit, a képernyők szerkesztésének és tervezésének legfontosabb ismérveit:
♦ arányosan használjuk ki a képernyő területét,
♦ nem baj, sőt előnyös, ha üres helyet hagyum,
♦ építsünk a képernyő ismétlésének lehetőségére (újra-felhasználás),
♦ következetesen helyezzük el a szöveges és a képi információit,
♦ használjunk kiemeléseket, effektusokat,
♦ alkalmazzunk jól olvasható betűtípust,
♦ használjunk hatásos színeket,
♦ próbáljuk ellensúlyozni a médium fogyatékosságait, ugyanakkor építsünk annak erősségeire, előnyös tulajdonságaira,
♦ legyünk konzekvensek a navigációban, használjunk praktikus jelképeket.

Ha az ajánlott szempontokat elemezzük, a sorok közül kiolvasható, mi mindenre kell tekintettel lennünk. Ezzel is bizonyítható, hogy „egyszemélyes” multimédia készítő stáb nem létezik, mert az ötlettel a kivitelezésig (az első próba-futtatásig) legalább a következő szakterületeket kell érintenünk: a szóban forgó szakterület elméleti és gyakorlati ismeretei, jellegzetességei, pedagógia, didaktika, metodika, esztétika, pszichológia, fotó és filmtechnika, szövegszerkesztés, ergonómia stb.

A képcentrikus tananyag-feldolgozás specialitását a tananyag-struktúrában kikeresett és hangsúlyozott vizuális információk sorozata adja. Itt egy kis túlzással elhanyagolhatjuk a szöveges információ fontosságát, de csak abból a nézőpontból, hogy definíciók, szabályok közreadására, azok memorizálása most valóban nem feladatunk. (Természetesen ez a kimeneti szabályozás, a majdani szöbelsi vizsga nem túl könnyű kérdései szempontjából csak korlátozott mértékben igaz.)
4.5 Didaktikai, metodikai, technikai feltételrendszer

A közép- és felsőfokú szakmai képzésben dolgozók (szakelméleti és gyakorlati tanárok, oktatók) valószínűleg valamennyien egyetértenek abban, hogy a képzés lényege a kibocsátott ifjú szakember szakértelme, „hadrafoghatósága”, a munkaadotól érkező pozitív visszacsatolás. Mindez megerősíthet jelenlét az alkalmazott módszerek és általában a képzés minősége szempontjából. Sajnos kevés a visszajelzés, a tanultak alkalmazhatóságának visszaigazolása, nincs megoldva az autójavítók és szervizállomások és a szakiskola kétoldalú információ-közvetítése.

A szakirodalomban a multimédia alkalmazása több esetben új oktatástechnikai eszközök bevezetéséről szól. Meghatározóak a körülmények, amelyek között a multimédiával támogatott tanítás-tanulás folyik, ugyanakkor lényeges, hogy milyen mértékben használnák ki az adott területen a multimédiában rejlő lehetőségeket. J. Taylor különös figyelmet fordít arra, hogy a vizsgált iskolában hogyan viszonyulnak a tanárok az új technikai lehetőségekhez, hogyan vezetik be az ismeretek elsajátításának támogatásába az interaktív videót. Az Innovations in Education and Training International hasábjain megjelent elemzés főbb megállapításai szerint 1. a diákoknak el kell sajátítaniuk az új eszközök működését, 2. a felhasználóknak meg kell tanulniuk az eszközök használatát, 3. egyértelműen meg kell határoznak az elérendő célokat és ki kell emelni a hasznos információkat, 4. a diákok kapjanak megfelelő visszajelzést az elvégzett munkáról. A tanárok szerepe ebben a folyamatban az információ közvetítése a diákok és az információ között (Taylor, 1996). A segítség nem csak a folyamatos segítség-nyújtásban és a programra alapozott feladatlapok összeállításában jelentkezik, hanem az eszközök gyakorlati alkalmazását és a navigáció elősegítését is kell, hogy támogassa.

A digitális kor gyermekei számára összemosódnak a munka, a tanulás és a játék keretei. Térben és időben lényegében egész napos kapcsolatban vannak az új információs és kommunikációs technológiákkal. Maga a tanulás is átfoghatja az egész napot - változó helyszínekkel (Layton, 2000). A fiatalok nem elszigetelten tanulnak, más-más helyszínen és változó csoportokban töltik idejüket. A tanulás kereteit ma már nem hatja át a versenyssel, a versenyprodukció, mint néhány éven belül, inkább a csoportmunka, a valós problémák megoldása tölti ki hasznosan a tanulócsoportok rendelkezésre álló idejét.

4.5.1 Alapkoncepció: a hatékony tanítás-tanulás támogatása

Az autóelektronikai tényanyagot feldolgozó multimédia programok speciálisnak tekinthetők abban a relációban, hogy nem vezethet eredményre a drill and practice módszer. A szakmai ismeretek elsajátításában és a képességfejlesztésben az előrehaladás nincs pontos korrelációban az idővel, a ráfordítással. A képernyőn bemutatott szerkezet, annak működése, a hibahelyzetek feltárásának és a mérési eljárásoknak a módszere önállóságot, kreativitást, problémamegoldó rutint feltételez. Előzetes tapasztalatok, gyakorlati ismeretek nélkül hiába nézi a tanuló, a felhasználó hosszasan a képernyőt,
hiába „magolja be” a ródív szöveges magyarázatot. Tevékenységre előkészíteni csak gyakorlásával lehet. Gyakorlati feladatot akár az autóban, vagy az annak részletét élethűen a képernyőn csak alapvető gyakorlati ismeretek és képességek birtokában lehet megoldani.

Nagy előnyt jelent a képcentrikus multimédia specialízásait és sajátosságait kihasználó, több képernyőn való párhuzamos haladás lehetősége. Szerkezeti fénycél vagy működést reprezentáló videó, alkatrészrajz bekötezésekkel, kapcsolási rajz a kiemelt mérési pontokkal, az egyes alkötelemek részletei, jellegzetességei, műszer vagy oszcilloszkóp behívása és valós mérések végzése - ez a képcentrikus technika igazi módszertani lényege és ebben rejlik valamennyi előnye is.

4.5.2 Módszertani kritériumok

Az interaktív multimédia általános érvényű lényege, hogy a diák, a felhasználó egy képernyő előtt ülve - saját ritmusának és időbeosztásának megfelelően - alkalmazza a tanára által megírt, célorientált leckéket és ennek segítségével tanulja meg, gyakorolja be azokat a nehezen érthető tananyagrészeket, amelyek elsajátításához a képzés keretein belül nem áll rendelkezésre elegendő idő (Rudas, 1992). A módszertani építkezésnek tehát az egyéni tanulás kereteit kell felmérnie, azokhoz kell alkalmazkodni, beleértve azokat az előnyöket, hogy a frontális munkával szemben az egyéni környezetben nincs észrevétel a haladás tempóját és minőségét illetően, azaz a tanulást nem hátráltatják pszichológiai szempontból negatív tényezők. Nem tehet megjegyzést a haladási ütemre, a konkrét feladatmegoldásra a magáról megfeledkezett oktató, a multimédiás környezet nem befolyásolja a tanár egyéni ségére, pozitív vagy negatív reakciói, a tanulás hangulatát támogató vagy leromboló megjegyzései.

A szakmódszertan feladatait a jelen kutatás és alkalmazás területén szélesebbre tárt lehetőséggel adja meg az elvárás, hogy a programozott oktatás Biszterszky Elemér, Gyaraki F. Frigyes, Szücs Pál és mások korábban tudományos kidolgozott elméletét, módszereit adaptálja szükséges a mai számítógépes relációba. A tanítási órák jellegének és az egyszerű ismeretközlésnek megváltoztatása, a számítógépes technika minden lehetőségének kialakítása és azzal a személyrendszerekben, ahol az ezzel párhuzamosan az interaktív technikákkal szövegbeott otthoni tanulás számítógéppel támogatott rendszerének megvalósítása jellemző. A módszertani megközelítés azért fontos és karakteres, mert a mit tanítsuk a tanítási órák jellegének és az egyszerű ismeretközlésnek megváltoztatása, a számítógépes technika minden lehetőségének kialakítása az ezzel párhuzamosan az interaktív technikákkal szövegbeott otthoni tanulás számítógéppel támogatott rendszerének megvalósítása jellemző. A módszertani megközelítés azért fontos és karakteres, mert a mit tanítsunk a tanítási órák jellegének és az egyszerű ismeretközlésnek megváltoztatása, a számítógépes technika minden lehetőségének kialakítása az ezzel párhuzamosan az interaktív technikákkal szövegbeott otthoni tanulás számítógéppel támogatott rendszerének megvalósítása jellemző.

Úgy gondoljuk, hogy a multimédia és a programozott oktatás ismételt előtérbe kerülésével, a multimédia környezet imponáló oktatástechnikai kínálatával nem egy újabb taneszköz színesítheti a szemléltető- és gyakorlóeszközöknél másra kompatibilis stílusos tanácskozó választékát, hanem egy merőben új tananyag-feldolgozási és –közreadási struktúráról beszélhetünk, amely más
módszertani megközelítést involvál. A tudományos előzmények (Gyaraki F. Frigyes a tananyag feldolgozásához logikus szerkezetet adó algoritmusok kidolgozásával és azok alkalmazási technikájának leírásával, Bizerczkzy Elemér a programozás alapelőveinek lefektetésével, Horváth Márton az összehasonlító pedagógia kutatási kereteinek kimenetlenségével, Varga Lajos a kvantitatív mérések gyakorlataiknak kidolgozásával, Balogh Andrásné a technikai fejlődés és a szakképzés összefüggéseinek feltárásával) megalapozták a multimédia szoftveres kínálatának gyakorlati alkalmazását.

Kutatásaink és kísérleteink során ez gyakorlatilag azt jelentette, hogy a tanítás-tanulás új lehetőségeit kipróbálva új tananyag-feldolgozási és -közreadási módszerekkel dolgozhattunk a frontális oktatásban és az egyéni tanulás támogatása során is, korszerűsítve az eddig alkalmazott oktatástechnológiát. A multimédia környezetben hatékonyabb és eredményesebbé válhat a tanulás, a tananyagok és a módszerek alkalmasak lehetnek a piac-orientált elvárások kielégítésére is, mindenképpen azonban alkalmazkodhatnak a tanulói képességekhez és az interaktivitáson keresztül jelentős lépéseket tehetünk a tudásalapú társadalom eléréséhez.

A módszer megválasztása minden tanár és szakoktató saját (szuverén) joga. Ő csak egy feladatot, egy célt - egy csoportot vagy egy osztályt - kap, amit a tantárgy és a tematika szerinti feladatok összetettségéből fakadó tennivalók tekintetében saját magának kell megoldania. Milyen ajánlásokat adhatunk, mit javasolhatunk?

A hagyományos tanulást feltételező, de azt számítógépes lehetőségekkel kiegészítő, a szöveges anyag tanulását támogató, informatív hozzáférést biztosító oktatórendszerek a mai napig gyakorlatilag a server-kliens modellek. Közös jellemezőjük, hogy egy információs központról adatbänkről, szerverről dolgozik minden felhasználó. A hallgató, a tanuló saját időbeosztása és igényessége szerint veszi igénybe a forrást, kommunikál a tutorral, és - ha a rendszer időbeosztása szerint eljött az ellenőrzés és a visszacsatolás ideje - bejelentkezik a személyes, vagy a hálózaton megszervezett vizsgára. A rendszerre az egyéni tanulási környezet, a kimeneti szabályozás és a tanuló magas szabadsági foka jellemző. A tanulás, az ismeretszerezés minden fázisának kereteit kontúrok közé szoritja az előre pontosan meghatározott cél- és követelményrendszert, az eredményes vizsga - általában minimum-szinttel meghatározott - kritériuma.

A szerver-kliens modell szerkezete és a használati fázisok szövegalapú tananyag esetében a következők:
♦ az oktatásszervező előkészíti a tananyagot és a hozzáférés lehetőségének megadásával elhelyezi azt a hálózaton;
♦ tájékoztató, a felhasználás részleteit megadó anyagot bocsátanak a felhasználók rendelkezésére a lényeges szempontok és a vizsgakövetelmények megadásával;
♦ önellőrző kérdéseket állítanak össze a felkészülés támogatása érdekében;
♦ on-line kapcsolatot szerveznek meg telefonon vagy az Interneten keresztül a nyitott kérdések tisztázására;
♦ vizsgát szerveznek a személyes megjelenés, vagy a hálózati belépés paramétereinek előírásával.
A vizsgázási lehetőségek egyik modern fajtája a videokonferencia. A nagyon költséges, összetett hardver-igényű és sok technikai hibalehetőséget magában rejtő módszer egy kicsit ki van szolgáltatva a hálózati hibáknak, telekommunikációs zavaroknak, értelmezési fogyatékkosságoknak, ennek ellenére sok egyetem és főiskola támogatja ezt a számonkérési formát.

4.5.3 A technika és a módszertan szinkronizálása

Az információtechnológia minden egyes technikai megoldás megjelenésével és bevezetésével egy időben egyet lépett előre, de az igazi áttörést a számítógép megjelenése és általános bevezetése jelentette. A PC először az ügyvitelben, az adminisztrációnban jelentett gyorsítást, idő megtakarítását és megbízhatóságot. Később az irott-nyomtatott anyagok, képek feldolgozását és az oktatásban felhasználhatóvá tételét realizálták számítógéppel, de az információ még a megszokott formában (pl. fóliára nyomtatva) jelent meg az oktatási folyamatban (Tómpa, 1995). Ez ugyan előrelépést jelentett, de nem befolyásolta lényegesen a nyomtatott tananyagok oktatásban betöltött szerepét. Mind a tanulási folyamatot szervező pedagógus, mind pedig a hallgató, a felhasználó számára a technikai-minőségi átalakulás azzal jár együtt, hogy az oktatás alanya csak igényes anyagot, a témához illeszkedő dokumentációt, médiát fogad el (Biszterszky, 1993). Nem szabad köztredni „reszketeg” vonalakkal beszkennelt ábrát, az összefüggéseiből kiragadott mellékes információt, rossz minőségű fekete-fehér fénymásolatokat, rendszerező elv nélkül egymás után besorolt ábrákat, a csak lexikális ismereteket kérdező és megkövetelő teszkér dés-sorozatot.

Élesen kontúros és egyértelmű képek, színes, áttekinthető de nem harsány, méreteiben arányos és jellemző információt tartalmazó vizuális megjelenítések, rövid és fontos információt adó videoklépek, a lényeget kiemelő (rövid) szöveges magyarázatok,
A tananyag programozott feldolgozása
egyénileg megválasztott időbeosztás és haladási ütem, az igény szerinti ismétlés határozza meg azt a kategóriát, amelyet csak a programozott multimédia kínálhat a felhasználó számára. Az ügyes, találékony amatőr megoldások ideje lejárt. A magas színvonalú televíziós- és videotechnika, az Internet és a professzionális (játék-) programok nagyon magasra emelték a mércét.

Sajnálattall állapítjuk meg, hogy a számítógépes technika csak nagy fényerejű videoprojektorokkal, élvezhető minőségű LCD-panelekkel vihető be az osztálytermekbe. Ezek a legújabb eszközök forradalmasíthatják a frontális osztálymunkát. Természetesen adott az anyagilag az iskolát nagymértékben megterhelő, de megvalósítható technikai környezet, a hálózatba kötött gépek alkalmazásának lehetősége is. Ma a szakoktatás gyakorlatában vegyes a kép. Bizonyos mértékig minden iskola felkészült és alkalmas a legkorszerűbb technika közvetítésére és alkalmazására, működnek az Internet-csatlakozások a maguk lassú és körülményes területén között. Ezen kívül továbbra is valósítható meg a fejlődés-fejlesztés tendenciája, amikor már nem csak informatika órákat tartanak a korszerű számítógépes környezetben, amikor a szervek segítségével tárolható és hozzáférhető (szinte korláttal mennyiségi) információ (szöveg, adat, kép, mozgókép) metodikailag szervezett formában állhat a tanárok és a tanulók rendelkezésére.

Még a legkorszerűbb informatikai-oktatástechnológiai környezetben sem nélkülözhető a szaktanár személye. A hálózati alkalmazások, a CD-ROM-ok használata vagy az egyszerű információ-keresés is feltételez egyfajta eligazítást, útmutatást, a célok és a keretek, a haladás ütemének kijelölését. Újszerű felismerés, hogy az egyes iskolák hatékony oktatástechnológiai munkájában jelentős szerepet kaphat a képszerkesztésben, információ-feldolgozásban elemei feladatokkal megígért tanuló, ami szervezett formában az iskola - mint multimédias műhely - szerepének formálásában és betöltésében jelentős szerepet játszhat. Ezt a megoldást azért is célzott számításba venni, mert a legutóbbi évek tankönyv- és tânysközetés-készítő munkájának piaci alapokra helyezésével - a rentabilitás hiányában - rövid időn belül nem váratolható a zavartalan központi multimédia programokkal való ellátás megsemmisítése.

A számítógépes tanulás-irányítás során a program adatokat, információkat tárol, a kérdéseket és válaszokat a menü és választott üzemmod szerint kapja a felhasználó. A számítógépesen futtatott programozott tananyag a visszacsatolt tanítás-tanulás lehetőségét biztosítja (Hámori, 1983). Ha a tanuló a belépési ponttól a kiválasztott nehézségi fokozat szerint haladva válaszol a kapott kérdésekre, illetve döntéseket hoz a felkínált alternatívák alapján, maga a számokérés is információszerezést, a program nehézségi fokozatának megfelelő irányított tanulást jelent (Biszterszky, 1993). Az adaptív számítógépes program alkalmas arra, hogy a tanuló teljesítményehez igazodva válassza meg a továbbhaladás útvonalát, azaz kevesebben hibánál nehezítse, csökkenő teljesítménynél könnyítse a feladatokat. Ebben az esetben olyan visszacsatolásról beszélhetünk, amely során a számítógép saját működését szabályozza a számokérés eredményességének megfelelően.
Maga az interakció, a tananyag közlése vagy a kérdések feltevése nem oldható meg programozás nélkül (Biszterszky, 1993). Egyszerű információ-szerzés, keresés során a tanuló a számítógép memóriájában tárolt ismereteket, tananyag választékával ismerkedik, tallóz a különböző szöveges, álló- és mozgóképes szemléltető anyagok, animációk és összefoglaló táblázatok között („student-programmed” géphasználat). Amennyiben a tanuló csak a programot készítő tanár által meghatározott keretei között mozoghat, csak úgy juthat információhoz, ha a belépési ponttól megfelelően válaszol a kérdésekre, illetve döntéseket hoz („teacher-programmed” párbeszéd). Ez utóbbi esetekben a tanár írja elő az input (tanulói műveletek) és az output (a számítógépen megjeleníthető anyag) formai és tartalmi szabályait (Tompa, 1995). Felméri a belépési szinthez szükséges előismereteket, közli az újabb információkat, ellenőrzi az új ismeretek megértését és az alkalmazási készséget, esetenként újabb típusú feladatsort ír elő az eddigi tananyag információinak felhasználásával a komplex alkalmazási képesség ellenőrzésére.

Az egyszerűbb programozott tananyagok a „drill ad practice” (besulykolás és gyakorlás) módszerét alkalmazzák (Brückner, 1978). Ma már talán csak a nyelvtanulás területén célravezető ez az eljárás. A műszaki tematikát tartalmazó programok az oktatási célú párbeszédekre épülnek, azaz a felhasználó kérdést tesz fel és a számítógép válaszul megadja a kért információt. Nem elég az álló- és mozgókép, a szöveg és az animáció, szimulációra is szükség van a logikai készség fejlesztése, a nagy és bonyolult rendszerek működésének először modell-változatban való megismerése érdekében.

Az oktatási stratégia, melynek kereteit a program készítője adja meg, döntési algoritmusok sorozatát jelenti, amely a tanulói tevékenységnek megfelelően változik (Biszterszky, 1993). Egyszerűbb változatban a program szerkezete és az adatbázis kötött. Ebben az esetben fejlesztésre csak a programozási munka újra kezdésével van lehetőség. A generatív rendszerek ennél jóval többre képesek: adott algoritmus alkalmazásával a bővíthető adattáról további feladatsorokat képesek felállítani, egyre szélesebb körű alternatívákat tárnak a felhasználó elé.

Az adaptív rendszerű program még ennél is többre képes: a régebbi és újabb feladatok generálásánál előzőleg kiértékelési és összegzi a tanulói válaszokat, és a kapott eredmény alapján lép tovább. Itt tulajdonképpen akár az oktatási stratégia módosítására is sor kerülhet, ugyanakkor a tanulói teljesítményről is többet tudunk meg az értékelés során. Az önfelisztő rendszerek („self-improving”) programja az adaptivitáson túlmenően még arra is képes, hogy egy feltételezett tanuló és a programot ténylegesen használó tanuló teljesítményét összehasonlítja. A fedalatgenerálás után a válaszadásnak megfelelően módosul a tanítási stratégia és a program-irányító menedzsment részletesen kiértékelı a tanulói tevékenységet. A program adatbázisában célok, értékelhető tényezők, követelmények és minimális teljesítményszint szerepelnek, melyeket a számítógép a program futtatása során folyamatosan alapul vesz az összehasonlító értékelésben.
4.6 Tanítás, tanulás és értékelés a multimédia rendszerben

Valószínű, hogy a multimédia rendszer eleve motivál, pusza létévé érdeklődést kelt és a felhasználót várakozással telve kapcsolja be az információ-keresés, a tanulás vagy a gyakorlás szférájába. Minden motiválhat, ami újszerű, feltetően eredményes és nem a szokványos kereteket ajánlja. Ennek megfelelően nem lehet baj az új technika és oktatástéchnológia bevezetésével sem.

Multimédia programok elemzésével, minősítésével sokan foglalkoznak. Kutatási területünkön figyelemre méltó eredményt ért el az ELTE munkacsoportja Kárpáti Andrea vezetésével. Külföldi relációban megemlíthetjük az ILDIC (Integration of Learning Design in Interactive Compact Disk) kutatási projektjét, amely érdekes módon nem a végeredményt minősíti és hasonlítja össze további CD-ROM-ok jellemzőivel, hanem kifejezetten a multimédia környezetben megvalósított oktatóprogramok tervezési folyamataival foglalkozik, az alapelvek felfektetését és azok érvényesülését kutatja (Barker-King, 1993). Lehet tehát úgy is elemezni, minősíteni, hogy a kutatócsoport az új oktatóanyag tervezéséig visszamenően részletezi a programozók munkáját. Itt már nem egyszerűen a kritikai elemzés paraméterei dominálnak, hanem a didaktikai-pedagógiai-pszichológiai szempontok, talán egy kicsit elvonatkoztatva a végtermék felhasználói előnyeitől és hátrányaitól.

Lényegében a didaktika, a metodika és az oktatástéchnológia szervesen összefonódó elméletének gyakorlati megvalósításáról van szó (Baloghné, 1997). Mit és hogyan tanítsunk, mivel és milyen időbeosztással szemléltessünk? Lényeges az is, hogyan történik a tanítási folyamat és a tanulói teljesítmény értékelése és hogyan valósítható meg mindez az át- és továbbképzés, valamint az egyéni tanulás körülményei között.

4.6.1 Az egyéni tanulás támogatása

Az egyéni tanulás egyik speciális változata a távotaktatási kurzusokon való részvétel. Az új információs és kommunikációs technológiák a távotaktatásra is a megújítás erejével hatnak. Újszerű az oktatási anyagok tárolásának, hozzáférésének módja, de a közvetítés és az interaktivitás szerepének fokozódása is. Sokan a „globális osztály” létrejöttéről szólnak, ahol az elektronikus levelezés (E-mail), a nagyobb kapacitástú mobil tárolóeszközök (CD-ROM, CD-I) és az on-line hozzáférhető hálózatok széles kapacitásokat nyitnak meg. Mindez új kompetenciákat követel. A pedagógiai alapelvieknek is alkalmazkodniuk kell a távotaktatás tanulási módszereihez, a tanuló részére megadott paraméterekhez. Ugyanakkor számos lehetőség a venezélylehetőség, hogy a tanuló túl nagy figyelmet fordíthat a technika bonyolultságára és az adatokhoz, információhoz való hozzáférés kötöttségére, amely az egyéni környezetben elvárható elmélyült tanulást a háttérbe szoríthatja (Asleitner-Leutner, 1998).

Az egyéni tanulás során fokozottan aktív tanulási tevékenység klasszikus értelmezésben öt szakaszra bontható (Tóthné, 1996). Az első szakaszban az áttekintés, a másodikban a
kérdések és a problémák felvetése dominál, a harmadik szakaszra a figyelmes olvasás jellemző, míg a negyedik rész a felidézés-kritériumai szerint működik, végül az összefoglalás, az olvasottak-tanulatok rendszerezésével jellemezhető. A nyomtatott tananyagba épített feladatrendszerek és feladatsorok közlése, a megoldás kötelező volta és az ezzel kapcsolatos értékelés-elemzés a pedagógus számára fontos visszacsatolási elemeket tartalmazhat. A feladatokkal kapcsolatos elvárások:
♦ tényleges tevékenységre késztessenek,
♦ vezessék végig a tanulót a megismerés útján,
♦ emeljék ki a lényeget és a vizsgált rendszer jellemzőit,
♦ legyenek változatosak, szemléltetőek, színesek,
♦ a rugalmas gondolkodás érdekében legyenek variációs feladatok (Tóthné, 1996).

Az oktatóprogramok alaptípusai lineáris, láncszerkezetű, elágazáskos rendszert alkotnak, vagy ezek kombinációjából állnak (Varga, 1988). A lineáris rendszer lépésenként halad a tananyagban. Ha rossz a válasz, visszaugrik az előző kérdésre. Leegyszerűsített példa a láncszerkezetű program, ahol kicsi a lépésköz és nem várható el helytelen válasz.
Az elágazáskos programok főprogramja a legnehezebb. A mellékágakon rávezető kérdéseket, kiegészítő információkat kapunk, melyek feldolgozása után visszakapcsolhatunk a főágba. A tisztán elágazáskos rendszer minden csomópontban kérdést tesz fel és csak a rossz válasz esetén kínál fel segítséget. A zárt rendszerű, felbontott tananyag szerkezetére jellemző az egyes elemek (ün. „dialogusok”) közötti kapcsolat a tartalom és az irányítás jellemzői szerint (22.ábra). Ez tulajdonképpen a tanulási folyamat irányításának stratégiája (Hámori, 1983)

![Diagram](image.png)
22. ábra. Párbeszéd a tanuló és a számítógép között
A tanuló helyes választ adhat, kiegészítő információt vagy felvilágosítást kérhet. Kivánság szerint visszaléphet a menübe és könnyebb, vagy nehezebb továbbhaladási ütemet választhat, illetve újabb tananyag-elemeket tekinthet meg. A számítógép a legtöbb program-változatban (azonnal, vagy a fejezet végén) közli a helyes választ, amely nemcsak a felhasználó tájékoztatására szolgál, hanem egyúttal a program-irányításban is szerepet kap. A legtöbb program a teljesítmény alapján jelölő ki a továbbhaladás irányát. Az önálló iskolai, vagy otthoni tanulás környezetében lassú ütemben csökkent a verbális tanulás dominanciája, a tankönyv egyeduralkodó jellege. Az ezzel azonosítható lineáris és szövegkörnyezetű tanulást felváltja a kreativitás, a komplex problémamegoldásban való jártasság fokozódása, amelyhez nem kell minden esetben a tanár jelenlété és a tankönyv memorizálása.

4.6.2 Ellenőrzés és értékelés a multimédia programokban

Az oktatásban, a tanítási-tanulási folyamatban alapvető jelentőséggel bír a tudásszint ellenőrzésének indikátora, a visszacsatolás (feed-back). A tanár, a programozó, vagy az oktatási folyamat ellenőrzését végző személy számára egyaránt fontos, hogyvan valósul meg a tanulás, a programozott oktatás során az ellenőrzés kontinuitása, hogyan értékélhetők az elért teljesítmények és a visszacsatolás adatai, paramétereire szerint hogyan avatkozik be a program a folyamatba - élve a szabályozás, a folyamat befolyásolásának előre megtervezett lehetőségeivel. A tanuló, a felhasználó számára is nagyon lényeges szempont a program visszajelzése, ha az néha csak jelképes is.

Az információk közvetítésén kívül a számítógép kiváló lehetőségeket biztosít a folyamatos ellenőrzésre és a tudásszint eseti értékelésére (Varga, 1988). A tudásszint ellenőrzésének számítógépes eljárásait ugyan megelőzték az egyszerű és összetett feladatlapok, de könnyebb ezeket számítógéppel összeállítani, futtatni és az értékelést, elemzést, adminisztrációt is géppel végezni. Az egyszerű tesztkérdéseknel két állítás közül kell az „igaz” választ megjelölni. A feleletválasztásos test több alternatívát kínál, amelyek közül egy vagy több helyes. Kiegészítő kérdéseknek a pontozott helyre a megfelelő szót, kifejezést kell beírni. Az aszociációs és az osztályozó kérdések a párbá válogatást, a helyes sorrend megállapítását kérik a felhasználótól (tanulótól). Az eddig felsoroltak a zártvégű tesztkérdések közé tartoznak. (Kísérleteink során egyszerűségük és megbízhatóságuk miatt elsősorban a randomizált, négy alternatívás zártvégű tesztkérdéseket preferáltuk, a megerősítést támogató - visszatérő - változatokkal.)

Néhány kérdés az autóelektronika témaköréből:

2.2 Feladatlap (1. változat)

<table>
<thead>
<tr>
<th>Osztály</th>
<th>TESZT 1998 / 003</th>
<th>EV</th>
</tr>
</thead>
</table>

VÁLASSZA KI A HELYES MEGOLDÁST ÉS JELÖLJE AZT A NÉGYZETBEN "X"-Szel!

FONTOS SZABÁLY, HOGY A FELADATLAPON JAVÍTANI NEM SZABAD!

1. Akkumulátoros gyújtás vizsgálatá során a megszakítóval párhuzamosan próbálalámpát kapcsolunk. (Csak egy helyes megoldás fogadható el!)

 - a) Az izzó a nyitás és a zárás során is világít.
 - b) Az izzó a nyitásnál világít, a zárásnál kialszik.
 - c) Az izzó zárt megszakítónál világít.
 - d) Az izzó nem világít.

2. Mi okozhatja azt, ha az 1. kérdéshez tartozó ábra szerinti kapcsolásban az izzó nyitott és zárt megszakítónál is világít? (Több helyes megoldás is lehetséges!)

 - a) A kondenzátor zárlatos, átvezet.
 - b) A megszakító hibás, szakadt.
 - c) A megszakító hézag túl nagy.
 - d) A megszakító nem nyit.
 - e) A megszakító nem zár.
 - f) Az izzó hibás.

3. Még mindig a megszakítót vizsgálva: mely esetben nem világít az izzó? (Több jó válasz is lehetséges!)

 - a) A kondenzátor zárlatos, átvezet.
 - b) A megszakító nem nyit.
 - c) Az izzó hibás.
 - d) A megszakító nem zár.

4. Válassza ki a négyhengeres, négyütem ottómotor helyes gyújtási sorrendjét!

 (Több helyes megoldás is elfogadható!)

 - a) 1 - 2 - 3 - 4
 - b) 1 - 3 - 4 - 2
 - c) 1 - 2 - 4 - 3
 - d) 1 - 4 - 3 - 2

5. Ha az előző kérdés megoldásánál két választ jelölt helyesen, mi lehet a magyarázat? (Csak egy helyes válasz adható!)

 - a) A páros és a páratlan számú dugattyú együtt járnak.
 - b) A forgattyúscsapok szögeltérése 90°.
 - c) A dugattyúk felváltva, egymás után érkeznek a FHP-hoz.
 - d) A két külső és a két belső dugattyú együtt jár.

6. Ha a 4. kérdésnek két helyes megoldása van, mi lehet a magyarázat? (Egy jó válasz!)

 - a) A páros után mindig páratlan számú dugattyú következik a gyújtásonál.
 - b) 2-2 dugattyúk mindig egyszerre érkezik a felső holtponthoz.
 - c) A két jó megoldás között, csak a forgásirány ellentétes.
 - d) Más technikai kialakítással nem működne a négyhengeres motor.

7. A centrifugális (röpsúlyos) előgyújtás-szabályozó a fordulatszám változásának függvényében korrigálja az alapelőgyújtást. Hogyan? (Csak egy helyes válasz adható!)

 - a) Növekvő fordulatszámnál a röpsúlyok az alaplapot forgásirányban előre viszik.
 - b) A röpsúlyok a bűtyköstärcsát a forgásirányban mozdítják el.
 - c) A röpsúlyok az alaplapot a forgással megfelelő irányban mozdítják el.
 - d) A röpsúlyok a bűtyköstärcsát forgásirányban viszik előbbre.
Az ellenőrzés lényege, hogy a tanuló, a programot felhasználó teljesítményét hasonlítjuk a cél- és követelményrendszerekhez, szükebb értelemben az oktatási programban minimalizált eredménynézethez. A frontális osztálymunkában a tanár a tárgyi tudást, a leadott tananyag lehetségében pontos reprodukcióját ellenőrzi és értékel, miközben a speciálisan műszaki-gyakorlati szakterületen az ellenőrzés elsősorban a gyakorlati alkalmazás hatásfokát minősíti. Hagyományosan az ellenőrzés választékát írásbeli és szóbeli számonkérés reprezentálja, ugyanakkor a programozott oktatás keretei között megvalósított ellenőrzés legtöbbször feleletválasztásos teszt, konkrét mérési eredményeken alapuló véleményalkotás, probléma-megoldó szituációkban kialakított vélemény (döntés).

A több évig „divatba került” tantárgytesztek széles választékát többen foglalták rendszerbe. Szántó Károly a következő összefoglalást készítette:

♦ igaz-hamis próbán alapuló tesztek (jelölés pl. aláhúzással);
♦ több ágú tesztek (feleletválasztásos forma);
♦ kiegészítéses teszt (egy-egy szó, fogalom beszúrása lehetséges);
♦ asszociációs teszt (adatok összefüggése jelölhető);
♦ viszonyító teszt (fogalmak egyezése, hasonlósága);
♦ osztályozás-típusú teszt (nagyobb csoportból kis csoport kiválasztása);
♦ hasonlóság-típusú teszt (adatok közötti kapcsolat alapján);
♦ nyílt feladatok (szabadon megválaszolhatók);
♦ konstruktív feladatok (operatív alkalmazás – pl. fordítás) (Szántó, 1984).

Varga Lajos a tantárgyteszket három alapvető kritériumnak rendeli alá. Ezek az objektivitás, az érvényesség és a megbízhatóság. A fogalmak tartalmi elemzése alapján nemcsak a tudományosság elméleti alapjait ismerhetjük meg, hanem szemben találjuk magunkat azokkal a hibalehetőségekkel is, amelyeket napjaink tanárai egy-egy felmérés, teszt, írásbeli tudásszint-ellenőrzés során rendre elkövetnek (Varga, 1993). Az objektivitás sérülhet a tesztek kitöltésénél (rossz útmutatásnál), az értékelésnél (lineáris pontozás, súlyozás, százalékos különbség-tétel) és az értelmezés (interpretálás) során (az értékelési-osztályozási sávok rossz megválasztásakor).

Az érvényesség (validitás) azt hivatott szolgálni, hogy a kérdéssor feleljen meg a tananyaggal kapcsolatos elvárásoknak (tantervnek). A kritériumra vonatkoztatott validitás a témák és az osztályzatok korrelálásával számszerűsíthető.

A megbízhatóság (reliabilitás) különböző mérési eredmények közötti eltérés alapján támogatja a döntést, vajon megfelelő-e a teszt és annak értékelési rendszere. Többféle eljárás ismert, pl. a megismétléses, a párhuzamos, a felezéses vagy a konzisztencia-vizsgálat (Varga, 1993). Falus Iván a megbízhatóság ellenőrzésére a szerkezeti kontrollt, vagy a keresztető eljárást ajánlja elő- és utóvizsgálatok keretein belül. Mértékdő lehet még az előidézett és a felidézett kísérlet kölcsönös kontrollja, amelyet közbülső mérések egészítenek ki a folyamatos nyomon követés során (Falus, 1993).

A tesztek feladattípusai alapesetekben a feleletválasztásos (alternatív, többszörös, illesztések), a feleletalkotó (kiegészítések, esszé-jellegű) és a képesség jellegű tudás mérése (Falus, 1993). A tudományos alapon készített tesztekhez mérések, matematikai
elemzések tartoznak, melyek során számokat rendelünk az objektumokhoz, azok tulajdonságaihoz, egyes eseményekhez. Ezt követi a mérési skála megalkotása (a lehetőségek: nominális, ordinális skála, intervallum-skála, arányskála). Mindezt körülhatárolják az értékelési tényezők, amelyek a mérés előtt megállapított domináns tulajdonságokat jelentik (Fercsik, 1982).

4.6.3 Következtetések

A hagyományos módszer szerinti tananyagszerkezetet a Gyűjtás témakörében dolgoztuk fel számítógéppel, hagyományosan és vegyes elemzéssel (szakmai, didaktikai, pedagógiai sorrendek alapján). Lényegében egy folytonosan szűkülő problémák soron hibalehetőségeiről volt szó, melynek legfontosabb kritériumai a helyes sorrend felállítása, a tananyagrések egymásra épülésének aprólékos vizsgálata a matematika módszereinek és lehetőségeinek segítségével. Érdekes eredményt hozott a feladat megoldása, mert a végeredmény kisértetiesen hasonlított ahhoz, amit a rutinos tanár állítana össze néhány hetes gondolkodás - és persze a több évtizedes tapasztalat - alapján. Ugyanakkor a „nem pedagógus” szakember néhány helyen megváltoztatta volna a ráépülési sorrendet.

A multimédia jellemzői közül itt az interaktivitást, az egyénileg megválasztott tanulási időszakot, be- és kilépési pontot, ütemet, haladási sebességet kell kiemelni. Az interaktivitás az első felhasználói beavatkozásnál felbillent a témá-sorrendet. A többszöri visszacsatolás, vagy egyes anyagrészek átugrása már végképp elmosza azokat a megtervezett kontúrokat, amelyeket mi a tananyagtervezés során sorrend és mélység tekintetében esetleg elengedhetetlennek, de mindenéppen nagyon fontosnak tartottunk. Más módszerre van szükség a fejlesztő, a didaktikai-metodikai és a programkészítő munkában.

A speciális követelmények különleges, rutinból nem végezhető feladatsort rónak a multimédia bemutatók, vagy összetett interaktív programok készítőire.

Emeljünk ki néhányat a szükséges ismereti és gyakorlati elvárások közül:

♦ megbízható szakismert, nagy gyakorlati tapasztalat;
♦ rutin a didaktika, a metodika és apszichológia kérdéseiben;
♦ átfogó pedagógiai ismeretek és több éves gyakorlat;
♦ gyakorlottság a tananyag-feldolgozó, tananyagfejlesztő munkában;
♦ jártasság a számítógép kezelésében (szoftver és hardver);
♦ magasabb szintű esztétikai-, vizuális- és arányérzék, jó ízlés;
♦ jártasság a taneszközfejlesztő munkában.
A multimédiás tananyagok egyszerűbb változatai is összetett szerkezetűek. Horizontális a vonalvezetés, a struktúra a tananyagrészek tekintetében, és vertikálisan épülnek egymásra, illetve egészítik ki egymást a különböző médiák. Az egész program szerkezetére jellemző a jól megtervezett, folyamatos visszacsatolás és az állandó értékelés lehetősége.

Valamennyi lépés, elem gondos tervezést és körültekintő beillesztési, visszacsatolási feladatsort jelent. A magyar médiakutatók szerint a multimédiás tananyag alapegysége a képernyő, azaz egy meghatározott információtartalom és megjelenítés egy fázisban. Az egymást követő képernyők, bemutatási és oktatási egységek csak fő vonalaiaban követik egymást a programozó elképzelései szerint, hiszen az interaktiv beavatkozó és szinte teljesen szabadon választó felhasználó ezt a tervezett sorrendet mind előre, mind pedig oldalt vagy visszafelé elképzelései szerint megváltoztathatja.

A megjelenítés rendeltetése és tartalma szerint statikusnak nevezzük a képernyőtartalom azon részeit, amelyek információkat, útbaigazítást, elágazási és haladási útmutatót biztosítanak. Dinamikusnak nevezhetünk minden olyan elemet, amely a tanulási tartalommal és annak mélységével kapcsolatos. Szorosan kapcsolódik a dinamikus képernyőelemekhez az interaktivitás lehetősége, amely a motivációra épülő koncentráció fenntartását szolgálja, életszerűbbé és élvezetesebbé teheti az újabb ismereteket, a programozó jó munkájának eredményeként sikerülhet a felhasználónak akár egy jelentéktelen, de helyesen megválasztott lépés esetén is. Az egészet át kell, hogy hassa a legfontosabb feladat: a minden lehetséges alkalommal biztosított megerősítés.

Módszertani szempontból alapvető fontosságú, hogy az egyénileg választott ütem és sorrend mellett állandó visszacsatolási és értékelési lehetőséget kell teremteni. A legegyszerűbb programok is felkínálják a keresés - tanulás - gyakorlás - vizsga (ellenőrzés) lehetőségeit. Ennek megfelelően egyszerű lapozással haladhatunk a kívánt, keresett ismeret vagy tevékenység felé, illetve saját elképzelésünk szerint tanulhatunk, gyakorolhatunk, amelyet követően felmérhetjük tudásunkat a program szerint biztosított lehetőségnél, általában egy-egy tananyagrész végén.
5. Kísérletek programozott multimédia anyagokkal

5.1. Autóelektronikai szakképzés

5.1.1 Szakmák születése és megszűnése

Az autóelektronikai műszerész szakma létrehozásának konkrét igénye 12 évvel ezelőtt, az akkori KÖHÉM fejlesztési részlegénél vetődött fel. A közlekedési tárcsa szakemberei, a szakiskolák és az autójavítók képviselői egyeztetések sorozatával keresték az utat az autós szakképzés programjának megújításához. A minisztérium ennek eredményeként létrehozta a (napjainkban sajnos már kifutóban lévő) kísérleti műszaki szakközépiskolai képzés struktúráját és ezzel párhuzamosan döntött az egyes szakmák tartalmi-gyakorlati kereteinek átdolgozásáról. Megtervezték az autóelektronikai oktatás kereteit is, ami akkor Európában egyedülálló kezdeményezéseknek számított.

A munka a javító-szolgáltató szektor igényeinek felmérésével, az elvárások rendszerezésével kezdődött. Ennek eredményeként olyan új szakmai profil, tevékenységi lista állt össze, amely nem csak egyszerűen a funkcionális kör részletes leírásából állt, hanem
gyakorlat-orientált szempontok szerint összesítette a szakterület műveléséhez szükséges ismeretek, jártasságok és kétségek körét. Radikálisan újat jelentett a tananyagtartalom feldolgozási szerkezetében: a hagyományosan kétpólusú, szakelméleti és gyakorlati képzéssel szemben harmadik alkotóelemként belépő
laboratóriumi foglalkozások sorozata. (Erről már szóltunk a multimédia keretei között megvalósítható programozott oktatás vizsgálatánál.)

A merőben újnak számító elképzeléseket a Kandó Kálmán Műszaki Főiskola szakemberei és a megvalósításra, a kísérlet színteréül kiválasztott Csonka János Műszaki Szakközépiskola és Szakmunkásképző tanárai öntötték tananyag-tervezetek formájába. A munkában elsősorban az újszerű szakmai gyakorlat elemei domináltak, de sokat számított a kísérleti iskola autóvillamossági szerelők oktatásában, egyáltalán a szakmunkásképzésben szerzett rutinja is. A minisztérium illetékeseinek irányításával előbb 	antervek, majd a Műszaki Könyvkiadó gondozásában speciális
tankönyvek készültek (Autóelektronika sorozat, Műszaki Könyvkiadó, 1993.) Az eleinte kísérleti képzés kategóriájában működő szakoktatás 1997-től bekerült az OKJ-be, egy évvel később kiváltva a tananyagtartalom és követelményrendszer szerint elavult autóvillamossági szerelő szakmát. A szakképzési törvény által előírt szabályozási rendszerrel összhangban megvalósult a kétpólusú tantervi szabályozás is. A Magyar Közlönyben megjelent szakmai cél- és követelményrendszer szerint elavult autóvillamossági szerelő szakmát. A KHVM központi tanterveket bocsátott ki a helyi tanterv-készítés nehézségeinek áthidalása érdekében. Ennek részletei ugyan nem pontosan egyeznek az eredeti célkitűzésekkel, de a programnak megfelelően a gyakorlatok, labor-foglalkozások és az elméleti oktatás megszervezése, a vizsgára való felkészítés felelőssége úgyis minden esetben a képzést akkreditáló iskolán lévő, hiszen a
imeneti szabályozás legfontosabb eleme, a szakmunkásvizsga eredményessége az oktatómunkát tételezen minősíti.
5.1.2 A képzés programja

A tantárgyblock, az elméleti és gyakorlati foglalkozások programja érettségi után két éves képzési terminusra épül. A szakmai alapozó tárgyakat (elektrotechnika, elektronika, méréstechnika, autószerkezetet, műszaki dokumentáció) és az ezeket folyamatosan kiegészítő-felváltó szaktárgyakat (autóvillamosság, autóelektronika, autóelektronikai labor) folyamatosan segíti az idegen nyelv (angol vagy német) valamint az alkalmazott számítástechnika. Korszerű biztonságiismertetések és vállalkozási ismereteket is elsajátítanak a tanulók. Villamos és elektronikai labor szolgál a mérőmagas (kézi és asztali műszerek, oszcilloszkóp) megismerésére és beavatkozására. Később a mérések és laborfoglalkozások az amerikai-izraeli gyártmányú DEGEM-SYSTEMS rendszer gyakorlóeszközein folytatódnak. A minisztérium élvonalbeli csúcstechnológiára, mikroelektronikára épülő rendszer telepített a szakmunkákészők iskolájába, amelyet a Dél-Floridai Egyetem kutatói fejlesztettek ki, külön erre a célra.

Az autóelektronikai laborban három szint különböztethető meg:
1. Az egyéni tanulásra, gyakorlásra kialakított EB-2000 számítógéppel vezérelt oktatórendszer, melyre kis panelek csatlakozzathatók és az elektrotechnika-elektronika alapméréseitől kezdve a műveleti erősítőkig a szakmai alapképzés állandó tanári ellenőrzéssel vagy egyéni tanulással (folyamatos ellenőrzéssel-értékeléssel) megvalósítható.
2. Az egyes működési elveket, rendszereket bemutató, számítógéppel irányított, gyakorlásra kiválóan alkalmazott szimulációs táblák, amelyek nem egy-egy konkrét típus jellegzetességeire épülnek, hanem az általános jármű korszerű hálózatain végezhető hibakeresési módszerek részére vezetik be a tanulókat.
3. Preparált, számítógéppel irányított korszerű személygépkocsi, amelyen a komputer által véletlenszerűen generált hibákat nem szerszámokkal, hanem a képernyőn megjeleníthető mérő- és ellenőrző készülékek segítségével hátrithatja el a tanulót.

Az 1992 óta hibátlanul működő rendszer alkalmazza az autóelektronikai műszerszék elméleti és gyakorlati képzésére. Természetesen „élésben” is kell hibát keresni, ménni, beállítani és ellenőrizni, amit csak a szervizsoron előforduló autókon lehet végrehajtani. Ez az utolsó fokozat, a "hab a tortán". Ezután következik a szakmunkásviszsga, ahol a tanuló számot adhat elméleti és gyakorlati ismeretéiről, kreativitásáról, problémamegoldó-képességéről. Az eddig végzettek elhelyezkedési aránya és beválása optimizmusra adhat alapot. (Előre nem tervezett, egy kicsit a képzés céljával, a szakaszok száma és a főiskolán kívüli intervenciók határvonallal való ellátásának programjával is ellentétes az a fejlemény, hogy a frissen végzettek nagy hányada azonnal tovább tanul a szakirányú egyetemen és főiskolákon.)

Amikor az állami oktatáspolitika irányítói döntéseket hoznak, lényegében a közoktatás és a szakképzés keretrendszerét, időbeosztását, financiális hátterét jelölik ki, amely az egyes ágazatokra lebontva tartalmi, elméleti-gyakorisági és létszám vonatkozásokat határoz meg. Egy-egy döntés azonnal, más előírások csak évek múlva hoznak változást, érik el a kívánt
A tananyagfeldolgozása a multimédia rendszerben

hatást, vagy éppen bebizonyosodik, hogy a döntést korrigálni, pontosítani szükséges, mert a végrehajtás szint visszajelzései alapján a megvalósításban gondok jelentkeznek.

A szakképzésben kritikusak a tartalmi és a pénzügyi döntések. Ma, amikor az állam lényegében ki akar vonulni a gyakorlati képzésből, ugyanakkor a gyártó-szolgáltató szféra (még) nem kívánja azt átvenni, köztes megoldásokkal számolhatunk. Az Országos Szakmai Jegyzék (OSZJ) nem egyszerűen csak a tanítható-tanulható szakmák felsorolását jelentette, hanem szigorú tantervi utasítás-rendszer, órára pontos időbeosztást, vizsgarendszer és szakmai minősítést is. A szakképzési törvényenél életbe lépett Országos Képzési Jegyzék (OKJ) fő jellemzője, hogy illeszkedik az európai szintű szakmai elvárásokhoz, átjárhatóságot és egyértelműséget körvonalaz, ugyanakkor nem foglalkozik a tantárgyblockok rendszerével, felépítésével és az öräkeretekkel, mindössze az elméleti és gyakorlati foglalkozások össz-óraszámát és ezek százalékos arányát adja meg.

Ebben a rendszerben változott, alakult át az autójavítás kategóriába tartozó néhány szakma neve, tartalma, államilag előírt cél- és követelményrendszerre és az új típusú szakmai vizsga is. Korábban az autós szakmákat oktató szakképző intézmények a 8. osztály elvégzése után felvehetették a tanulót az autószerelő, karosszéria, fényező-mázoló, autóvillamosság, villamos, autóvillamos vizsga, három éves képzési programmal. Ezzel párhuzamosan ugyanezeket a szakmákat erettségi után két év alatt is el lehetett sajátítani. Az OKJ keretén belül a szakképzés a 10. osztály elvégzése (bevezetése után az alapvizsga letétele) után indul az egyszerűbb szakokon (karosszéria, karosszéria, fényező-mázoló), ugyanakkor a fokozottabbban elmélet-igényes szakmákat csak erettségi után lehet tanulni.

A piac-orientált szakképzésben, az OKJ szerint folyó iskolai munkában új elemként merül fel, hogy a képzési program struktúrája miatt lényeges időbeosztási probléma-sorozattal kell számolni. Szinte hihetetlen, de az autószerelők két éves képzésében az első év „autó nélkül” telik el, döntő mértékben az alapozás, a mechanikai és villamos mérések, az ezeket elméletileg megalapozó tantárgyak összefoglalásával töltik ki a rendelkezésre álló időt. Ez azzal a veszéllyel jár, hogy a szakmunkástanuló idő előtt kilép a rendszerből, elhagyja az iskolarendszerű szakképzést és jövőbeli elfoglalt szakmáját. Az OKJ tematikai fogyatékkosságainak kompenzálására egyetlen módszer kinálkozik: a rendkívüli (programon felüli) motiváció. Ennek realizálása a gyakorlatban azt jelenti, hogy az elméleti és gyakorlati oktatás kereteibe már az első (a 13.) évfolyamon „be kell csempészni” az érdeklődésre számtartó objektumot, az autót.

5.1.3 Cél- és követelményrendszer

A közoktatással párhuzamos, az általános műveltségre épülő szakképzési szférában funkcionáló szakközépiskolák és szakmunkásképzők kettős funkciót látanak el. Egyrészt meg kell felélnünk az általános műveltséget megalapozó alapvizsga, illetve értesítési vizsga követelményeinek a humán műveltség közvetítésével, másrészt a gyorsan fejlődő munkaerő-piaci követelmények miatt permanensen változó szakmai srtuktúrában kell helyt állniuk.
A legújabb időszakra, a szakképzési törvény és a szaktárca által közreadott rendelkezések a be- és kilépés feltételeit, a szakmai tartalmat, az időbeosztást éppen úgy pontosan körülhatárolják, mint a szakmai vizsga anyagát, az átjárhatóság feltételeit vagy a képzésben célszerűen alkalmazandó szemléletet eszközök körét. A kimeneti szabályozás azt jelenti, hogy a célok és követelmények rendszere alapján meghatározzák azokat a paramétereket, amelyek alapján a szakmai vizsgát meg lehet szervezni. A szakmai vizsga témakörei, kérdései ma már nem az iskola hatáskörébe tartoznak, hanem szakértői csoport állítja össze a nyilvános szóbeli, és a titkos írásbeli kérdéseket. A korábbi gyakorlatokhoz képest csak a gyakorlati vizsga megszervezése marad a szakiskolák feladata, melynek programját a kijelölt szakmai elnök és kamarai tag hagyja jóvá a vizsga előtt. Ennek választható feladatait és a választékát ugyanúgy előírja a cél- és követelményrendszert tovább pontosító központi tanterv.

A cél- és követelményrendszert a szakmai és vizsgakövetelmény adj meg, amelyet a szakminiszter 1995-ben adott ki (lásd a mellékletet). Az autóelektronikai műszerész szakmunkás-bizonyítványt érettségi után, iskolarendszerű szakképzés keretei között lehet megszerezni. A képzés megszervezésére, folytatására és szakmai vizsga szervezésére azok a szakképző intézmények jogosultak, amelyek alapító okiratában ez a feladat szerepel. Újabban nem csak a középfokú szakközép- és szakiskolák, hanem felsőoktatási intézmények is akkreditálhatják az autóelektronikai szakot. Ennek a szakmunkás, technikus, üzemmérnök, okleveles mérnök logikusan egymásra épülő rendszerén túlmenően az is nagy előnye, hogy a technikailag jobban felszerelt szakiskolák és a magasabb elméleti színvonalat képviselő egyetemi oktatók kölcsönösen gyümölcsöző együttműködésének megteremtésére van lehetőség.

A követelmények a tevékenységi lista alapján a következő feladatcsoportokat összegzik:
1. gépjárművek villamos és elektronikus egységeinek ellenőrzése,
2. a szükséges javításhoz megfelelő anyag és technológia megvásárlása,
3. mérések végzése,
4. vezérlő és szabályozó rendszerek vizsgálata,
5. számítógép alkalmazása (adatok, diagnosztika, adminisztráció),
6. célvizsgálatak, javítási műveletek,
7. magyar és idegen nyelvű műszaki leírások használata,
8. munkajogi, munkavédelmi, tűzrendészeti, biztonságtechnikai és környezetvédelmi előírások ismerete, betartása.

5.1.4 A képzés színvonalá és az elért eredmények

Tekintettel arra, hogy az autóelektronikai szakképzés mindössze tíz éves múltra tekinthet vissza, és ennek az időszaknak az úttörő munkájában országos méretében is csak hét iskola vett részt, matematikai-statisztikai elemzésre, tudományosan megalapozott következtetések levonására most még nincs lehetőség.
A tananyag feldolgozása a multimédia rendszerben

A tapasztalatok gyűjtése, az egyszerű elemző-értékelő munka már az első tanév befejezése előtt megindult. A szakárca képviselői, a szakmai színnalat hitelesítő főiskolai oktatók, a konkrét oktatómunkát végző szaktanárok és szakoktatók aktivitása, részletekbe menő „törődése”, odafigyelése lényegesen felülmúlta a várakozásokat. Ez a színnalat a szakoktatás hétköznapi, a nagyobb tömegben folyó szakképzés minden egyes elemére sajnos ma még nem jellemző. Olyan üttörő munkáról, kezdeményezésről, képzési struktúráról volt itt szó, amely szerencsés esetben akár sorsdöntő változásokat is hozhat a magyar szakképzés gyakorlatában és komoly hírnevet is megalapozhat mind az irányítók, mind pedig a korszerűsítésben aktív közreműködő iskolák számára.

A várakozások mégis csak részben teljesültek. Senki nem jósolhatta meg előre, hogy az érettségizett korosztály fizikai foglalkozásokhoz való affinitása „mélyrepülésbe” kerül egy-két év alatt. Jelentős többségük tanulni, dolgozni nem szeretne, komoly problémák merülnek fel a rendszeres bejárás, a felelősség vállalása, a feladatok teljesítése terén. A legutolsó három évben a szakmunkásvizsgák eredményei is tükrözték ezt a csoportos passzivitást, a minimumra való törekvést, az érdektelenséget. A másik gondot az jelenti, hogy a gyakorlati képzést teljes időtartamában csak az iskolai tanműhelyben és annak külön erre a képzésre szakosított laboratóriumaiban lehet megszervezni. Így romlik a szakiskola és a vállalkozói partnerek korábban ideálisnak mondható kapcsolata, a képzés bizonyos mértékben túl zárta válik.

A harmadik probléma már a foglalkozáspolitika kategóriáját is érinti. A követelményeket csak nehezen teljesítő többséggel párhuzamosan tanuló-gyakorló, jó eredményt elérő kisebbség az első évben egyetemen, vagy műszaki főiskolán folytatja tovább tanulmányait, vagy legalább a közlekedésépítő technikus oklevél még az iskola nem tudja betölteni alapvető feladatát, hogy - főként egy új, jelentős hiánnyal küzdő szakterületen felkészítse és kibocsássa a jól képzett új munkaerőket, akik új technikát visznek a szervezékekbe, ahol ezen a területen eddig csak néhány tehetséges mérnök tudott eredményesen tevékenykedni.

A megoldás körvonai ma még nem láthatók. Talán a műszaki egyetemekkel való szorosabb együttműködésben található meg az a hiányolt kapacitás, motivált fiatal csapat, akik hajlandóak két évi munkát, energiát befektetni egy speciális és különleges szakképesítés megszerzése érdekében. A gödöllői Szent István Egyetem nyári gyakorlaton résztvevő hallgatóink hozzáállása bizonyos optimizmusrá adhat okot. Érettségi előtt álló két szakközépiskolai osztályunkban is többen vannak olyanok, akiket szívesen láttnak a képzésben.
5.2 Programkészítés a gyakorlatban

A mai felhasználóbarát szoftverekkel könnyebb multimédiás bemutatókat, oktató- és vizsgázattató programokat készíteni, mint néhány évvel ezelőtt. A szöveg, a kép és a hang digitális rögzítésének, sokoldalú felhasználásának lehetősége minőségi ugrást jelent, melyet a számítástechnika újabb és újabb eredményei a tökéletesedés irányába visznek. Sokan foglalkoznak a már elkészült programok minősítésével, osztályozásával. Bár a véleményalkotás jóval könnyebb, mint a tényleges programozói és multimédia-készítő munka, mégis úgy valljuk, nagy szükség van az összehasonlításra, a tapasztalatok rendszerezésére és kiértékelése, mert ez is az egyre jobb programok készítésének irányába mutathat.

23.ábra. Lineáris program, szükitett navigációs lehetőséggel

A programkészítés technikai támogatására jól alkalmazhatók a PC WORLD korábbi összeállításában felsorolt programok: Multimedia Director 5.0, Asymetrix Multimedia Toolnook 4.0, Strata MediaForge 2.0, Microsoft Visual Basic 4.0 és az Oracle Media Objects 1.0 (Brückner, 1996). Azóta minden egyes gyártó újabb változatokat dobott a piacra. Ezek közül választani elsősorban a hozzáférés alapján lehet, mert a programok ára távol esik az amatőrök és az aktív pedagógusok pénzügyi lehetőségeitől.

Kísérleti munkánk során kiváló technikai kereteket biztosított a Macromedia Director 7.0 multimédia készítő program, amely a maga szerkesztési sebességével és mobilitásával lenyűgözi a mindenkor felhasználót. Az EU Leonardo da Vinci PEGASUS Prorgam keretein belül készülő autóelektronikai továbbképző sorozat fontos didaktikai - metodikai
jellegzetessége a már kifeltetett limitált interaktivitás (23.ábra). Ez a gyakorlatban azt jelenti, hogy egy-egy tematikus fejezet viszonylag kötött haladási programjában csak előre- és hátralépeést, a fejezet elejére való visszaugrást, illetve a lexikon használatát engedélyeztük. (Természetesen a szabad kilépés lehetősége adott, de visszalépéskor, újabb program-használatkor a kilépési pontnál előbbre nem kerülhetünk.)

Ha az előírt tananyagrész (konkrétan: egy fejezet) befejező képernyőjéhez érkezik a felhasználó, választhat a javasolt teszt és a fejezet elejére való visszaugrás között. A teszt a fejezet utolsó képernyőin „tanított” gyakorlati alkalmazásokra épül, azaz a felkínált méréseket feltételezve el kell végezni a továbblépés engedélyezéséhez (24.ábra).

A teszt képernyőnként 4-4 feleletválasztós kérdést tartalmaz. Metodikai megfontolásból a kérdések egymásra épülnek, ami azt jelenti, hogy az egyik kérdés megválaszolása hozzásegítheti a felhasználót a következő (remélhetően helyes) lehetőség kiválasztásához. Úgy gondoljuk, a megfelelően szerkesztett kérdésekkel tanítani, gyakorolni, megerősíteni is lehet.

![Teszt kérdések táblázat]

24.ábra. Tesztkérdések a fejezet végén

Az első tesztkérdések természetesen egyszerű számítások, „haladó” felhasználónak első látásra feleslegesnek tűnhetnek. De az építkezés üteme hamarosan felgyorsul, amikor ugyanezeket az adatpárokat a gyakorlati mérés során kell értelmezni, a mérté értékekből következtetéseket levonni és dönteni. A döntés a „megfelelő” vagy „cserélendő” kettős választékok célozása meg. A feladatok célja a szubjektív döntési rendszer támogatása.
A tananyag feldolgozása a multimédia rendszerben

25. ábra. Pontozás és kiértékelés - tovább, vagy vissza

A tesztkérdések megválaszolása után a felhasználó döntési helyzetbe csak akkor kerül, ha az előírt pontszám 90%-át teljesítette. Ekkor tovább léphet, vagy a folytatást egy másik időpontra halaszthatja. A belépéskor kért (és elfogadott) kód jogosítja fel arra, hogy ugyanitt folytathassa a munkát (25. ábra).

Az oktatóprogram a hatékony tanulás pszichológiai, logikai és didaktikai feltételeinek figyelembevételével feldolgozott tananyag (Tóthné, 1996). Elsősorban az egyéni tanulás támogatására használható, ahol nem csak a tanulási környezethez kell a programozónak alkalmazkodnia, hanem néhány járulékos célt is el kell érnie (egyéni haladási útem biztosítása, folyamatos motiváció - azaz az érdeklődés fenntartása, önellenőrzés biztosításával a döntési mechanizmusok folyamatos támogatása, stb.).

Kárpáti Andrea úgy foglal állást, hogy a számítógéppel támogatott egyéni tanulás területén a tananyag-feldolgozás és alkalmazás a következő környezetben valósítható meg:

♦ kis csoportok, speciális tantervek;
♦ egyéni foglalkozáson alapuló, „tutor”-típusú információs és kommunikációs feldolgozás;
♦ csoportos tanulás, egymást segítő tanulók;
♦ oktatócsomag-jellegű prezentálás;
♦ mesterfőkű tanulás paramétereinek elérésére való törekvés;
♦ programozott oktatás (Kárpáti, 1999).

Ahhoz, hogy az elméleti szempontokat megvalósítsassuk, lépésről lépésre kell közelítenünk ahhoz a munkaterülethez, amelynek végeredményéről, a multimédiáról már szóltunk. Sajnos a tervező, gyártó cégek nem engednek betekinteni a programozás és szerkesztés műhelytíkaita, ennek megfelelően az „ellesett” megoldások, a legjobb jóindulattal készített programrészek minden esetben magukon viselik majd az „amatőr munka” jegyeit.
5.2.1 A tananyag elemzése, a fő részek sorrendje

Egy-egy szakképzési szektor gyűjteményes, vagy modul-rendszerű tananyagának összeállítása, bizonyos tematikai, felhasználói, hatósági elvárásoknak való megfelelés nagy munka. A tananyag napjainkban szerencsés módon a cél- és követelményrendszerre épül, amely a nyilvánosságra hozott vizsgakövetelményekkel együtt a kimeneti szabályozás kategóriájának teljesen megfelel.

Oktatóprogramokkal kapcsolatosan érvényesek a szemléltetés (egyszerű) követelményei is, azaz: előkészítjük az anyagot, megszerkesztjük a kivitelezendő produktumot és kipróbáljuk azt az érintettek, a célcsoport körében. Konkrétan a Biszterszky Elemér programkészítés sorrendjét mutatja meg:

♦ célsajátosságok megállapítása;
♦ tematikus terv összeállítása;
♦ kiinduló szöveg megfogalmazása;
♦ lépésekre bontott tematikus terv készítése;
♦ próba-program kidolgozása;
♦ módszertani útmutató kidolgozása;
♦ javítás, ellenőrzés, tökéletesítés (Biszterszky, 1993).

A programozott oktatás jellemzője, hogy a megváltozott tanári szerep az előkészítés, programkészítési munkában testesül meg (Biszterszky, 1993). Maga a tanár a legtöbb esetben nincs is jelen a tényleges tanulásnál, az eszköz-közvetített ismeretátadásnál (Brückner, 1998). A tanulói aktivitás folyamatos, a megválasztható szintek, módok (ismeretszerzés, gyakorlás, ellenőrzés) során a haladás üteme egyéni. Szabad a belépési szint, valamint az a lehetőség, hogy a tanulás vagy gyakorlás bármikor megszakítható, illetve - a programok többségében - bárhol folytatható.

A szakirodalom a programozott oktatás előkészítési, programszerkesztési és kipróbálási szakaszait emeli ki (Biszterszky, 1993). A programkészítésre jellemző műveletorsa:

1. célsajátosságok megállapítása, konkrétan az ismeret, megértés, jártasság, készség szintjéhez rendelt fogalmak rendszere és a cselekvések felsorolása;
2. tematikus terv készítése a kiinduló fogalmak felsorolásával;
3. a tananyag kiválasztása, feldolgozása alapján a tájékoztató szöveg megszerkesztése;
4. tematikus terv lépésekre bontása, a tananyag legkisebb, még elsajátítható egységeinek meghatározása;
5. az oktatási folyamat lépéseinek és azok sorrendjének meghatározása;
6. a program nyers változtatának futtatása, kipróbálása;
7. módszertani és használati útmutató kidolgozása;
A tananyag feldolgozása a multimédia rendszerben

OKTATÓPROGRAM

26. ábra. Az oktatóprogram szerkezete

Tovább bontva a tartalom, a struktúra, a funkció és a forma a következő összetevőkből áll:

27. ábra. Az oktatóprogram elemei

A gyakorlati programozáshoz szükséges elemek:
♦ fogalmak (fontossági és tanulási sorrendben)
A tananyag feldolgozása a multimédia rendszerben

- ábrák (fotók, rajzok, diagramok, kapcsolási rajzok) álló-, illetve mozgóképes formában, eredeti megjelenítéssel vagy animációval
- egységesített rajzjelek, szimbólumok
- szabályok (esetleg képletek, összefüggések)
- szövegek, hanganyagok
- tudásszint-ellenőrző tesztek.

Fentiek megvalósítása a vizsgálat tárgyául választott autóelektronikai témában:
- elektrofizikai alapismeretek
- villamos hálózatok, kapcsolások
- blokksémák, működési elvek
- szerkezeti egységek rajza (elementek és összeállítva)
- szöveges magyarázatok, összefüggések, törvényszerűségek.

A didaktikai struktúra a következő elemekből áll:
- bevezető motiváció (érdeklődés felkeltése, rövid leírás a programról és annak használatáról)
- a tananyagrész vázlata (menürendszer)
- a tanulás lehetősége
- a gyakorlás lehetősége
- az ellenőrzés lehetősége
- kiegészítő információk (érdekek, jellemző gyakorlati megoldások)

Az egyéni tanulásra tervezett számítógépes program menürendszerben fut.
A belépési szint megállapítására szolgáló témakörök:
1. számítógép-kezelés és informatika
2. villamosságtan, elektrofizika
3. elektronika
4. autószerkezetett
5. méréstechnika alapjai.

A tananyag-elemzés alapján eredményül kapott fő fejezetek:
- Személygépkocsik energiaellátó rendszere
- Generátorok és feszültségszabályozók
- Indítómotorok, ráindításgátlók
- Gyújtás, gyújtásszabályozás, kivitel megoldások
- Keverékképző rendszerek, gyári megoldások
- Egyesített gyújtás- és keverékképzés, MOTRONIC
- Világítási hálózatok, világítótestek, fényforrások
- ABS, EDS, ASR
- Elektronikus váltóvezérlés
- EMS (összetett) rendszer
- Ütemadó elektronikák, elektronikus jelzőberendezések
- Sebességzabályozó automatika
- Műszerek, műsz器falak
Klimaberendezések
Légzsák, övfeszítő automatika
Központi zár, riasztó
Öndiagnosztika, gyári ellenőrző rendszerek

Az egyes témakörök közé ábrasorozatok, animációs fázisok, szöveges magyarázatok tartoznak. A videoklipeket készítése, a saját felvételek digitalizálása érdekében beszerzett Video Wonder Pro kártya álló- és mozgóképek könnyű és gyors beszerkesztését teszi lehetővé. A kapcsolási rajzok, a gyári megoldások átdolgozott változatai külön rendszert alkotnak. Az eredeti elképzelés szerint a készülő oktatőrendszer alkalmas lesz az elektronikai hálózatokban képernyőn megvalósított valós hibakeresésre is.

A program menürendszerében alapismeretek ismétlése, információ, tanulás, gyakorlás és ellenőrzés közül lehet választani. A tananyag közvetítése ábrák, fotók, animációk, kapcsolási rajzok, táblázatok, videoklipek megjelenítésével történik. A legtöbb képi anyaghoz magyarázó szöveg, illetve hangalámondás is tartozik. A gyakorló és ellenőrző kérdések feleletválasztós rendszerűek, melyekhez a válaszadás előtt képi információ kérhető. Az értékelés a program futása során folyamatos.

5.2.2 Kiemelések, vizuális sarokpontok

Ha elfogadjuk, hogy az autóműszaki szakképzésben a vizuális memória és annak célutadatos fejlesztése kiemelt fontossággal bír, könnyen belátható, hogy a tananyag feldolgozása és közreadása programozott folyamatában a kiemelések minden esetben valamilyen konkrét vizuális élményhez, vagy azt szimuláló álló- vagy mozgóképhez kapcsolódhatnak (28.ábra).
A programozó sok esetben válaszúthoz érkezik, amikor el kell döntenie, valamilyen jelenséget, szerkezetet álló- vagy mozgóképpel szemléltessen, magyarázzon. A mozgókép szárszoros tárolókapacitást köt le, de sok esetben a folyamatában bemutatott történés már 3..5 s hosszúságú videoklippele is hatékonyabb, mint az álló képek által bemutatható történés. Ugyanakkor állóképek célszerűen megválasztott és rendezett sorozata is helyettesíthet mozgóképet, animációt, éppen a megfelelő pillanatok ábrázolásával, mintegy „kimerevitve” a történés egy-egy jellemző pillanatát.

A mozgóképes ábrázolás szerkesztése különleges látásmódot igényel, különösen ha a képek és hangok strukturálásának magasabb szintjét célozzuk meg. (Az English&Media Center 1998-ban multimédia segédanyagot adott közre a programkészítők számára CD-ROM-ra rögzített állóképekkel, amelyekből történéseket lehet összeállítani. A sorrend, a képi mondanivaló alá szerkesztett szöveg és zene nagyon széles megoldási választékot képviselhet.)

A képcentrikus multimédia úgynevezett belépési motivációs, ráhangolási eleme a program első képe, képsora, a témára és a mondanivalóra jellemző képemű legyen. Ezt kövesse az egyes programokban szokásos nehézségi fok, vagy ellenőrzés mód megválasztása (29.ábra). Szélesebb tematikát átfogó programokban adjunk lehetőséget a

29.ábra. Konkrét feladat előkészítése, 2.kép

A képcentrikus multimédia úgynevezett belépési motivációs, ráhangolási eleme a program első képe, képsora, a témára és a mondanivalóra jellemző képemű legyen. Ezt kövesse az egyes programokban szokásos nehézségi fok, vagy ellenőrzés mód megválasztása (29.ábra). Szélesebb tematikát átfogó programokban adjunk lehetőséget a

22 http://www.sulinet.hu
tallózás, szabad navigálás;
- tanulás;
- gyakorlás;
- teszt

választására, és a felhasználási módozatban való előrehaladás speciális különbségeinek
ismertetésére.

A *tanulás* módozatot választva a felhasználó kapjon tájékoztatást arról, hogy pl. a fejezet
végén teszkérdéseket kap, amelyeket x%-ban megoldva tud csak továbblépni a következő
fejezetre. Programozási szempontból itt a fővonalat demonstráló képsorozatot kell
összeállítani, megadva az elágazások és a kiegészítő médiumok elérésének programját -
a megválasztott képernyő-szimbólumokkal szinkronban. A tanulásnak gyakorlással kell
párosulnia, ennek megfelelően a gyakorlatias képek az alkalmazást, a leendő felhasználást
defelé segitsék. Ismétlések vagy részben ismételt elemek itt helyezhetők el hatékonyan.

Az igért, fejezet végén induló teszkérdés-sorozat ne az elméleti definíciók ismeretét, a
szabályok pontos megértését célozza. Először néhány - tényleges mérése alapuló -
feladattal idézzük fel a nagyságrendet, a mért értékek pontos megértését és
fontosságát, majd a tényleges hibakereséshez-hibamegállapításhoz közöljünk előbb
egyváltozós, majd összetett (osztott képen alapuló) feladatot. A kép álljon négy részből,
amelyekből választani lehet: motortér, szerkezeti egység, egy elem szerkezete-működése,
kapcsolási rajz. A mérési lehetőséget mind a motortérben, mind pedig a kapcsolási rajzon
biztosítani kell.

Az értékelés magyarázattal, elemzéssel párosuljon. Foglalja össze a működés lényegét és
a mérhető paramétereit, adjon támpontot a hibás alkatrészek, áramkörök mérése
alapuló minősítésére és ismétlő képsorokkal segítse a megláthatási és a beépítést.

A technikai előzmények számító oktatógépeknek a fenti folyamat jóval egyszerűbb volt.
Az ember-gép interakcióban kötött, szigorúbb keretek között működő tanulás során a
tanuló információit kapott, majd kérdésre kellett válaszolnia. Lehetősége volt a
visszacsatolásra, ezzel párhuzamosan megtudhatta, ha hibázott. A gép hiba esetén (melyet
természetesen regisztrált) nem engedte tovább haladni a tanulót. A program végén
számszerű eredmény, értékelés jelezte, mennyire volt sikeres a gépi tanulás. Bár ember-
gép interakcióéről szólünk, mégsem a gép a felhasználó „partneré”, hanem a program - a
gép csak közvetít a programozott lehetőséggel tanuló felhasználó és a programozott
formában feldolgozott tananyagrendszer között.

5.2.3 A cél: a mérés-ellenőrzés és a helyes döntés támogatása

Minden egyes oktatási elem, blokkrendszerű ismeretközlés, a problémát felvető vagy a
budászintet ellenőrző kérdéssor, vagy összefoglalás programozásánál döntő jelentőségű
lehet az autóelektronika oktatásában választott *alapelvünk* megvalósításának hatásfoka:
hogyan támogatjuk a felismerést, a mérést, a hiba-változatok körülhatárolását és a felelős

![Diagrams](image)

30.ábra. Mérést preferáló oktatóprogram jellemző képernyői

Tapasztalataink a megtervezett és kipróbált tananyagrészek tekintetében túlnyomó részben kedvezőek. (Néhány jellemző példát, sikeres programrészt bemutatunk a melléklethez csatolt CD-ROM-on.) Bár a kiindulási hipotézisek értékelő-elemző összefoglalása, a kutatás összegzése a kitűzött feladatok teljesítését veszi számba, sok esetben felül kellett bírálni az eredeti koncepciót.
5.2.4 Lefagyott próbálkozások, hibás koncepciók

A kutatómunka és a kísérletezés során sokszor kerültünk zsákutcába, azaz a tervezett megoldás, a választott módszer vagy alapelv nem vezetett az előre eltervezett eredményre. A sikertelenség okait elemezve a következő fő hibákat összegezhetjük:

♦ hibás volt az eredeti koncepció,
♦ rosszul választottuk meg a módszert,
♦ az indukcióit erőltettük,
♦ gyors témaváltással zavart okoztunk,
♦ konzekvens hibát göngyölítettünk magunk előtt,
♦ időzavarba kerültünk, rögtönöztünk, elnagyoltuk az alap-koncepciót.

Mindennapi munkánk és a párhuzamosan folyó kutatások, kísérletek sajátos környezeti hangulatot, az egyéni vagy kiscsoportos munkálkodásnak különös eredményességét kölcsönözik. Mindezek ellenére a hibák és a sikertelenségek ritmikusan és periodikusan jelentkeztek. A legtöbb hiba a „gyökerekhez” vezethető vissza. Ahhoz, hogy végzetetű a kutatás alapját lefektetett hipotéziseket bizonyíthassuk, a kutatás és a kísérletek eredményei körvonalazzuk, az alábbi kudarcokat is el kellett könyvelnünk:

♦ az alapozó tantárgyként kijelölt elektronika oktatását hagyományos módszerrel kezük, főiskolai tanár által összeállított jegyzet alapján. Az elmélet-labor sorrend megtartásával, a lexikális-alapú visszkérédezéssel nagyon rossz eredményt értünk el. Az autóelektronikai alapáramkörökre épülő deduktív módszer, az áramkörök összeállításán és mérésén alapuló - utólagos - elvi magyarázat eredményesebbnek bizonyult;
♦ összeállítottuk az autóelektronika legfontosabb téziseit, definícióit és az egyes szerkezeti egységek meghatározását - szöveges alapon. A számonkérésnél azok kerültek előnyösebb helyzetbe, akik korábbi tanulmányaik alapján az ismeretcentrikus tanulásban rutinosabban voltak. Vélük a szakműhelyben sokkal több gond volt. Konkrét hibakeresési és mérési gyakorlatok alapján összefoglaló sémákat jegyeztünk fel egy-egy áramkör jellegzetes hibáiról, a tanulókkal közösen. Mindenki azonnal és megbízhatóan megjegyezte azokat;
♦ kiegészítéses tesztekkel kísérleteztünk az alkatrészek és áramkörök nevének és jellemzőinek becseréltettük a kapcsoló-szimbólumok mellé írt megnevezésekkel és a mérhető adatok nagyságrendjével: a későbbi „megnevezési” feladatok a felismerés magas arányával igazolták a két módszer különbségét;
♦ a kereskedelemben kapható mérőpaneleken végeztettük az alapméréseket. Ezek esztétikusak, szakszerűek, elektronikai szempontból kifogástalanok voltak. A vezérgép által generált hibákat a tanulók nagyon nehezen találták meg. Eredeti alkatrészek „bevetésével” kísérleteztünk az ellenállások, a félvezetők és a kapcsoló áramkörök kategóriájában. A kopott, használt, esztétikusnak nem mondható elemeken a mérések gyorsabban és hatékonyabbak letek, a mérési naplók rengeteg tapasztalati információval lettek gazdagabbak;
a tanulók nagyon szívesen dolgoznak, mérnek a tanműhelyben működő preparált személygépkocsin. Korábban ez volt a mérés és hibakeresés utolsó fázisa, ezt követően kerültek a futójavító műhelybe, tényleges szerviz-feladatok ellátására. Észrevettük, hogy az autó 64 preparált hibáját lejegyezik és a tanulócsoportok az első napon továbbítják egymásnak. Továbbá nem a hibát keresi, hanem azt a pontot, ahol az eredeti vezetékelést „megcsapolják”, azaz a számítógéphez csatlakozó „Y-pont” helyét, és ebből igyekszik következtetni a kapott feladat megoldására. Bár a rendszer a jármű megkimélését szolgálja azzal, hogy nem szerszámokkal, szerelési műveletekkel és méréssel foglalkozik a tanuló, hanem szoftveresen (számítógépen keresztül) végzi feladatát, ma már csak illusztris vendégek érkezésekor, vagy a szakmunkásvizsga színesítésére használjuk a „preparált” autót.

Elhamarodott az a megállapítás, hogy a szakmai oktatás hatékonyságának záloga minél több interaktív multimédia program készítése és közreadása lenne. Ez nem volna gazdaságos és nem oldaná meg a szervezett információ-áramlás valamennyi nyitott kérdését. Mindenekelőtt azt kell eldönteni, hogy miről érdemes programozzott és a multimédia keretei között feldolgozott tananyagot készíteni. A szakmunkásképzésben, a közép- és felsőfokú szakképzésben csak kis számban működnek multimédia-készítő team-k. Tevékenységi körükre és a produktum használhatóságára rányomja bélyegét a művelt szakterület jellegzetes szakmai hangulata és az addig bevált didaktikai-metodikai jellemzők. A matematikusok soha nem lesznek képesek használható autós multimédiát előállítani, és ez fordítva is igaz.

Környezetünkben néhány lelkes amatőr esetenként néha akár több éves munkájának eredménye lehet egy-egy lemez. Az amatőr megoldások ideje lejárt, most már nem elegendő egy-egy programot csak azért alkalmazni, mert „ügyes”, mert nincs más - azaz a minőséggel és a pedagógiai alapokon végzett programozzással szemben nem tehetünk engedményeket. Kárpáti Andrea szerint valójában csak a csoportos munkára épülő, a tanulókat önállóan megoldandó feladatok elé állító munkaformákban van értelme CD-ROM készítésének, mert csak ítt működhetnek hatékonyan (Kárpáti, 1999).

A gondok nem csak a tananyagfejlesztés, szemléltetés egy személyre lebontott, feladatul kitűzött, autodidakta-módon felvállalt munkája során jelentkeznek. Európai méretekben jelentkező problémákat sorol fel Lajos Tamás, melyek az informatikai technológia oktatási alkalmazásának perspektívát elhalványíthatják:

♦ a képzési projektek többsége technológia-középpontú, nem az oktatási igény kielégítését szolgálja;
♦ kevés a rendszeresrendű alkalmazott projekt;
♦ a kutatók többsége részfeladatokon dolgozik, amelyek nem integrálódnak nagyobb oktatási-képzési rendszerbe;
♦ a módszertani-pedagógiai-pszichológiai szempontok nem elég hangsúlyosak;
♦ a finanszírozás és a gazdasággosság területén sok az ellentmondás;
♦ az új képzési struktúrák még nem integrálódtak az intézményi szintű rendszerbe (Lajos, 1999).
5.3 Technikai kérdések

5.3.1 Mire alkalmas a számítógépünk?

A számítógép alkalmazásának, felhasználásának lehetőségei ma már szinte korlátlanok. Az első gépcsaládok megjelenésekor fellélegezhetett mindenki, aki géphez jutott. Ez a „szerkezet” sok terhet levett az ember válláról nem csak a fárasztó, mindennapi hivatali munkában, az unalmas és egyhangú adminisztrációban, hanem a tömmegmunka (adatkeresések, számítások, jelentések szervezése, formalevelek és levélsorozatok készítése) nagy részének elvégzésére is alkalmasnak bizonyult. A történeti visszatekintés szintén hihetetlenül gyors és nagyságrendekben alig kifejezhető változásokat sorolhat fel a miniatűrizálástól a tárolókapacitás milliószorozásáig, az egyszerű szám- és szövegkombinációk lassú kezelésétől a valamennyi médiumot kezelő, bemutató és feldolgozó, ugyanakkor óriás ményiségből tároló lehetőségekig, a háttértárak és az online hálózatok egyelőre még beláthatatlan felhasználási távlatáig.

A számítógép oktatói-tanári körben szokványos alkalmazási területe a tananyag feldolgozása, a szemléltető anyagok készítése, a nyilvántartások és az elemzések valamint a szöveges és a táblázatos anyagok készítésében mondható általánosnak. Kárpáti Andrea elméletét adaptálva a kollégák a számítógéphez való viszonyulás szerint négy kategóriába sorolhatók:

1. elfogadja,
2. szívesen használja,
3. mindent megtesz,
4. profi (Kárpáti, 1999).

Kevin Bushweller elgondolkodtató hasonlattal közelíti meg a multimédiás környezetet. Véleménye szerint a tekhőséka többet tanul, mint a nyúl, azaz a gyorsabb tanulás nem mindig jelent eredményesebb előrehaladást a programozott tananyagban. Behatárolt a komplexitás, valamennyien különbözőnk abban, hogy mit és mennyi idő alatt vagyunk képesek megtanulni (Bushweller, 2000). A képességfejlesztéshez idő kell, az ezt támogató szimuláció csak megközelíti a valóságot, a virtualitás környezetében végzett tanulás eredménytelen is lehet, ha rossz a program, nem működik az analógiák kapcsolata és ha nagymértékben eltávolodunk a természetes tanulási környezettől.

A hagyományos tanítás-tanulás az előadásokra, bemutatókra, az ezekkel szinkronban lévő
tankönyvkekre és segédletekre alapozható egyéni munkára épül. A WEB információs dömpingje minőségileg nem jelenhet konkurenciát a hagyományos tanulással szemben, ha a tallózó nem kap segítséget az információk szakszerű kereséséhez és rendszerezéséhez.

Eljuthatunk olyan állapothoz is, hogy a tanulók a hálózat alkalmazásával lényegében nem tanulnak semmit, ismereteiket sem növelik. A hagyományos, lineáris szerkezetű tananyagban (pl. tankönyv) gondot jelenthet az információk közötti navigálás. A hálózatokon a navigálás kötetlen szabadsági fokokkal működik, de közben nem fejlődik a mentális fegyelem, ami egy feladat megoldásában konzekvens építkezést jelenthet és a lineáris gondolkodást támogathatja.

5.3.2 Néhány gyakorlati tapasztalat

Mérlegelve a szakirodalomban hozzáférhető ajánlásokat és mindennapos gyakorlatban szerzett tapasztalatokat azt ajánluk a mérnöktanár kollégáknak, hogy a lehetőségek szerint otthon ugyanolyan számítógép telepítését próbálják anyagilag megoldani, mint amilyennel a szertárban, a szaktanteremben vagy az informatikai laborban naponta dolgoznak. Ajánlatunk abból a szempontból lehet praktikus, hogy a tárolókapacitások és programok azonossága, a kompatibilitás, a párhuzamos fejleszthetőség mind olyan előnyök, amelyeket már néhány éves munka után örömmel nyugtázhatunk.

A szakszerű, gyors, megfelelő színvonalú munkához nem szükséges az otthoni munka-környezetben is szkenntet, nyomtatot telepíteni, a családi kassza terhére digitális fényképezőgépet és videokamerát vásárolni. Ezek mobil eszközök, amelyek szoftveres hordozói hálózati kapcsolatok nélkül is mozgathatók. Sajnos a CD-ROM-ok tekintetében „költséges” javaslatat kell éljünk: ahhoz, hogy néhány MB-nál több adatot mozgathassunk, vagy hordozható winchester, vagy mindkét helyen CD-iró telepítése szükséges. Ha beletörödünk abba, hogy egyszerű bemutató, vagy összetettebb programjaink megírására csak az egyik helyszínt (a munkahelyet vagy a lakást) jelöljük ki, a gond kisebb - de az időveszteség nagyobbnak lehet. Az egyszerűbb kiírás környezetében is előkészíthetjük a feladatlapok összeállítását, a szakszövegek megszerkesztését, a szemléletétéshez szükséges kép-, ábra- és animációs-anyag kiválasztását. Egyáltalán a szemléletépes környezetben végzhető, amelyet néhány évvel ezelőtt még az órákra való felkészülés kategóriájából soroltunk.

Egy fontos tapasztalati tényt még hangsúlyoznunk kell. Óriási energia és szabad kapacitás állhat rendelkezésünkre a tanulók (hallgatók) motiválásával és az érdemi munkába való bevonásával. A fiatalok szívesen ülnek a korszerű számítógépek képernyői előtt és kiválóan alkalmaznak az idegnyelvű ábra-feliratok felhasználására, fordítására, egy-egy kapcsolási rajz elkészítésére, animációs program kezelésére. A szkennelés, a digitális állóképek felvételi munkája éppen úgy rájuk bizható, mint a testszórdások sorozatának összeállítása vagy a videofilm jellemző képsorainak kiválasztása.

Kísérleteink arra irányultak, hogy a „mérégedrágá” multimédia-készítő programok helyett - amelyeket beszerezni iskolának, magánembernek nagy anyagi terhelés - hogyan lehet
az átmeneti időszakban megvalósítani azt a multimédia környezetet, amelynek előnyeiről már több helyen szóltunk. Lényeges motiváció lehet az is, hogy egy professzionális program megismeréséhez és begyakorlásához legalább 1..1,5 év szükséges. Ugyanennyi idő egy program elkészítésének az időkerete is. Akkor három év múlva találkozunk…? Ez nem lehet korszerű megoldás.

32.ábra. Hipertext-rendszerű tananyagelemek
Bevált az Electronic Workbench Version 3.0 E program (33.ábra) a kapcsolások és a mérések tanórai szemléltetésére és a Designsoft Inc. Edison & Tina programcsomagja (34.ábra) is hatékonynak bizonyult a feladatlapok konkrét kérdéseinek összeállításánál. Ebben látjuk a közvetlen jövő feladatait addig a pillanatig, amikor egy újabb értelmezés szerinti team létrejön egy-egy több éves feladat megvalósításához szükséges összehangolt munkához.

33.ábra. Példa az Electronic Workbench 3.0E alkalmazására

34.ábra. Tina Pro for Windows képernyő
5.4 Az egyéni haladás és az önértékelés összefüggései

5.4.1 A hagyományos tanulás eredményessége

A számítógépes tanulás-irányítás során a program adatokat, információkat tárol, a kérdéseket és válaszokat a menü és a választott üzemmódot szerint kapja a felhasználó. Ahhoz, hogy a tanulás eredményességét mérhessük, a vizsgálat tárgyát képező módszert kísérleti- és kontrollcsoport tesztlapos ellenőrzésével és az adatokat feldolgozó kvantitatív módszerrel tehetjük értékelhetővé.

A számítógépen futtatott programozott tananyag a visszacsatolt tanítás-tanulás lehetőségét biztosítja (Hámori, 1983). Ha a tanuló a belépési ponttól a kiválasztott nehézségi fokozat szerint haladva válaszol a kapott kérdésekre, illetve döntéseket hoz a felkinált alternatívák alapján, maga a számonkérés is információ-szerzést, a program nehézségi fokozatának megfelelő irányított tanulást jelent (Biszterszky, 1993). Az adaptív számítógépes program alkalmas arra, hogy a tanuló teljesítményéhez igazodva válassza meg a továbbhaladás útvonalát, azaz kevesebb hibánál nehezítse, csökkenő teljesítménnél könnyítse a feladatokat. Ebben az esetben olyan visszacsatolásról beszélhetünk, amely során a számítógép saját működését szabályozza a számonkérés eredményességének megfelelően.

Magá az interakció, a tananyag közlése vagy a kérdések feltevése nem oldható meg programozás nélkül (Biszterszky, 1993). Egyszerű információ-szerzés, keresés során a tanuló a számítógép memóriájából tárolt ismereteit, tananyag választékát ismerkedik, tallóz a különböző szöveges, álló- és mozgóképes szemléltető anyagokat, animációk és összefoglaló táblázatok között („student-programmed” géphasználat). Amennyiben a tanuló csak a programot készítő tanár által meghatározott keretek között mozoghat, csak úgy juthat információhoz, ha a belépési ponttól megfelelően válaszol a kérdésekre, illetve döntéseket hoz („teacher-programmed” párbeszéd). Ez utóbbi esetekben a tanár írja elő az input (tanulói műveletek) és az output (a számítógépen megjeleníthető anyag) formai és tartalmi szabályait (Tompa, 1995). Felméri a belépési szinthez szükséges előismereteket, köztük az újabb információkat, ellenőrzi az új ismeretek megértését és az alkalmazási kézséget, esetenként újabb típusú feladatsort ír elő az eddigi tananyag információinak felhasználásával a komplex alkalmazási képesség ellenőrzésére.

Az egyszerűbb programozott tananyagok a „drill ad practice” (besulykolás és gyakorlás) módszerét alkalmazzák (Brückner, 1978). Ma már talán csak a nyelvtanulás területén célravezető ez az eljárás. A műszaki tematikát tartalmazó programok az oktatási célú párbeszédekre épülnek, azaz a felhasználó kérdést tesz fel és a számítógép válaszul megadja a kért információt. Nem elég az álló- és mozgókép, a szöveg és az animáció, szimulációra is szükség van a logikai készség fejlesztése, a nagy és bonyolult rendszerek működésének először modell-változatban való megismerése érdekében.

Az oktatási stratégia, melynek kereteit a program készítője adja meg, döntési algoritmusok sorozatát jelenti, amely a tanulói tevékenységnek megfelelően változik.
Előfordulhat, hogy az oktatási feladatokat (Biszterszky, 1993) a program szerkezete és az adatbázis kötélle. Ez a második változatban a programi szerkezete és az adatbázis kötélle. Ez az egyszerűbb változat a generátor rendszerek ennél jóval többre képesek: adott algoritmusok alkalmazásánál előzőleg kiértékelhető és összegző a tanulói válaszokat, és a kapott eredmény alapján lép tovább. Itt tulajdonképpen akár az oktatási stratégiák módszertánja is sor kerülhet, ugyanakkor a tanulói teljesítményről is többet tudunk meg az értékelés során.

Az önfejlesztő rendszerek („self-improving”) programja az adaptivitáson túlmenően még arra is képes, hogy egy feltételezett tanuló és egy programot ténylegesen használó tanuló teljesítményét összehasonlítja. A feladatgenerálás után a válaszadásnak megfelelően módosul a tanítási stratégiák és a program-irányító menedzsment részletesen kiértékelő a tanulói tevékenységeit. A program adatbázisában célék, értékelhető tényezők, követelmények és minimális teljesítményszint szerepelnek, melyeket a számítógép a program futtatása során folyamatosan alapul vesz az összehasonlító értékelésben (Brückner, 1998).

5.4.2 Segítség és önállóság – egy jellegzetesen fordított arány

A szakképzés jellegzetes fordított arányossága a kezdőtől a szakvizsga előtt álló tanulóig vizsgálva az önállóságot és az oktatói segítségnyújtást napról napra alakuló és jellemző faktorokat. A kezdő önállóságát lényegében nulla-szintnek vehetjük, ehhez az oktatónak kell a segítségnyújtás, támogatás (tanítás) kategóriájában maximumot nyújtani. A tananyagban és a gyakorlatokon való előre haladás során az önállóság fokozódik, a segítség igénylése (vagy szükségessége) csökkenn. A kibocsátott, vizsgázott kezdő munkaerő a szakiskola szempontjából már nem igényel segítséget, a képzés cél- és követelményrendszerében foglaltainak eleget téve önállósága az „iskolai” maximumon van.

Természetesen más a helyzet az első munkahelyen. Annak ellenére, hogy a képzés feltételezettezen magas színvonalú, a kibocsátott fiatal (kezdő) munkaerő a szakszervizben az ismerkedés és tájékozódás időszakában nem sorolható az önálló, segítségre nem szoruló szakemberek közé. Az autóelektronikai műszerész szakmát végzettek körében az az imponáló és motiváló előny, hogy az elsajátított ismeretanyag és a kifejlesztett képességek tekintetében olyan műveletek végzésére alkalmassák, amelyet elődeik, az autóvállalassági szerelők vagy a tehetségesebb autószerelők nem tudtak megoldani. Az új munkaerő tehát kezdő a szakszervizben, helyismerettel és ügyrendi-ügyviteli gyakorlattal még nem rendelkezik, de „tud valamit”, ami jövőjét és érvényesülését megalapozhatja és később a folyamatos továbbképzésre, tanulásra inspirálhatja.
5.4.3 Önértékelés és motiváció

Ahhoz, hogy a tanuló a multimédiás támogatással önállóan és saját időbeosztása szerint haladhasson előre a tananyagban, folyamatosan és lépésről lépésre erősítenünk kell az önkontroll, a felelős döntésekkel egybecsengő önértékelési minőséget, amely végső soron a motiváció egyik pozitív eleme is lehet az érdeklődés fenntartásában és a tanulási aktivitás elvárható szintjének megtartásában, illetve fokozásában.

Már szóltunk arról, hogy az autóelektronikai műszerész szakterület összetett ismereteket, általános autotechnikai jártasságot és különösen magas színvonalú méréstechnikai, hibakeresési és minősítési (döntési) képességet követel meg. A szakképzés tananyagáról is megállapítottuk, hogy egy-két évvel ezelőtt bármelyik szakfőiskola vagy egyetem oktatói örölték volna, ha kibocsátott végzősei mindezeknek az ismérveknek megfeleltek volna. A képzés támogatására alkotott programok, szemléltető és gyakorló eszközök a csúcstechnológiára épülnek, a Degem Systems és a MIXI oktatórendszer23 hatékonyak a módszertani paraméterek, a tanulói önállóság támogatása és a gyakorlati ismeret- és tapasztalatszerzés elősegítése tekintetében (35.ábra).

Az a célkitűzés, hogy a két éves képzési idő után munkába állva már csak a típus-specifikus ismereteket és az autógyár által előírt különleges mérő- és vizsgáló-berendezések használatát legyen szükséges elsajátítani, csak bizonyos feltételekkel teljesíthető. A szakmai háttér és a korszerű eszközpark, a legújabb oktatóprogramok és a tanítás-gyakorlás magas szintű technológiája mellett fontos az állandó motiváció, az oktatói kontrollt folyamatosan felváltó és tudatosan kialakítandó önellenőrzés.

35. ábra. Az önellenőrzést megvalósító oktatórendszer szerkezete

Az a célkitűzés, hogy a két éves képzési idő után munkába állva már csak a típus-specifikus ismereteket és az autógyár által előírt különleges mérő- és vizsgáló-berendezések használatát legyen szükséges elsajátítani, csak bizonyos feltételekkel teljesíthető. A szakmai háttér és a korszerű eszközpark, a legújabb oktatóprogramok és a tanítás-gyakorlás magas szintű technológiája mellett fontos az állandó motiváció, az oktatói kontrollt folyamatosan felváltó és tudatosan kialakítandó önellenőrzés.

23 http://www.mikrovolt.hu
5.5 A további fejlesztés célkitűzései

5.5.1 Tökéletesebb programok

Elegendő néhány friss multimédiais korongot próbákképpen lefuttatni ahhoz, hogy a rohamos ütemű és minőségi fejlődésről tájékoztató képet alkothassunk. A programok színesek, mozgalmasak, érdekesek és tartalmaznak, az információ-szerzés vagy a tanulás (esetleg a játék) kategóriájában lenyűgöző a kivitelezés, a programozás, az új ismeretek elsajátításában pedig a haladás üteme.

A számítógépes oktatási-tanulási metodika relative rövid idő alatt jutott el a tanárok-oktatók-tanulók tömegeihez. Eleinte sok problémát okozott annak az előzménynek a hiánya, hogy a tervezők és felhasználók többsége korábban nem foglalkozott programozott oktatással, ezen a téren nem rendelkeztek megfelelő tapasztalatokkal. Így a kezdeti eufória után bizonyos mértékű csalódás jelentkezett, mert az első szoftverek didaktikai és programozástechnikai hiánya nem feltétlenül bizonyították a számítógép alkalmazásának és hatékonyságának előnyeit (Varga-Pék, 1988). Ausztráliában már a kibertértantervvel foglalkoznak, amely azokat az aktivitásokat foglalja magában, amelyek a számítógép integrált alkalmazásából következnek a két legfontosabb területen, a tanításban és az otthoni tanulás során (Russel, 1997). Több országban preferálják a hipertext mindennapi alkalmazását, a notebook és a laptop számítógépek tömendező elterjesztését és a mindennapi adminisztráció számítógép segítségével történő elvégzését. (A tendencia Magyarországon is követőkre talált, állami elképzelések is megjelentek a közeli jövő feladatainak kijelölésében.)

A technikai háttér „számítógépesítése” lényeges változásokat eredményezett az iskolafenntartói, a taneszköz-készítői, a mindennapi tanári munkában és a tanulásban is. Az ipari-szolgáltatási területen belépett kuleskvalifikációk és új kompetenciák az oktatástechnológia szakterületét is jelentősen befolyásolták. Funkcionális és tartalmi megújulásról szólhatunk, amikor az eredetileg nem az oktatáshoz kifejlesztett és piacra dobott termékek, eszközök adaptációjára megtörténik és ezzel az oktatás feltételei javulnak. Kijelenthetjük, hogy az informatikai technológia az eszközök, a didaktikai feladatok megvalósítása és a metodika területén is igazolta létjogosultságát. Egyre nagyobb számban készülnek az ismeretközlő, gyakorló, szimulációs programok. Tanári és tanulói oldalról egyaránt élvezve az interaktivitás előnyeit, ugyanakkor rosszalva visszük tudomásul, hogy a verbális kommunikáció ebben a közegben veszít a jelentőségéből. Az oktatás adminisztrációjában, az értékelés és az ellenőrzés (tesztelés, jelenlét nyilvántartása, statisztika, feladatbankok, adattár, stb.) területén is elterjedt az új technológia. Az Internet és az on-line hálózatok egyre személytelenemébbé teszik az információ-szerzés és a tanulás környezetét. Az ember-ember kapcsolatok helyébe sok területen már az ember-gép interakció lépett. Ugyanakkor hallatlan előny a folyamatos visszacsatolás, a programok, hálózatok könnyű kezelhetősége, az ezekkel végzett munka jó hatásfoka, az elhangolódó tanulási módszerek egyelőre csak ígéretes tendenciái (Tompa, 1995).

Az autóelektronikai oktatás alapkész, az át- és továbbképzés kategóriáit kiszolgáló célrendszerre lényegében pontosan körülhatárolt járatsságok és készségek kialakítását, a meglévő képességek célutatatos fejlesztését jelenti. A tananyag rendszere egyre távolabb kerül a ma még általános, tantárgyakban gondolkodó és azok ismeretanyagát szóbeli (írásbeli) kikérdezésben megvalósító oktatástól. A fogyasztás-elemzés eredményeként kapott tevékenységi lista állandóan bővül, korszerűsödik. Ezt a változást az elméleti-gyakorlati ismeretanyagnak is követnie kell. Ugyanakkor praktikusan megállapítható az előkészítő, alapozó, működési elv és technológia szempontjából akár több évig változtatás nélkül oktatható törzsanyag is.

Az autóelektronikai oktatás alapkész, az át- és továbbképzés kategóriáit kiszolgáló célrendszerre lényegében pontosan körülhatárolt járatsságok és készségek kialakítását, a meglévő képességek célutatatos fejlesztését jelenti. A tananyag rendszere egyre távolabb kerül a ma még általános, tantárgyakban gondolkodó és azok ismeretanyagát szóbeli (írásbeli) kikérdezésben megvalósító oktatástól. A fogyasztás-elemzés eredményeként kapott tevékenységi lista állandóan bővül, korszerűsödik. Ezt a változást az elméleti-gyakorlati ismeretanyagnak is követnie kell. Ugyanakkor praktikusan megállapítható az előkészítő, alapozó, működési elv és technológia szempontjából akár több évig változtatás nélkül oktatható törzsanyag is.

A szakmai tartalom és a módszerek tekintetében választéket kell megadni, amiből a különböző szinteken meríteni lehet. A szakkészítési folyamatban minél később kell tipizálni, tipusismeretre orientálni a tanulókat. Ugyanakkor az általános elvek mellé nélkülözhetetlenek az egyes gyártókra jellemző sajátosságok és különlegességek sora. Ma egy továbbképzés nem feltétlenül az iskolapadba való visszaülést jelenti. Teret hódít a távoktatás - ma még elsősorban a nem műszaki jellegű szakterületeken. Kellő eligazítással és szervezett segítséggel nő az egyéni tanulás jelentősége, a folyamatos önképzés fontossága, amelynek feltételrendszeréhez a programozott tananyagok, az interaktív multimédia, az on-line kapcsolat és az ehhez szükséges otthoni számítógép nélkülözhetetlenek. Az oktatási folyamatban átértékelődött a tanár szerepe is. Most már nem a tanári munka, a tanítás stratégiájának megújítása dominál, hanem az, hogy meg kell ismernünk a programokat használók tanulási szokásait, amelyekhez a jó oktatóprogramnak alkalmazkodnia kell. Mindamellett az is feladatunk, hogy ezeket a szokásokat átvessünk és módszereken áthangoljuk, megváltoztassuk azokat a közös cél, a jó hatásfokú egyéni tanulás érdekében.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.

A felhasználót tulajdonképpen nem nagyon érdeklő, hogy egy professzionális szakmai team készítette-e néhány hónap alatt a CD-ROM meghajtójába helyezett programot, vagy egy fanatikus pedagógus több éves munkáját futtatja-e. Már a bejelentkezés, az első képernyő és a menüben kínált lehetőségek automatikus értékeléshez vezetnek, és az megadja a későbbi munka kereteit, hangulatát is.
5.5.2 A technika tendenciális előrejelzései

A 20. század technikai újdonságainak lépésköze, a két sorsdöntő felfedezés között eltelt idő egyre rövidül, a fejlődésnek indult újdonság néhány hónap alatt befutott karriercsúcs újabb és újabb „csodák” követik. A számítástechnika és az informatika szakterületén a 2000. év dömpingben hozta az egyre fejlettebb változatokat.

A multimédia rendszerek készítésének amatőrök számára is használható vehető újabb szoftverei a tanítóprogram-író (authoring) szoftverek. A felhasználó-barát környezet kis gyakorlattal könnyen fogadja el és beszerkeszti a különböző információ-hordozókat. Fontos, hogy a pedagógusnak nem kell magas szintű számítógépes gyakorlattal rendelkeznie, a kép, az animáció, a videó, a hang digitálisan rögzített egységei nehézségei nélkül beszerkeszthetők az egyes programokba. Rudas Péter az IDEALINK, az XLATOR, illetve a GUIDE (InFoAccess) tanítóprogram-író szoftvereket ajánlja a multimédia programok előállításához (Rudas, 1992).

A technikai fejlődés eredményeinek elterjedéséhez anyagi kondíciók, oktatáspolitikai koncepciók is szükségesek. Az elképzelte és megtervezett információs társadalom tagjai elsősorban az oktatáson keresztül léphetnek előre a jövő elképzeléseinek megvalósítása érdekében. Az Európai Bizottság oktatási főbiztosa, Vivien Reding 2000.márciusában bejelentette az „e-Learning” (elektronikus tanulás) névvel fémjelzett kezdeményezést, amely megvalósítása során az „eEurope” program oktatási és szakképzési programhoz illeszkedik. A kezdeményezés legfontosabb elemei:

- az európai iskolák ellátása multimédiás számítógépekkel;
- digitális technológiai képzés a tanárok számára;
- a számítógépes oktatási szolgáltatások fejlesztése;
- iskolák és kutatóbázisok hálózati összekapcsolása24.

A program elképzelései reálisak és időszerűek. Európában ma még nincs elegendő jól képzett informatikai szakember és az Internet-csatlakozások számának lassú növekedése is intézkedéseket sürget. Ha 2001 végéig minden egyes oktatási intézmény rákapcsolódhatna a világhálóra, a tanárok és a tanulók elérhetnék az információs és multimédiás forrásokat. Az is a tervekben szerepel, hogy 2002 végére legyen minden tanárnak saját számítógépe, 2003-ban pedig minden iskolát elhagyó tanuló rendelkezzen az európai normáknak megfelelő számítógépes kultúrával és a hálózatok kezelésének gyakorlatával.

Újabban a multimédiával foglalkozó elemzők és kutatók a hálózati munka, a WEB-es multimédia-kommunikáció és szerkesztés irányába fordultak. A Yale Egyetem külön kurzust indított az Interneten az ismeretek népszerűsítése és terjesztése érdekében (36.ábra).

36.ábra. Az Interneten működő multimédiás oktatórendszer (Yale)

Az új típusú multimédia környezet tanulmányozása, tudományos értékű következtetések levonása és saját fejlesztésű szakanyag publikálása már a következő disszerensék feladata lehet.

137
6. Összegzés

A Bevezetés-ben felsorolt előfeltevések meghatározták a vizsgálódás, a kutatás irányát és céljait. A kutatás és a valós szakiskolai környezetben lefolytatott kísérletek eredményeit összegezve tekintsük át a kiindulási pontokat. Vizsgáljuk azt, hogy milyen konklúziókat vonhatunk le a disszertáció gondolatmenetének megfelelő sorrendben, vajon sikerült-e bizonyítanunk, hitelt érdemlően igazolnunk a kiindulási hipotéziseket.

Megállapításainkat a hipotézisek sorrendjében foglaljuk össze.

A legegyszerűbb bemutató anyag tartalmát, közlési formáját és módszerét is gondosan meg kell tervezni.

A gyakorlati tapasztalatok megerősítik a feltételezést, hiszen az egyszerűbb, hagyományos eszköz alkalmazása is eredményesebb, ha annak alkalmazására a tanítási óra előre megtervezett fázisában, átgondolt koncepció alapján került sor. Meg kell választani az eszköz alkalmazásának célját, jellegét. Egyetlen transzparens fólia alkalmazása is megfelelő felvezetést, a figyelem felkeltését és irányítását, magyarázó majd kiemeléseket tartalmazó kísérő szöveget igényel. Megállapításaink fokozottan érvényesek az összetett, esetleg multimédia környezetben megvalósított szemléletétés, bemutatás és gyakorlás alkalmával.

Az elképzelések általában nem valósulnak meg maradéktalanul. A kivitelezést az aktuális körülmények, a pillanatnyilag érvényesülő személyi és tárgyi feltételek éppen úgy befolyásolhatják, mint a visszacsatolás (feed-back) csatornáján érkező bármilyen információ, ami „átszervezést”, új megközelítést és a súlypont áthelyezését követeli meg.

A hagyományos eszközök elsősorban a frontális tanításhoz nyújtanak segítséget.

Tekintettel arra, hogy a tanítási órák és a gyakorlati oktatás bevezető és befeléjő (elemző-értékelő) fázisa ma még a legtöbb helyen frontális módszerrel valósul meg, az oktatástechnikai eszközöket is ennek megfelelően kell kombinálni. Az episzkópok és az epidiaszkópok alkalmazására ma már nagyon kevesen vállalkoznak. Könnyebb a képet, a lexikon-oldalt szkennnerrel fóliára átírni és így bemutatni, mint a nehéz és időigényes előkészítést igénylő av-eszközöket óra előtt a tanterembe (szakműhelybe) telepíteni. A 35 vagy 16 mm-es hangosfilmek vetítését ma már kiválthatja a videó, ha a rendelkezésre álló tv-képernyő mérete és a forgatáskor megválasztott képkivágás megfelelő. Diafilmek, keretezett diát is kevesen vetítének ma már. Az állóképek ez a változata sok esetben gyártási technikai bemutatását tette lehetővé, történések sorozatát vitte be a tantermekbe, azonban ez a technikai megoldás is idejét múlta. Némi technikai „ügyeskedéssel” a diaképek főlían, vagy a számítógépen megjeleníthető ppt-bemutatók egy-egy képkockájáént is bemutathatók.

Az írásvetítő a legelterjedtebb eszköz a hagyományos audiovizuális választékóból. Minden tanánknak vannak „kedvenc” fóliáit, amelyeket egy-egy téma tanításakor - adott pillanatban - kivetít. A frontális osztálymunkában a fólia és a videó alkalmazásához elegendő néhány perces technikai előkészítés. Ma még a legtöbb
Az audiovizuális technika hagyományos eszközei helyettesíthetők számítógéppel. A hagyományos osztályteremben alkalmazott információhordozókat és -közvetítőket számítógépes manipulációval, digitális rögzítéssel és sokszorosítással felhasználhatjuk a multimédia program készítésénél. A diaképek, a főlíaik, az applikációs megoldások, a videó-felvételekből „kikockázott” vagy bármilyen eredetű fotók, képek, vázlatok, diagramok, táblázatok sorozata feldolgozható számítógéppel. Gondot az jelent, hogy kerül a számítógépes információhordozó a tanulók elé a hagyományos osztálytermi (műhely) környezetben. Projektor, LCD-panel alkalmazására van szükség, vagy - az egyéni tanulás környezetben - egyszemélyes képernyőre.

A multimédia nem a már rendelkezésre álló eszközök választékának kibővítése, hanem egy teljesen új feldolgozási technikát és alkalmazási módszert igénylő, összetett rendszer. A szakirodalom a multimédia programokat digitális taneszköznek nevezi. Bár nem kifogásolhatjuk a neves tudósok, kutatók szerinti fogalmi kategóriákat, viszont azokat értelmezve, véleményünk szerint nem egyszerűen a meglévő eszközpark (a 20.század végén működő audiovizuális technika) és szoftver-kínálat kiegészítéséről, hanem új eszköztípusról van szó. Amennyiben a tananyag-feldolgozás számítógéppel történik, annak eredményei, az információ-hordozók még lehetnek hagyományosak is.

Azonban ha a tananyagelelemek programozott közvetítését multimédia környezetben valósítjuk meg, akkor merőben új pedagógiai-didaktikai-módszertani struktúráról beszélhetünk. Ez az összetett rendszer tapasztalataink szerint elsősorban az egyéni és kiscsoportos tanulást támogatja. A multimédia környezetben a taneszköz-készítés hardveres és szoftveres tevékenysége és maga a tanítás-tanulás is eddig még nem determinált keretek között folyik.

A multimédia magasabb szintű programozói munkájának eredménye elsősorban az egyéni tanulást, a tájékozódást, az át- és továbbképzést támogatja - korszerű informatikai környezetben.

Néhány perces bemutató, szemléltető vagy gyakorló programok készítéséhez több órás előkészítő és kivitelező munkát kell befektetnünk. (Feltételezzük, hogy a feladat megoldására vállalkozó személy szakmailag, pedagógiai és a számítógépes gyakorlat tekintetében is megfelelő képességekkel rendelkezik.) A konkrét programozói munka szertárgázó ismereteket és gyakorlatot kíván meg abban az esetben is, ha professzionális program-szerkesztő technikával dolgoznunk.

Kutatásaink tapasztalatai eredménye alapján a képcentrikus multimédiában különösen nagy jelentőséget tulajdoníthatunk a magas színvonalú programozói tevékenységnek. A multimédia technikájának és technológiájának a szaktanteremben, a szakműhelyben való alkalmazása költséges. Bár a projektorok és az LCD-panelek helyett hálózatba kötött számítógépek is megfelelnek, de ez sem olcsó megoldás.

Az előzőek figyelembe vételével azonban semmi nem cáfolja annak előfeltételeinek a helyességét, hogy a tanítástól kismértékben elvonatkoztatva a multimédia
programok a legjobb eredményt az individuális tanulásban, az otthoni munkában érhetik el.

A multimédia új kognitív struktúrákat alakít ki. Az észlelést követően a gondolkodás speciális művelet-sorozatokkal megy végbe. Igaz ez a multimédiás környezetre is, ahol a vizuális észlelések viszonylagosan nagy mennyiségű a vonatkozásban. A multimédiás környezet hatássá legyőzhető és a gyakorlati élmények egyiken csak oszloposan forrás a gyakorlat, mert minden logikusan megvalósított művelet tartósan bevesődik, a szimuláció következő folytatás pedig a metakognitív stratégiákat támogatja. Azáltal, hogy a számítógépes program megmutat bizonyos folyamatokat, figyelembe vesz szakmai ismereteket szintúgy, mint a felhasználó reakcióit a kognitív stratégiák aktivizálásával, ezzel lényegében befolyásolja az intellektuális képességeket. Az autóelektronikai szakterületen a fentiek alapján készített kísérleti programokat a felhasználók kedvezően fogadták.

A tudományosan még fel nem dolgozott autóelektronikai szakterület kedvező lehetőségeket kínál a módszertani, programozástechnikai és értékelő-ellenőrző kísérletekre, kutatásokra.

Az autóelektronikai szakterületen végzett további kutatómunka és a programozott tananyag-feldolgozást célzó kísérletek eredményei bebizonyíthatók, hogy a multimédiás környezetek a vizuális gondolkodásra jellemezők. A multimédiás környezetek számára a feldolgozható élmények egyik fontos forrása a gyakorlat, mert minden logikusan megvalósított művelet tartósan bevesődik, a szimuláció következő folytatás pedig a metakognitív stratégiákat támogatja. Azáltal, hogy a számítógépes program megmutat bizonyos folyamatokat, figyelembe vesz szakmai ismereteket szintúgy, mint a felhasználó reakcióit a kognitív stratégiák aktivizálásával, ezzel lényegében befolyásolja az intellektuális képességeket. Az autóelektronikai szakterületen a fentiek alapján készített kísérleti programokat a felhasználók kedvezően fogadták.

A kutatásokra alapozott kísérletek célja a hozzáférhető multimédia készítő programok elemzése, alkalmazása és a szakképzési folyamatba illesztése lehet. A professzionális programok nagyon költségesek és a hatékony alkalmazásukhoz szükséges betanulási (gyakorlás) idő legalább egy év. A multimédiával való foglalkozás tapasztalatára alapozva ajánljuk, hogy amíg e technika alkalmazásában nincs meg a kellő gyakorlottság, s a multimédia készítő team még nincs megszerzveze, addig a kísérletek során megismert és kedvező eredménnyel alkalmazott (egyszerűbb) programokat használjuk. Ezek: a Power Point Presentation, a Workbench, az Edison & Tina Pro, a Multimedia Viewer, valamint ezek
Kísérletek programozott multimédia anyagokkal

Kombinációi. A feldolgozások egyszemélyes (tanári, szakoktatói vagy tanulói) környezetben elkészíthetők és alkalmazás az egyéni tanulás támogatására is.

Keresni szükséges azokat a technikai megoldásokat és módszereket, amelyeket az autóelektronika szakterületén dolgozó pedagógusok figyelmébe ajánlhatunk.

A programok vizsgálata, a tananyag sarokpontjainak keresése és a rendelkezésre álló technikai környezet összehangolása indokolja a folyamatos számítógépes feldolgozást. Célszerű adatbankban gyűjteni és rendszerezni a fotókat, képeket, videoklipeket és animációkat, az autógyári adatokat és a mérési paramétereket. Ennek felhasználása a tanórai munka színesítésére készített (kivetíthető vagy kézbe adható) képanyagok, az egyszerűbb bemutató programoknál alkalmazott képi sorozatok, az egymás után összeállított multimédia programok kimunkálásakor lehet eredményes. Tapasztalat szerint gyűjteni és rendszerezni kell a kiváló minőségű álló- és mozgóképanyagot, valamint törekedni kell a magasabb színvonalú animációk, hangeffektusok, kétt- és háromdimenziós prezentációk kimunkálására. A tanulás támogatását a képcentrikus feldolgozás modell preferálása és a több érzékszervre ható (multimediális) hatások alkalmazása - első lépésként az ajánlott (egyszerűbb és áttekinthetőbb) programozói megoldások - jelenthetik.

Mindezek a részeredmények, "egyszerűbb" megoldások megalapozhatnak egy integrált módszertani készletet, amelyet később - a szakképzésben működő multimédia készítő team-ek tagjai - jó hatásfokkal alkalmazhatnak.
7. Irodalomjegyzék

[7] Ballér Endre: A központi és a helyi tartalmi szabályozás lényege, összefüggése Új Pedagógiai Szemle, 1996/1

Keraban Könyvkiadó, Budapest, 1997

Education Technology Programs and Electronic School Magazine, 2000/10

[17] Benedek András szerk.: Oktatásméleti kérdések a szakképzésben
Műszaki Könyvkiadó, Budapest, 1996

[18] Bessenyei István: Képernyő, tanulási környezet, olvasás: Seymour Papert
 tanulásméleti nézeteiről – az olvasás kapcsán
Új Pedagógiai Szemle, 1998/10

[19] Bihary Pál szerk.: Míkroszámítógépek az oktatásban
OMKDK Témadokumentációs kiadványok, 145.sz. OMIKK, Budapest, 1984

OMIKK, Budapest, 1984

[21] Biszterszky Elemér: A fémipari anyag- és gyártásismeret tanításának
módszertana
Tankönyvkiadó, Budapest, 1989

[22] Biszterszky Elemér – Tóth Béláné: A gyakorlati oktatás tanárainak képzése
Szakoktatás, 1989/4

[23] Biszterszky Elemér szerk.: Tanulmányok a programozott tanítás köréből
Tankönyvkiadó, Budapest, 1993

[24] Biszterszky Elemér: A tankönyv és a taneszközfejlesztés kérdései a
szakképzésben
HunDidact Konferencia, Budapest, 1997

Reneval Curriculum Journal, 1999/3

[26] Brookfield, Karen: Az írás
Szentimai sorozat, ford.: Fery Veronika, Park Kiadó, 1973

[27] Brückner Huba: Számítógép az oktatásban, számítógépes oktatás
KSH Nemzetközi Számítástechnikai Oktató és Tájékoztató Központ
Budapest, 1978

[28] Brückner Huba: A számítógépes oktatás húsz éve – Nemzetközi eredmények
Pedagógiai Technológia, 1980/2

[29] Brückner Huba: A számítógépes oktatás didaktikája és rendszertechnikája
Doktori értekezés, Budapest, 1982

[30] Brückner Huba: Multimédia az oktatásban
PhD füzetek, kézirat, BME, 1996

[31] Brückner Huba: Távoktatás – közeli valóság
AgriaMedia‘98, Eger, 1998

Medien und Erziehung, 1999/6

[33] Bushweller, Kevin: Analog Lessons - What Tomorrow’s Classroom Can
Learn from Today
Education Technology Programs and Electronic School magazine, 2000/10

[34] Buzás Miklós – Nagyszokolyai Iván: Gépjármű elektronika
AJAKSZ Szakkönyvtár, Győr, 1993

[35] Collin, Simon: Így működik a számítógépes multimédia
Park Könyvkiadó, Budapest, 1995

Akadémiai Kiadó, Budapest, 1953

[37] Coombs, Philip H.: Az oktatás világválsága
Tankönyvkiadó, Budapest, 1971

[38] Chrappán Magdolna: Az iskolai képességfejlesztés problémáiról
Új Pedagógiai Szemle, 1999/12

[39] Csapó Benő: Képességfejlesztés az iskolában - problémák és lehetőségek
Új Pedagógiai Szemle, 1999/12

[40] Csáni, J. L.: Multimédia PC-s környezetben
LSI Oktatóközpont, Budapest, 2000

[41] Deák Sándor: Szakképzés és külcskvalifikációk
Szakképzési Szemle, 1999/4

[42] Debreczeni László: Mozgókép és médiaismeret
Magyar Mozgókép- és médiaoktatási Egyesület, kézirat, Budapest, 2000

[43] De Diana, I.: Coursware Engineering Outlined: an Overview of Some
Research Issues
Educational and Training Technology International, 1993/2

Technology
Educational Technology Research and Development, 1999/2

[45] Dzsatkó József: Audiovizuális eszközök és alkalmazásuk az oktatásban
Tankönyvkiadó, Budapest, 1984

[46] Eco, Umberto: A vizuális üzenetek szemiotológiaja
Tankönyvkiadó, Budapest, 1990

[47] Eco, Umberto: Hogyan írjunk szakdolgozatot? (Ford.: Klukon Beatrix)
Gondolat-Kairosz Kiadó, 1996

Ferenc – Tóthné Parásló Lenke: Oktatástechnológia
Molnár és Társa, Eger, 1996

[49] Elsayed, Hassan A.: Számítástechnika az egyiptomi oktatási rendszerben
AV Kommunikáció, 1991/1

[50] Elsayed, Hassan A.: 100 éves a Kandó Kálmán Műszaki Főiskola (CD-ROM)
AgriaMedia’98, Eger, 1998
Összegzés

[51] Euler, Dieter: Multimediale und telekommunikative Lernumgebungen zwischen Potentialität und Aktualität
Pädagogische Rundschau, 1998/6

[52] Eysenck, Michael W. – Keane, Mark T.: Kognitív pszichológia
Nemzeti Tankönyvkiadó, Budapest, 1977

[53] Falus Iván szerk.: Oktatástechnológia (Tanulmánygyűjtemény)
Tankönyvkiadó, Budapest, 1980

[54] Falus Iván szerk.: Bevezetés a pedagógiai kutatás módszereibe
Keraban Kiadó, Budapest, 1993

[55] Falus Iván szerk.: Didaktika. Elméleti alapok a tanítás tanulásához
Nemzeti Tankönyvkiadó, Budapest, 1998

[56] Fauszt Tibor: A multimédia program gráfjának szerkezeti bonyolultsága és hatása a navigációra
AgriaMedia’98, Eger, 1998

[57] Fábriicz Károly – Kacziba Ágnes – Szentirmai László: Multimédia a távoktatásban
JATE, Szeged, 1997

[58] Fehér Péter: A számítógép az oktatásban a harmadik évezred küszöbén: mitoszok, kétélyek és remények
Új Pedagógiai Szemle, 1995/4

Felsőoktatási Szemle, 1985/9, 1985/10

[60] Fejős Csaba: A tananyag elrendezése
Felsőoktatási Koordinációs Iroda, kézirat, 1992

[61] Fekete József: A programozott oktatás és a nevelés viszonya, valamint a gondolkodás fejlesztésének néhány kérdése a programozott oktatásban
(In: Pszichológiai Tanulmányok 10.)
Akadémiai Kiadó, Budapest, 1976

(The Dryden Press, Harcourt Brace College Publishwes)
Harcourt Brace Company, Orlando (USA), 1997

[63] Fercsik János: Pedagometria
OOK, Veszprém, 1982

[64] Forgács Tamás: Digitális pedagógia (interaktív multimédia) a tudás elmélyítésében
Szakoktatás, 1999/2

[65] Forgó Sándor: Multimédia eszközök az oktatásban és a távoktatásban
Médiakomunikáció, 1994/6, 1994/7, 1994/8
Összegzés

[66] Forgó Sándor – Bánya András: A multimédia kutatólaboratórium kialakulása
AgríaMedia’98, Eger, 1998

ismeretek
Műszaki Könyvkiadó, Budapest, 1994

[68] Fuchs, Walter R.: Az új tanulási módszerek
Közgazdasági és Jogi Könyvkiadó, Budapest, 1973

[69] Fürjes József – Biszterszky Elemér: Tanítógépek és programok
OMKDK, Budapest, 1972

[70] Gépjármű-technikai táblázatok
Verlag Europa-Lehrmittel, Hungarian translation Kelecsényi István, Pleteser
József, Hungarian edition Műszaki Könyvkiadó, 1995

[71] Gyaraki. F. Frigyes: A moduláris képzés előzményei és jelenlegi helyzete
a felsőoktatásban
Oktatáskutató Intézet, Budapest, 1984

[72] Gyaraki F. Frigyes: Multi-média rendszerek kiválasztását segítő algoritmusok
Audiovizuális Közlemények, 1975/6

[73] Gyaraki F. Frigyes: A tananyagelemzés, -kiválasztás, -elrendezés, -építés,
a tantárgyi program és a tantervkészítés elvi kérdései – különösen tekintettel
az egzakt módszerekre
MÉM Információs Központ, Budapest, 1983

c. cikksorozat tapasztalatai
AV Kommunikáció, 1985/4

[75] Gyaraki F. Frigyes: Az oktatástechnológia alkalmazásának pedagógiai és
pszichológiai kérdései (In: A szakmunkásnevelés pedagógiai elvei és gyakorlata,
4. kötet, A szakmunkásképző iskolai vezetők továbbképzése)
MűM Szakoktatási és Továbbképzési Intézet, Budapest, 1980

(In: A tananyag elrendezése, szerk.: Varga Lajos)
Felsőoktatási Koordinációs Iroda, Budapest, 1992

[77] Gyarmathy Éva: Pszichológiai szempontok az iskolai képességfejlesztésben
Új Pedagógiai Szemle, 1999/12

[78] Gyarmati István: Multimédiás tananyagok, akár az Internetre is
AgríaMedia’98, Eger, 1998

[79] Halász László: Vége a Gutenberg-galaxisnak?
Gondolat Kiadó, Budapest, 1985

[80] Handwerkskammer Aachen - BGZ, Simmerath: Abgasminimierung durch
KatalysatorTechnik
BGZ, Simmerath, kézirat, 1991
Összegzés

[81] Hauser Zoltán: Az audiovizuális oktatástól az információtechnológiáig
AgríaMédia’98, Eger, 1998

[82] Hawkridge, David: A jövő oktatástechnológiája a felsőoktatásban
HunDidac Szövetség, Budapest, OIT 1997/1

[83] Hámori Miklós: Tanítás és tanulás számítógéppel
Tankönyvkiadó, Budapest, 1983

[84] Hermann, Klaus: Multimedia im Unterricht
Erziehung und Unterricht, 1998/3, 1998/4

[85] Hodvogner László: Gépjárművek villamos berendezései
Műszaki Könyvkiadó, Budapest, 1988

[86] Hodvogner László: Autóelektronika
Műszaki Könyvkiadó, Budapest, 1993

[87] Horváth Márton: A képességfejlesztő iskola és az oktatási rendszer
Valóság, 1979/9

[88] Horváth Márton szerk.: A magyar nevelés története
Tankönyvkiadó, Budapest, 1988

[89] Horváth Róbert: A multimédiás szemléltető anyagok szerepe az oktatásban
AgríaMédia’98, Eger, 1998

[90] Husén, Torsten: Iskola az ezredfordulón – Válogatott tanulmányok
Tankönyvkiadó, Budapest, 1972

[91] Itelszon L.B.: Matematikai és kibernetikai módszerek a pedagógiában
(ford.: Fabók Julianna – Róbert Ágnes)
Tankönyvkiadó, Budapest, 1967

[92] Izsó Lajos: Multimédia oktatási anyagok kidolgozásának és alkalmazásának
pedagógiai, pszichológiai és ergonómiai alapjai
Müegyetemi Távoktatási Központ, kézirat, Budapest, 1998

[93] Izsó Lajos: Vitaindító gondolatok a multimédia oktatási anyagok minőségének
vizsgálatáról
BMGE, Budapest, kézirat, 2000

[94] Jáki László – Nádasi András: Egy háttérintézmény tündöklése és bukása
Új Katedra, 1991/7

Education World, 2000/10

[96] Kabdebo György: Multimédia eszközök az oktatásban és az ismeretterjesztésben
Médiakommunikáció, 1994/6, 1994/7, 1994/8

[97] Kabdebo György: CD-I multimédia anyagok az oktatásban
Médiakommunikáció, 1995/7-10

[98] Kamm, D.: Das Projekt Comenius
Deutsche Lehrerzeitung, 1995/17
[99] Karlovitz János: szerk.: Az oktatácsomag
Tankönyvkiadó, Budapest, 1979

[100] Kata János: A szakképzési folyamatok rendszertechnikai modellezésének és
optimalizálásának egy lehetséges módszere
Szakképzési Szemle, 1999/2

[101] Kárpáti Andrea: Számítógéppel segített tanulás
Iskolakultúra, 1997/12

[102] Kárpáti Andrea: Digitális pedagógia
Új Pedagógiai Szemle, 1999/4

[103] Kárpáti Andrea: Oktatási szoftverek minőségének vizsgálata
Új pedagógiai Szemle, 2000/3

[104] Kárpáti Andrea: KIT (Kommunikációs és Információs Technológiák) és az
oktatás minősége
SZÁMALK, Multimédia’2000, Computer Panoráma, 2000/7

[105] Kelecsényi István: A csoportos oktatás és az egyéni tanulás támogatásának
javasolt módszerei a multimédia-környezetben
(In: Tanulmányok a Nyitott Szakképzésről 1.)
Müegyetemi Távoktatási Központ, Budapest, 1999

[106] Kelecsényi István: A programozott oktatás elveinek érvényesülése a számítógépes
tanulási környezetben
Szakképzési Szemle, 2000/1

[107] Kelecsényi István: A tanítás-tanulás eszközeinek és módszereinek megújítási
lehetőségei a szakképzésben
Szakoktatás, 2000/5

(In: Pszichológiai tanulmányok 10.)
Akadémiai Kiadó, Budapest, 1967

[109] Kerékgyártó László: Szakmai anyag a taneszközrendelet elkészítéséhez
HunDidac Szövetség, Budapest, OIT 1997/1

és pedagógiai technológia
OPI, Budapest, 1975

[111] Kiss Árpád: A tanulás programozása
Tankönyvkiadó, Budapest, 1979

[112] Klimsa, Paul: Multimedia, Anwendungen
Tools and Techniken, Rororo Computer, 1997

[113] Koch György: Audiovizuális szemléltetés
Köznevelés, 1996/12

[114] Komenczi Bertalan: Orbis sensualium pictus - multimédia az iskolában
Iskolakultúra, 1997/1
| [115] | Komenczi Bertalan: Off line - Az információs társadalom közoktatási stratégiaja | Új Pedagógiai Szemle, 1999/7-8 |
| [125] | Lévai Zoltán: Gépjárművek szerkezettána | 148 |
Tankönyvkiadó, Budapest, 1978, 1990

[131] Lévai Zoltán: Ahogy a műegyetemen tanítom…Mértékegységek, szakkifejezések, nyelvhelyesség
Autószaki, 2000/8

[132] Long, Douglas G.: Learner Managed Learning. The Key to Lifelong Learning and Development

[133] Lükő István: A műszaki szakképzés tartalmi fejlesztésének új modellje
Szakképzési Szemle, 1991/7

SZÁMALK Multimédia’2000, Computer Panoráma, 2000/7

[135] Mann, Dale - Shakeshaft, Charol - Kottkamp, Robert - Becker, Jonathan:
Playing to Learn
Education Technology Programs and Electronic School magazine, 2000/10

Computer-assisted instruction Systems
Educational and Training Technology International, 1994/1

[137] Markó László főszerk.: Egyetemes lexikon
Magyar Könyvkubl, Budapest, 1994

[138] Marton Zsigmond: Programozott gépjármű-szerkezettan
Közlekedési Dokumentációs Vállalat, Budapest, 1976

Commandments
Reading Today, 1998/4

of the Future
Tech Trends, 1994/1

[141] Molnár Péter: A taneszközök fejlesztésének oktatási tapasztalatai
SZÁMALK Multimédia’2000, Budapest, 2000

[142] Murphy, Karen L.: Educational Technology: An International Perspective
Educational Technology Research and Development, 1996/4

[143] Muzslayné Szilágyi Erzsébet: Számítógépes oktatóprogramok tervezésének
módszertana
AV Kommunikáció, 1989/6

[144] Nagy Elemér: A TOPTECH oktatóprogram-fejlesztő technológia

Inspiráció, 1994/5

[146] Nagy József: A tudástechnológia elméleti alapjai
Nagy József: A kognitív készségek és képességek fejlesztése
JATE, Szeged, kézirat, 1998

Nagy József: A kognitív rutinok pedagógiai jelentősége
Iskolakultúra, 1998/5

Nagy József: A kognitív motívumok rendszere és fejlesztése
Iskolakultúra, 1998/12

Nagy Sándor: A tanulás pedagógiai kérdései
OOK, Veszprém, 1983

Nahalka István: Mi vagy ki az ördög, és hol van?
Új Pedagógiai Szemle, 1999/12

Nádasi András szerk.: Oktatástechnológia - I.
OOK, Veszprém, 1984

Nádasi András: Az új információs és kommunikációs technológiák hatása
az oktatásra
AV Kommunikáció, 1988/6

Nádasi András: Muzeális taneszközök – CD-lemezen
Köznevelés, 1996/36

Nádasi András szerk.: Oktatás – Informatika – Technológia (HunDidac)
HunDidac Szövetség, Budapest, 1997/1

Nádasi András: Polgárjogot nyert-e az oktatástechnológia?
AgriaMédia’98, Eger, 1998

Nádasi András: A tanszerkutatás, -fejlesztés, -ellátás és –használat
néhány kérdése
Könyv és nevelés, 1999/1

Nelson, Ted: Hipervilág – a szellem új otthona (ford.: Ivacs Ágnes)
http://www.sulinet.hu

Novák Ottó: Multimédia és motormenedzsment
Szakoktatás, 1999/11

Nováky Erzsébet: Javaslatok az oktatás és az oktatástechnológiai eszközök
hatékonyságának mérésére
Pedagógiai Technológia, 1987/2

Nováky Erzsébet – Benedek András – Szűcs Pál: Technológiai fejlődés az
oktatásban
Tankönyvkiadó, Budapest, 1985

Nováky Erzsébet – Hideg Éva: A hazai szakképzés továbbfejlesztése. Egy
szakértő felmérés újabb eredményei
Szakképzési Szemle, 1993/4
[163] Nyéki Lajos: De Block taxonómiaja
Szakoktatás, 1993/10

(kérdező: Kőrösné Mikis Márta)
Új Pedagógiai Szemle, 1999/7-8

[165] Orbán József: Multimédia alkalmazása a tananyagfejlesztésben és az oktatásban
AgriaMedia’98, Eger, 1998

[166] Orbán József: Multimédia alkalmazása a műszaki tárgyak oktatásában
Georgikon-Média’99, Keszthely, 1999

[167] Orosz Sándor: A tananyag elemzése
OOK, Veszprém, 1979

[168] Orosz Sándor szerk.: Oktatástechnológia – II.
OOK, Veszprém, 1985

[169] Ortner, G. E.: Bildungsnetzwerke
Medien und Bildung, 1995/2, 1995/3

Educational Technology Research and Development, 1993/3

[171] Pálfalvi Dorottya: A multimédia mint az oktatás új eszköze
Új Pedagógiai Szemle, 1997/5

[172] Pecsenye Éva: Benchmarking
Új Katedra, 2000/2

[173] Pentelényi Pál: Az algoritmikus gondolkodás kialakításának és fejlesztésének
lehetőségei, módszerei a műszaki képzésben
Doktori (PhD) értekezés, BME-GTK, 1999

[174] Peresztegi Éva: Moduláris tankönyvfejlesztés
In: Oktatásméleti kérdések a szakképzésben (szerk.: Benedek András)
Műszaki Könyvkiadó, Budapest, 1996

[175] Petőfi S.János – Benkes Zsuzsa: A multimediális szövegek megközelítései
Iskolakultúra, 2000/10

[176] Petzold, M.: Kinder, Computer und familiare Interaktion mit neuen Medien
Medien und Erziehung, 1994/5

[177] Philips, Rob: The Developer’s Handbook to Interactive Multimedia:
A Practical Guide for Educational Applications

[178] Pilgrim, Aubrey: Multimédia PC építése (Biuld Your Own Multimedia PC)

[179] Péczely Dóra: „Olyan az agyam, mint egy sűrű öserdő” – A tanulás és a
gondolkodás kézikönyvei
Új Pedagógiai Szemle, 1999/12
Összegzés

[180] Radnóti Katalin: Az induktív módszer zavarai az oktatásban Iskolakultúra, 2000/10

[182] Rimar, G. I.: Vezérelvek a képernyőn megjelenő oktatóprogramok tervezéséhez HunDidac Szövetség, Budapest, OIT 1997/1

[183] Rudas Péter: Interaktiv multimédia rendszer bevezetése az Állatorvostudományi Egyetemen Magyar Felsőoktatás, 1992/8

[184] Russel, Glenn: Imperatives and issonances in Cyberspace Curriculum: An Australian Perspective Education(USA), 1997/4

[185] Schorb, Bernd: Virtuelles Lernen lernen Medien + Erziehung, 1999/4

[190] Sovány István: Multimédia-fejlesztő eszközök és használatuk az oktatásban Szakképzési Szemle, 1999/1

[191] Sovány István: A szakképzés és a modernizáció néhány oktatástechnológiai aspektusa Szakoktatás, 1999/1

[192] Sovány István: Szakképzés és modernizáció – különös tekintettel az oktatástechnológiai fejlődés új eredményeire és új alkalmazásukra Doktori (PhD) értekezés, BMGE, kézirat, 2000

[194] Spitzer, D.: Introduction to Instructional Technology (2nd ed.) ID: Boise State University, 1991

[197] Sugár János: Hypermédia kronológia
[198] Sz. Lukács János: A multimédia alkalmazása a szakképzésben
Magyar Szakképzési Társaság, NSZI
BME, Budapest, 1997

[199] Sz. Lukács János: A számítógéppel segített oktatás
Magyar Szakképzési Társaság, NSZI
BME, Budapest, 1997

Tankönyvkiadó, Budapest, 1984

[201] Szántó Tamás: MIXI oktatórendszer alkalmazása, fejlesztése és a multimédia lehetőségei
AgriaMedia’98, Eger, 1998

[202] Szekerés Tamás - Wengemut, Frank: A kooperatív tanulás és a pedagógusképzés
Szakképzési Szemle, 1997/4

[203] Szűcs Pál: Az audiovizuális oktatás hatékonysága
Tankönyvkiadó, Budapest, 1984

[204] Szűcs Pál: Személyi számítógépek az oktatásban
OMIKK, Budapest, 1986

[205] Szűcs Pál: Számítógépes oktatási programok tervezésének módszertana
OMIKK, Budapest, 1987

[206] Szűcs Pál: Az audiovizuális eszközök hatékonyságvizsgálata
OMIKK, Budapest, 1991

[207] Szűcs Pál: Tanulmányok az innovatív technológiák köréből
Reál Kiadó, Budapest, 1993

[208] Takács Etel: Programozott oktatás?
Gondolat, Budapest, 1978

Innovations in Education and Training International, 1996/1

[210] Természettudományi Kisenciklopédia
Gondolat, Budapest, 1983

[211] Tompa Klára: Oktatócsomag
Köznevelés, 1975/35

[212] Tompa Klára: Oktatócsomagok típusai
Pedagógiai Technológia, 1982/3

[213] Tompa Klára szerk.: Mikroszámítógépek az oktatásban
OOK, Veszprém, 1987

[214] Tompa Klára: Ismét a taneszközökről
Iskolakultúra, 1992/2

[215] Tompa Klára: A korszerű oktatástechnológia jellemzői
in: Oktatásméleti kérdések a szakképzésben, szerk.: Benedek András Műszaki Könyvkiadó, Budapest, 1995

[216] Tompa Klára: Néhány gondolat a készülő taneszközrendelet kapcsán HunDidac Szövetség, Budapest, OIT 1997/1

[221] Tóth Péter: Multimédia alapú oktatóprogramok alkalmazása az oktatási folyamatban Gépgyártástechnológia, XXXIX.évf. 11.sz.

[224] Varga Lajos: Bevezetés a didaktikai kutatások módszereibe Műegyetemi Kiadó, Budapest, 1993

[227] Varga Lajos szerk.: A tananyag elrendezése Felsőoktatási Koordinációs Iroda, Budapest, 1992

[228] Varga Lajos: Bevezetés a didaktikai kutatások módszereibe Egyetemi jegyzet, BME, kézirat, 1993

[229] Vass Vilmos: Az oktatás tartalmi szabályozása (Nemzetközi kitekintés) Iskolakultúra, 2000/6-7

[232] Vidákovich Tibor: Diagonsztikus pedagógiai értékelés
Összegzés

Akadémia Kiadó, Budapest, 1990

Elektronikus források

http://books.iUniverse.com/viewbooks.asp?isbn=1583482180&page=1
http://clues.abdnac.uk:8080/
http://digilife.be/schoolnet
http://digital.library.upenn.edu/books/
http://edu-web.be.html
http://etleads.csuhayward.edu
http://europa.eu.int
http://fernuni-hagen.de
http://genius.gtdh.bme.hu
http://hagen.de
http://info.med.yale.edu/caim/manual
http://info.ox.ac.uk/cti/
http://keats.open.ac.uk/zx
http://memex.org/licklider.html
http://origo.matav.hu/oktatas/
http://rs1.szif.hu/modszer/
http://schoolnet.org.ca
http://ue.eu.int/Newsroom/LoadDoc.cfm?Max
http://www.adac.de
http://www.adobe.com
http://www.artpool.hu
http://www.atc.hu
http://www.atc.hu/tuning.htm
http://www.austria.gv.at/infoges/index.html
http://www.berze.c3.hu
http://www.bibl.u-szeged.hu
http://www.bme.hu/tk/anyt/zarkad.html
http://www.bme-tk.bme.hu/premissza
http://www.bme-tk.bme.hu/tk/anyt/lajost.html
http://www.cdmultimedia.hu
http://www.cobra.it/eng/contacts/index2.htm
http://www.cordis.lu/ist
http://www.dtsonline.com
http://www.echu.hu/
http://www.edu.hel.fi
http://www.education-world.com/a_tech/tech010.shtml
http://www.efu-automuseum.de
http://www.ektf.hu/rendezy/agria98/stoffa/
http://www.electronic-school.com
http://www.en.eun.org/vs/principal/principal.html
http://www.fernuni-hagen.de
http://www.hier.iit.hi/olvas/teint/teinttart.htm
http://www.hungary.telecomputer.com/telecomputer
http://www.icbl.hw.ac.uk
http://www.id.id/edu/hagen/de
http://www.ispo.cec.be/iap/
http://www.kalendarblatt.de
http://www.mek.hu
http://www.menon.org.html
http://www.mikrovol.hu
http://www.mtesz.hu/kte
http://www.multimedia.hu
http://www.nc.uk
http://www.net.hu/telecomputer
http://www.nokia.hu
http://www.oki.hu
http://www.oki.hu/cikk.asp?Kod
http://www.om.hu
http://www.omikk.hu
http://www.online-educa.com
http://www.opkm.hu
http://www.origo.hu/szoftverbazis
http://www.preservenet.com/theory/Postman.html
http://www.sbess.k12ca.us/sbess/services/educational/ctechnology
http://www.sbuilders.hu/varazslu
http://www.service24-en.de
http://www.sulinet.hu/cgi-bin/db2www/lm/frame/cikk
http://www.sulinet.hu/media/vizsga-1.htm
http://www.szakinet.org.hu::8900/webct/public/show
http://www.szamalk-imf.hu
http://www.szikszi.hu/info/
http://www.taneszkoztar.hu/
http://www.tantal.matavnet.hu
http://www.teem.org.uk
http://www.theAtlantic.com/atlantic/atlweb/flashbkss/computer/bushf.htm
http://www.t-online.de
http://www.unesco.org/education/uie
http://www.volkswagen.de
http://www.volvocars.hu
http://www.w3.org/History/1989/proposal.html
http://www2.echo.1u/info2000/de/wkde.html