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Abstract 

Taking the uncertain and complex environment into consideration, the selection of the most 
appropriate control decisions is a very difficult task. The results of the research presented in the 
Thesis focus on the decision support regarding the operational level of manufacturing systems. 
Special emphasis is given to the scheduling and rescheduling decisions, thus new rescheduling 
policies and schedule stability measures are introduced. Having the given production schedules 
as input, our main goal is to support decision makers in utilizing the scheduling system available 
at its best performance. Naturally, different scheduling algorithms and rescheduling strategies 
are compared and evaluated with the simulation-based methodology presented in the 
Dissertation.  

One of the most important objectives of our research is related to the potential 
improvement of computer simulation, as applied to manufacturing systems. Among the current 
limits of simulation, existing tools fall short of offering effective integration into the process of 
production planning and control. In order to enhance the capabilities of simulation and make it 
more responsiǾŜ ǘƻ ǘƻŘŀȅΩǎ ƛƴŘǳǎǘǊƛŀƭ ƴŜŜŘǎΣ extended simulation is introduced and described in 
the Thesis, as a possible application approach of simulation on different hierarchical levels and 
in the various life-cycle phases of production systems, based on the requirements specified. Our 
proposed view of the combination of Digital Enterprise components and simulation, as well as 
the related information systems and interface connections are introduced. Theoretical solutions 
and results are validated by computational experiments, and through several (industrial) case 
studies, as well. 
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1. Introduction 

1.1 Motivation 

Nowadays an essential role is assigned to the manufacturing and engineering industry that faces 
a very dynamic and continuously changing environment. ¢ƻŘŀȅΩǎ and future production systems 
must not only function effectively with small costs but, at the same time, they must respond 
rapidly to market changes in a flexible way, producing environmentally friendly at high quality. 
The sharp competition between enterprises of our days outlines the utmost importance of the 
high utilization of resources (both technical and human ones), low level of work in process 
(WIP), high throughput, in-time delivery, etc., in short: of high level production planning, 
scheduling and control. Moreover, in manufacturing systems difficulties arise from unplanned 
tasks and unexpected events, strong non-linearities, and a multitude of human interactions, 
while attempting to control various activities in dynamic shop-floors.  

Complexity and uncertainty together seriously limit the effectiveness of conventional control 
and scheduling approaches. Manufacturing companies are facing growing complexity, which 
arises not only in manufacturing systems, but in the products to be manufactured, in related 
processes, and thus in the whole company structure. Very often the response to this challenge 
is the implementation of even more complex information and communication systems, which, 
however, over and over again fail to meet the originally expected targets after introduction.  

Uncertainty is another factor which decreases the efficiency of decisions made on each level 
of the entire manufacturing system. Information and communication technology (ICT) based 
production planning and control (PPC) tools handle a large amount of data and provide unified 
solutions for a company-wide management of these data. Validity and optimality of these 
decisions is a key issue in an uncertain, changing environment, nevertheless, conventional PPC 
systems rarely support real-time, shop-floor level decision making. 

The concept of the Digital Enterprise (DE), i.e., the mapping of all the important elements of 
the enterprise processes by means of ICT provides a unique way for managing the problems 
ŜƴǘŜǊǇǊƛǎŜǎ ŦŀŎŜ ƛƴ ǘƻŘŀȅΩǎ ŎƘŀƴƎƛƴƎ ŜƴǾƛǊƻƴƳŜƴǘΦ {ƛƳƛƭŀǊƭȅΣ ŘƛƎƛǘŀƭ ŜƴǘŜǊǇǊƛǎŜ ǘŜŎƘƴƻƭƻƎƛŜǎ 
ό59¢ύΣ ƛΦŜΦΣ άǘƘŜ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ǎȅǎǘŜƳǎ ŀƴŘ ƳŜǘƘƻŘǎ ŦƻǊ ǘƘŜ ŘƛƎƛǘŀƭ ƳƻŘŜƭƭƛƴƎ ƻŦ ǘƘŜ Ǝƭƻōŀƭ 
product development and realization process in the context of life-ŎȅŎƭŜ ƳŀƴŀƎŜƳŜƴǘέ [89], 
constitute one of the most promising approaches. 

DET approach serves as the basis for creating a virtual environment in which the effects of 
decisions could be analysed, i.e., possible alternatives, given for the experts (decision-makers), 
could be profoundly tested in advance, before the realisation. 

Simulation is one of the key technologies applied in the DET realisations. The traditional 
applications of simulation (e.g., design and analysis of complex systems) do not include the 
direct coupling with the production planning and scheduling (PPS) or manufacturing execution 
systems (MES). The lack of this integration considerably decreases the effectiveness of the 
applicable results on the level of production control. In the research presented in the 
dissertation we coupled the simulation with real-life information systems on the operational 
decision level of manufacturing systems, in order to achieve more adequate results and higher 
performance during the operation of the manufacturing system.  

The thesis does not consider the entire process of the planning and controlling of 
production systems, but mainly focuses on the solutions related to real-time control decisions at 
the shop-floor level. Most of the corresponding ICT systems can be found on the operational 
level, and thus, involve subsystems of the manufacturing execution systems. The leading 
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principle followed in the dissertation is the initiative to support the decision making on the 
operational level of manufacturing systems. In the MES, where the planning time periods are 
days or hours, the continuous short term refinement (detailed scheduling) of the original master 
production plan is carried out. The details and the planning period of the shop-floor are 
presented in Figure 1. The topic of the dissertation focuses on the scheduling and rescheduling 
related short term decision support that is highlighted in the short term area in the figure. 
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Figure 1: Production planning and control periods of different production functions, as well as the 

degree of details, from [113] 

 
 

1.2 Outline of the thesis 

Following the Introduction, Chapter 2 presents a general model of the manufacturing systems 
and the hierarchical structure of decision making in these systems with related ICT tools. For the 
sake of clearness, categorizations of scheduling/rescheduling problems and approaches are also 
given, based on a literature review. Special emphasis is laid on schedule evaluation techniques 
and related measures. In Chapter 3, an introduction into simulation is given (basics issues and 
categorisation of simulation systems, simulation modelling), as well as the challenges and 
limitations in productions system modelling as a recent research issue in this field (DET) are 
discussed.  

Chapter 4 introduces new solution methods for simulation modelling of production systems, 
enabling easier integration to manufacturing execution systems. We propose the model, 
referred to as extended simulation, which reflects a new approach in simulation modelling of 
productions systems. The necessity and actuality of applying this new technique is proven 
through a literature review, furthermore, the proof of the concept is demonstrated by industrial 
applications of the proposed approach for evaluating the scheduling decisions in a large job-
shop environment. The case-studies presented include also the detailed description of the ICT 
solutions enabling the integration, as well as recommendations for further use. 

The aim of Chapter 5 is to present new benchmarking solutions of scheduling/rescheduling 
algorithms, as well as to deal with performance assessment of these methods regarding 
schedule stability. A stability measure and a stability-oriented schedule calculation method is 
presented to be able to minimize the negative effect of the changes induced by the 
rescheduling, however, keeping efficiency also at considerable level. Situation dependent 
control solutions for supporting and analysis of rescheduling decisions are also presented. The 
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capability of the proposed simulation-based evaluation and benchmark platform is tested on 
several case-studies. 

Chapter 6 presents the results of the research work made on active disturbance handling 
during the past few years. The proposed simulation-based evaluation and benchmark platform 
is capable of recognising different production situations, and supports the decision-maker in 
reacting to deviations or disruptions by applying different simulation experiments in advance, 
i.e., in a proactive manner. A real production facility (large-scale flow-shop system) served as 
the testbench of the prototype simulation system, and we can conclude that in several cases 
simulation considerably supports the decision making through the production control activities. 

The results presented in the thesis are summarised in Chapter 7, as well as some further 
implications are emphasised. A more detailed description of the methods, models and 
experiments are presented in the Appendix of the Dissertation. 
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2. Planning and control on the operational level of 
manufacturing systems 

The objective of this chapter is to position the research work presented in the dissertation in 
the diversified area of manufacturing. Consequently, the manufacturing systems, the 
hierarchical structure of decision making in these systems and the related ICT tools are 
described together with the main issues coming from the environment in which they are 
operating today. The chapter also focuses on the problem domains presenting among others 
the main functional components of shop floor control systems, their possible architectures and 
the disturbances arising on this level. This is followed by a discussion on the stochastic 
behaviour and uncertainty occurring in the level of production scheduling and control. Finally, a 
literature review is given about the manufacturing planning and control especially focusing on 
the evaluation of stability-oriented reactive methods. The main goals of the research work, as 
well as, different terms that are frequently referred in the dissertation are explained here as well. 

 
 

2.1 Manufacturing systems 

A manufacturing system can be defined as a combination of humans, machines and equipment 
that are bounded by a common material and information flow [20]. It is a complex technological 
object composed of machining, material handling, tooling and controlling sub-systems, as well 
as its independent attributes are the products to be manufactured, the processing plans and the 
complex relations between these processes. Manufacturing systems consist of workstations and 
machines (resources), where operations such as machining, forming, assembly, testing and 
inspection are carried out on individual parts, items, assemblies and subassemblies to produce 
goods for customers. In this context a factory, a plant, a cell, or a manufacturing line can be 
considered as a manufacturing system [56]. 

Besides, manufacturing systems integrate different aspects [83]. Firstly, the structural 
aspect as a unified set of hardware including machines, workers and other equipment. 
Secondly, there is the transformational aspect that is the process of converting material into 
products and the subsequent material flow. Thirdly, there is the procedural aspect such as the 
management cycle including planning logistics, implementation of productive activities that is 
interrelated with the information flow including, e.g. business process. The procedural aspect is 
customarily related to production management. 

 

2.1.1 Decision hierarchy in manufacturing systems 

The research to be presented in this dissertation concerns manufacturing (or production) 
systems. Due to the effects presented later in this chapter planning and control of production 
systems is a very complex task. Creation of an overall descriptive model is advantageous for 
understanding and working with such systems. As in the management science, the activities of 
production planning and control systems are organised in three hierarchical levels depending on 
the type of the decisions to be taken [82]. These hierarchical levels are as follows  
(Figure 2): 

¶ The strategic level concerns the type of the product to be manufactured. Market 
issues and decisions on overall manufacturing system are handled on this level (e.g. 
long term decisions on capacities, business goals) . 
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¶ On the tactical level medium term plans are generated according to customer 
demands. The output of this level usually appears in the form of Master Production 
Schedule. 

¶ The operational level takes its input from the tactical level and it is responsible for 
managing the manufacturing system in real time to meet the imposed 
requirements. Activities carried out on this level can be further separated in two 
different levels: a superordinate activity for factory co ordination (MES) and 
separate subordinate process called production activity control (PAC). 

Each member of the hierarchy is responsible for realizing the objectives that characterize 
the given level, and the decisions made at a certain stage become constraints for the lower 
levels [90]. According to Grabot & Geneste [67], three aspects of the decision making are highly 
linked: 

¶ The type of decision: strategic (i.e., choice of a general goal), tactical (i.e., choice of 
an approach to reach the goal) and operational (i.e., application of this approach 
and control of the result). 

¶ The organizational level on which the decisions are taken (strategic decisions should 
be made at the highest decision level, operational decisions at the lowest). 

¶ The horizon of the decision making (long horizons at high levels, short horizons at 
low levels). 

In conjunction with Figure 2, Table 1 summarizes the functions and capabilities of the 
information systems (on different levels) that might exist across an enterprise. The size and the 
focus of the dissertation do not allow the detailed description of all levels of the manufacturing 
system. As highlighted in the introduction, the research focuses on the operational, therefore, 
in the further sections we will concentrate on this level, accurately underlining the issues the 
research dealt with. 

 

MESïcontrol and execution, scheduling 

(SFC, PAC, SCADA)

ERP/CAE ïproduction & req. planning 

(MP, MRP, MRP II, CAD)

Resources, manuf. & logistics processes

MA ïmanufacturing automation 

(CNC, PLC, SPC)

ERPïcapacity and facility planning.

Operational

Tactical

Strategic

 
Figure 2: Planning and decisions hierarchy, as well as related manufacturing 

 information systems 

 
 



6 

 

 

 

 

Table 1. Five different levels of the ICT systems applied in manufacturing, [86]. 

Major 
functions 

Information 
systems 

Typical data 
handled 

Information 
processed 

Operation 
time scale 

ERP: planning, 
scheduling, 
supply and 
logistics 

Databases, 
applications, 
interfaces 

Enterprise level 
metrics: sales, 
finance, 
manpower 

Ability to plan and 
allocate resources to 
achieve corporate 
targets 

Days to 
weeks 

MES- plant-wide 
optimisation and 
management 

Process 
historians, 
database 
applications, 
middleware 

Plant operational 
metrics: 
production, 
inventory, energy 

Ability to optimise 
and execute 
operations across 
the entire plant 

Minutes to 
hours 

Automation, 
advanced process 
control, 
abnormality 
management 

SCADAs, PC-
based systems 

Unit operation 
targets; metrics of 
highest level 
control 
performance 

Ability to operate a 
unit at its optimal 
point 

Seconds to 
minutes 

Basic control, 
rectification, 
statistical 
analysis 

PLCs, DCS, Soft 
sensors 

Variable set-
points; process 
values; alarms 

Ability to maintain 
process variables at 
desired conditions; 
application logic 

Milli-. to 
seconds 

Measurement 
and sensing, on-
line monitoring 

Sensors, 
actuators, field 
devices 

Measured values 
of actual process 
variables, e.g., 
temperature 
pressure, etc. 

Ability to collect 
current state of 
process streams and 
equipment 

Micro- to 
millisecs 

 

2.1.2 Definitions and terms in manufacturing control 

As it was defined previously, a manufacturing system organizes equipment, personnel, and 
information to create products that are delivered to a customer, and thus satisfying customer 
demands. This system may be as large as a factory or as small as a manufacturing cell. In the 
coming space, a brief outline of the terms and definitions used in the thesis are described. 

Order release ŎƻƴǘǊƻƭǎ ŀ ƳŀƴǳŦŀŎǘǳǊƛƴƎ ǎȅǎǘŜƳΩǎ ƛƴǇǳǘ ōȅ ŘŜǘŜǊƳƛƴƛƴƎ ǿƘƛŎƘ ƻǊŘŜǊǎ όƧƻōǎύ 
should be moved into production. It may be known as job release, order review/release, 
input/output control, or just input control.  

Shop floor control determines which operation each person and piece of equipment should 
perform and when they should do it. In general this activity controls all manufacturing and 
material handling resources.  

A production schedule specifies, for each resource required for operations, the planned start 
time and end time of each operation assigned to that resource.  

Scheduling is the process of creating a production schedule for a given set of jobs and resources. 
Rescheduling is the process of updating an existing production schedule in response to 

disruptions or changes. This includes the arrival of new jobs, machine failures, and machine 
repairs. (For more information on disruptions see sec. 2.2.2) 

The rescheduling environment identifies the set of jobs that the new schedule should include. 
A rescheduling strategy describes if new production schedules are generated cyclically or not.  
A rescheduling policy specifies when and how rescheduling is done. The policy specifies the 

events that cause rescheduling. These events may be predictable (even regular) or 
unpredictable. The policy specifies the method used for revising the existing schedule. Note that 
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the policy may specify different methods for different situations. If these policies have any 
parameters (for instance, the length of the rescheduling period), the policy specifies these 
parameters. Rescheduling methods generate and update production schedules. 

 
 

2.2 Production scheduling in the face of uncertainties 

Scheduling activities involve allocation of resources to the operations of multiple independent 
processes over time in order to achieve a targeted global behaviour [35]. Examples are the 
coordination of production in a factory, or transportation scheduling. In order to be viable as 
operational guidance, a schedule (solution) must first be feasible, i.e., it must satisfy the 
physical constraints in the field relating to usage of resources and execution of processes. In 
practice ς regarding the character of these constraints ς these are often wide ranging and 
complex. 

In manufacturing production environments, for example, resource allocation decisions must 
be consistent with capacity limitations, machine setup requirements, batching constraints on 
parallel use work shift times, etc. Similarly, production activities have predefined duration and 
precedence constraints and may require the availability of multiple resources (e.g., machines, 
operators, tooling, raw materials). 

In the following sections production scheduling and rescheduling are presented, as the 
control method for production at the operational level of manufacturing systems. 

 

2.2.1 Static vs. dynamic scheduling problems 

The research presented in the dissertation concentrates both on job-shop as well as flow-
shop manufacturing problems. Flow-shop problems are specialized case of job-shop problems, 
hence, first we define the mathematical model of a job-shop scheduling problem. The 
terminology of scheduling theory came up in the manufacturing and processing industries, thus 
we should talk about jobs and machines. Though the definition of the general job-shop problem 
refers to job and machine, it could be applied to other scheduling problems that arise in 
business, computing, government and service industry. 

The static job-shop scheduling problem is the allocation of resources to a known collection 
of jobs over time in course of which the goal is to optimize one or more performance measures 
selected. Regarding complexity, the job-shop scheduling problem (and, therefore, also its 
extensions), except for some strongly restricted special cases, is an NP-hard optimization 
problem [4],[42]. 

 
The classical, static job-shop scheduling problem (JSP) 

We shall suppose that we have n jobs {J1, J2, ΧΣ Wn} to be processed through m machines 
{M1, M2, ΧΣ am}. It is supposed that each job must pass through each machine once and only 
once. The processing of a job on a machine is called an operation. The operation on the ith job 
on jth machine is denoted by oi,j. Technological constraints demand that each job should be 
processed through the machines in a particular order. For the general job-shop problems there 
are no restrictions upon the form of technological constraints. Each job has its own processing 
order and this may have no relation to the processing order of any other job. An important 
special case is when all jobs share the same processing order. In such circumstances the 
problem is called flow-shop problem. Each operation oi,j takes a certain length of time, the 
processing time, denoted by pi,j. By convention the processing time includes the transportation 
and set-up times. In the general job-shop problem pi,j-s are fixed and known in advance. The aim 
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is to find a sequence, in which the jobs pass between the machines and which is compatible 
with the technological constraints, feasible and optimal with respect to the performance criteria [5]. 

In the well-known classical JSP models, every job has a given sequence of operation without 
any modification opportunity and each job must pass through each machine once and only 
once. In realistic situations, the jobs do not have to pass through all machines or they have to 
visit a number of the machines more then once, because of the technological constrains. 
Moreover, the sequence of operations (process plans) may be optional, fixed or semi-fixed. Each 
type can be described in an appropriate tree (Figure 3). The root of the tree is the starting point 
and the branches from the root lead to the possible first operations, etc. The operations of the 
job are considered as nodes of the tree and a process plan of the job as a route from the root to 
a leaf. Thus, the number of leafs equals to the number of possible process plans. 

P1

P2 P3

P3 P2

P3

P1

P1

P5

R

P2

 
Figure 3: Tree representation of alternative process plans [20] 

 
Mathematical formulation of flexible job-shop scheduling problem (FJSP)  

As it was outlined above, the classical job-shop problem rarely exists in the real, industrial 
environment. In some cases, the operations can be processed on different machines, i.e., 
alternative machines may be selected, thus a flexible job-shop is considered. The formulation of 
the FJSP problem is to organize the execution of n jobs on m machines [65]. The set of machines 
is noted U. Each job Ji represents a number of ni non-preemptable ordered operations 
(precedence constraint). The execution of the kth operation of job Ji (noted ok,i) requires a 
resource or machine selected from a set of available machines. The assignment of the operation 
ok,i to the machine Mj entails the occupation of this machine during a processing time called pk,i,j. 
Compared to JSP, the FJSPs present two difficulties. The first one is to assign each operation ok,i 
to a machine Mj selected from the set Uk,i (when U = Uk,i for all the operations, the problem is 
total flexibile). The second one is the computation of the starting time tk,i and the completion 
time ck,i of each operation ok,i. 

The above job-shop scheduling refers to static cases (even JSP or FJSP) where all the 
information is available initially and remains unchanged over time. Most of the solutions in the 
literature concerning scheduling concentrate on the static problem in question. However, in 
many real systems, this scheduling problem is even more difficult, because jobs arrive on a 
continuous basis, i.e., the set of jobs varies over time, henceforth, this is called dynamic job-
shop scheduling problem (DJSP). 

 
Stochastic vs. deterministic system parameters 

Even in a static scheduling environment, where the set of jobs does not change, there might 
be some pieces of information which are uncertain during the calculation of the schedule. For 
instance, the processing time of the operations on the machines can be characterized with 
probability distributions. Therefore, if there are stochastic variables in the scheduling problem, 
it may be considered a stochastic scheduling problem [32]. On the other hand, when all the 
system parameters are exactly known, the scheduling problem may be treated as a 
deterministic one. 
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2.2.2 Internal vs. external disruptions 

Depending on the environment, there may be disruptions during (schedule) execution in the 
production system, due to unforeseen events, such as  

¶ machine breakdowns,  

¶ raw material of insufficient quality or supply,  

¶ rework or quality problems, 

¶ stochasticity of processing times,  

¶ ŘƛŦŦŜǊŜƴŎŜǎ ƛƴ ǘƘŜ ƻǇŜǊŀǘƻǊǎΩ ŜŦŦƛŎƛŜƴŎȅΣ  

¶ incorrect or missing information.  
These are internal disruptions which cannot be exactly predicted because of the stochastic 

behaviour of the parameters, though, reaction from the scheduling system is needed.  
During execution, the dynamic nature of the scheduling problem and can be concerned as 

external disruptions (set of orders changes over time), which may also require modifications in 
the schedule. Therefore, the list of external disruption can be formulated as 

¶ urgent job arrival, 

¶ job cancellation, 

¶ due date change, 

¶ change in job priority. 
Both internal and external disruptions may cause (or trigger) further disturbances which 

necessitate reactions. According to Vieira et al. [41] and Davenport & Beck [85], these induced 
disturbances are as follows 

¶ overtime, 

¶ process change or re-routing, 

¶ machine substitution, 

¶ limited availability of human recourses, 

¶ setup times. 
Aytug et al. [3] give a broad overview in their study on production schedule execution in the 

face of uncertainties. Taxonomy for uncertainty is formulated for a better understanding of the 
meaning of uncertainty during the calculation or execution of a production schedule. Three key 
dimensions of uncertainty are described. Cause can be viewed as the object (e.g., machine) and 
its state (e.g., available), context refers to the environmental circumstances and, finally, impact 
is related to the result of the uncertainty. An example is given: the tooling is not ready (cause) 
on a bottleneck machine during a highly utilized day (context), which causes a delay in setup 
(impact).  

McKay & Wiers [28] discuss the relationship between the theory and practice of scheduling and 
describe three principles that explain practical production scheduling processes. First, a scheduling process 
generates partial solutions for partial problems. Second, a scheduling process anticipates, reacts to, and 
adjusts for disturbances. Third, the scheduling process is sensitive to and adjusts to the meaning of time in 
the production situation. All three principles support the perspective that scheduling is part of a dynamic 
process. 
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2.3 Rescheduling manufacturing systems ς overview 

2.3.1 Rescheduling framework 

In the previous section, the formulation of the production scheduling problem was introduced, 
categorising the deterministic/stochastic, static/dynamic nature of these ordering problems. 
Furthermore, it was shown that uncertainties may lead to disruptions (either internal or 
external) during the execution of the calculated schedules. Therefore, in this section, the 
possible solution methods for controlling these situations are described based on a literature 
review. 

 Regarding the scheduling environment (static or dynamic), a detailed formulation of the 
problem is given in Section 2.2.1. 

In this thesis we use the terms related to rescheduling set by Vieira et al. [41] (Figure 4). 
Schedule evaluation techniques related mostly to the predictive-reactive scheduling approach in 
a dynamically changing environment are discussed in this work, incorporating both 
deterministic and stochastic system parameters. 
 

Rescheduling Environments 

Static (finite set of jobs) Dynamic (infinite set of jobs) 

Deterministic  
(all information given) 

Stochastic  
(some information 

uncertain) 

 No arrival 
variability  

(cyclic 
production) 

Arrival 
variability  

(flow-shop) 

Process flow 
variability  
(job-shop) 

 
 

Rescheduling Strategies 

Dynamic (no schedule) Predictive-reactive (generate and update) 

Dispatching rules Control-theoretic  Rescheduling Policies 

Periodic Event-driven Hybrid 

 
 

Rescheduling Methods 

Schedule generation Schedule repair 

Nominal schedules Robust schedules  Right-shift 
rescheduling 

Partial 
rescheduling 

Complete 
regeneration 

Figure 4: Rescheduling framework [41] 

 

2.3.2 Rescheduling strategies 

In order to control production in dynamic scheduling environments having continuous job 
arrivals or stochastic environments where parameters are uncertain, two common strategies 
are known, first, predictive-reactive scheduling techniques and second, dynamic scheduling 
solutions (on-line or closed-loop scheduling). 

The predictive-reactive approach means calculating a predictive (off-line or open-loop) 
schedule concerning a static problem, and continuously updating this existing schedule in order 
to adapt schedules to changing circumstances (reactive this way). 

The process of modifying the predictive schedule against execution disruptions (internal 
disruptions) is referred to as reactive scheduling or rescheduling [38], however, the same 
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expression is applied in dynamic scheduling environments, whenever a new job (as external 
disruption) is inserted into the schedule. Expressions for predictive schedules before the 
schedule modification (schedule revision) are quite different: original, initial, baseline or 
preschedule are notations commonly used in several papers. 

Methods belonging to the second solution, namely dynamic scheduling approaches often 
have good performance by dispatching jobs dynamically to account for random disruptions as 
they occur. This can be obtained by simple heuristics, i.e., dispatching by priority rules, of which 
detailed descriptions are given in, [5] and [32]. However, methods like adapting predicted 
schedules to the changed circumstances by applying simple dispatching rules might be effective, 
constructing the production schedule in advance, following these rules, might result in poor 
schedule efficiency. 

FǊƻƳ ǘƘŜ ŜŀǊƭȅ Ωул-s, stochastic scheduling ς as a new dynamic scheduling direction where 
information uncertainty is considered explicitly ς was studied and developed. Earlier solution 
methods and studies in this direction are reported by Gittins & Glazebrook [79], Graves [78] and 
Pinedo [77]. These solution methods, however, do not define the sequence of jobs to be 
processed on the different machines. Rather the approach is a dynamic policy which, according 
to Pinedo [77] άŀƭƭƻǿǎ ǘƘŜ ŘŜŎƛǎƛƻƴ ƳŀƪŜǊ ǘƻ ŘŜǘŜǊƳƛƴŜ Ƙƛǎ ŀŎǘƛƻƴǎ ŀǘ ŀƴȅ ƳƻƳŜƴǘ ƛƴ ǘƛƳŜΣ 
while taking into account all the information that has become available up to that momentέ. 
Recent research results in this field are, e.g., given ōȅ aƻƴƻǎǘƻǊƛ ϧ /ǎłƧƛ [80].  

In contrast, previous surveys as Sabuncuoglu & Kizilisik [34], Vieira, et al. [41], Herroelen & 
Leus [15] ŀƴŘ DǀǊŜƴ [13] give a summary in chronologic order of studies that analyze predictive-
reactive scheduling and rescheduling problems in a dynamic and stochastic environment. YłŘłǊ 
[20] categorizes the scheduling techniques, based on the stochastic or deterministic as well as 
off-line/on-line characteristics of the problem. Research results on scheduling with uncertainties 
such as completely reactive, robust scheduling and predictive-reactive approaches are 
categorized and presented by Aytug et al. [3].  
 

2.3.3 Rescheduling policies 

From practical point of view, it is not possible to create schedules too frequently; however, 
the theoretically best performance of the whole system could be realized if schedules could be 
adapted to any changes, disruptions occurring in real-time. Most industrial planning and 
scheduling systems create schedules in idle time of the production, e.g., at nights, since the 
acquisition of production-related data, definition of constrains and creation of schedules for 
larger shops, generally, require significant computational time. This way, the basic question 
άwhen to rescheduleΚέ ƴŜŜŘǎ to be answered. 

A notation of existing approaches is provided in [3] and [9]. Let the time when a new 
schedule is constructed be defined by the rescheduling point and the time between two 
consecutive rescheduling points by the rescheduling interval (RI). The three main types of policy 
included in predictive-reactive strategy are: periodic, event-driven and hybrid. 

Schedule modification can be executed in given time periods (periodic rescheduling policy) 
where any events occurring between rescheduling points are ignored up to the following 
rescheduling point, or related to specified events occurring during schedule execution (event-
driven rescheduling policy). If this specified event means a disruption or an event that has 
significant impact on the further schedule execution, then the schedule must be revised or a 
new schedule must be generated. Combining the two basic methods, hybrid rescheduling policy 
can be defined under which rescheduling may occur not only periodically, but also whenever a 
disturbance (either internal or external) is recognized in the system (e.g., machine breakdowns, 
urgent orders).  
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In his thesis [13], DǀǊŜƴ gives another notation related to event-driven policy. By applying 
the adaptive rescheduling policy1, a scheduling decision is triggered after a predestined amount 
of deviation from the original schedule is observed. For example, revisions can be made when 
completion time differences between the initial and realized schedules exceed a threshold value 
(e.g., 30 minutes in average), or a predetermined percentage of the predicted makespan. 

In Figure 5, the concept of hybrid rescheduling policy is presented. Generally, schedules are 
calculated in every RI time interval. Rescheduling is also performed right after Disruption 1 (RI is 
modified to RI*), while the disruption has significant impact on schedule execution, thus the 
initial schedule necessitates modification, i.e., rescheduling. Disruption 2 is neglected, because 
the effect induced by the disruption does not require modification in the schedule, the schedule 
is still executable without much degradation of performance (e.g. it is not necessary to 
reschedule, even because Disruption 2 is close to the next rescheduling point). 

Continuous rescheduling is the extreme case of event-driven policy in which a rescheduling 
action is taken each time an event is recognized by the system. 
 

2.3.4 Rescheduling methods 

Once the system performs the rescheduling action, the way of schedule modification has to 
be defined. The practical importance of the decision, whether to completely regenerate or 
repair the schedule is noted in [37]. Three common schedule repair methods are presented 
below. 

RI RI

RI*

RI

Time

Disruption 2Disruption 1

 
Figure 5: Impact of disruptions on schedule execution by applying hybrid rescheduling policy 

 
Right-shift schedule repair method postpones each operation affected by the disruption by 

the amount of time needed for making the schedule feasible [1],[35]. Right shift rescheduling 
postpones each remaining operation (e.g., shifting it to the right on a Gantt chart) by the 
amount of time needed to make the schedule feasible. For example, in the Gantt chart shown in 
Figure 6, if machine M2 fails while processing job J1 and the repair time requires r time units, 
then the completion time of J1 (on Machine M2) is delayed from t to t + r. In addition, the 
completion times of the remaining tasks on M2, M3, and M4 are delayed by r time units. 

Partial rescheduling means that only a selected sub-set of the operations are rescheduled. 
This method preserves the initial schedule as much as possible (i.e., only repairs the schedule). 
Abumaizar & Svestka [1] developed an algorithm for rescheduling only the affected operations 
in a job-shop. They compared the system performance under the proposed method with the 
complete rescheduling and right-shift schedule repair approaches. In [34] and [43], for selecting 
the subset of jobs for rescheduling during partial rescheduling, they applied a beam search 
algorithm with a fix ratio of the unprocessed jobs to be rescheduled. Similar solution is 
presented by Sadeh et al. [81], where a number of control rules and procedures of varying 
complexity for identifying sets of operations to reschedule are treated. Match-up scheduling is 
another type of partial rescheduling, in course of which, scheduling matches up with the initial 

                                                 
1
 Also referred to as controlled response. 



  

13 
 

 

schedule at a certain time in the future, whenever a deviation from the initial parameter values 
(mainly deviations from the initial activity durations) arises [2],[43]. 

Complete rescheduling in this context means that at each rescheduling point, all jobs from 
the previous (initial) schedule that remained unprocessed are involved during the schedule 
formulation. Complete rescheduling is, generally, better than partial rescheduling, regarding 
efficiency measures. All the selected papers shown in Table 2, analyze complete rescheduling in 
order to compare and benchmark proposed partial rescheduling strategies. 

 
Figure 6: Application of right-shift schedule repair method to resolve schedule infeasibility 

 
Here we have to emphasize that two main directions are considered dealing with 

rescheduling as response to random disruptions όǎŜŜ άǊŜǎŎƘŜŘǳƭƛƴƎ ƳŜǘƘƻŘǎέ ƛƴ Figure 4). In the 
literature, there are proposed solutions to have 

¶ good response methods to disruptions, i.e., to have a sophisticated control action 
(e.g., [2],[9],[10],[43]); 

¶ generate robust initial schedules when the response method to disruptions is known 
(e.g., [15], [18],[27], [29]).  

Robust scheduling2 does not concentrate on the modification of the schedule during revision 
but on the creation and selection of robust schedules, i.e., schedules whose quality does not 
change significantly when a disruption occurs [27],[29] and [66]. In this thesis we do not provide 
solutions for this second solution technique however, a brief literature review is given in 
Appendix C, introducing previous promising solutions in the field of reducing system 
nervousness by robust scheduling. 

 

2.3.5 Impact of rescheduling 

The most important point is that while scheduling will optimize the efficiency measure, the 
conventional strategies generate schedules that are often radically different from the previous 
ones. From practical point of view, scheduling techniques addressing continuity of schedules 
during revision seem to be more acceptable or preferable in industrial applications, since 
constructing completely new schedules and adapting the system to it during the schedule 
execution process should be avoided. 

In the coming space, selected previous studies are presented, dealing with the impact 
caused by the rescheduling action. Mainly, they cope with uncertainty during schedule 
execution, however, the proposed solution methods are different. 

New analytical models are presented by Vieira, et al. [40] that can predict the performance 
of rescheduling strategies and quantify the trade-offs between different performance measures. 
Three rescheduling policies are studied in a parallel machine system: periodic, event-driven and 
hybrid. The presented analytical models are able to estimate important performance measures 
for rescheduling strategies in a dynamic, stochastic manufacturing system, as it is evaluated by 
the developed simulation test environment. These models quantify the trade-offs between 

                                                 
2
 Also referred to as proactive scheduling. 
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different objectives and allow optimal rescheduling parameters to be selected without the need 
to develop and run simulation experiments. 

Bidot, et al. [6] present a reactive approach with event-driven dynamic scheduling problem. 
They consider uncertain activity duration in the form of probability distributions which are used 
in the simulation based execution of the calculated schedule. When an activity ends the 
estimated performance measure is calculated (makespan, absolute makespan or sum of activity 
end times) and is compared to the threshold which can be formed as the quotient of the 
indicated performance measure divided by the sensitivity factor. If the threshold is bypassed, 
rescheduling is initiated and a new schedule is generated. During calculation of the new 
schedule they use the mean value of activity durations. When an activity is still processed and 
its minimum possible duration has been exceeded, the probability distribution is truncated and 
renormalized (since the set of possible durations is now reduced). They conclude that 
monitoring activity end times results better system performance than the other two 
approaches. While the rescheduling frequency increased with an increased sensitivity factor, 
the selected performance measure (makespan) improved, however they do not considered the 
effect of rescheduling on stability.  

In their work, Sabuncuoglu et al. [34] propose a simulation-based approach for testing 
reactive scheduling problems in a dynamic and stochastic flexible manufacturing system, by 
applying uncertain processing times and machine breakdowns. Reactive scheduling policies are 
introduced and examined referred to as when-to-schedule and how-to-schedule questions, 
moreover offline and online scheduling techniques are also compared. When-to-schedule policy 
covers the timing of rescheduling, i.e., the rescheduling policy in case applying predictive-
reactive rescheduling strategy. Three policies are examined: periodic with fixed or variable time 
and event-driven. Policy with variable time is referred to as hybrid rescheduling in, e.g., [9],[40] 
and in the current thesis as well. As conclusion, they stated that system performance is 
proportional to rescheduling frequency and the hybrid method outperforms periodic policy. 
These results are similar to the ones we concluded in our previous work on a single machine 
system [31]. (Further solutions based on simulation are presented in Section 5.3.) 

In contrast, Church & Uzsoy [9] consider single machine and parallel machine environments 
and periodic rescheduling policy to minimize maximum lateness and number of rescheduling 
(which is strongly related to stability, discussed later). The uncertainties considered are only 
random job arrivals. They develop worst-case error bounds for the periodic approach assuming 
that an optimal algorithm is used to schedule the jobs available at each rescheduling point. 
Then, for tight due date problems they introduce a combined periodic and event driven 
approach where additional rescheduling action can take place in case new jobs arrive into the 
system. 

The results, obtained from simulation experiments, indicate that schedule quality initially 
improves quite rapidly with more frequent rescheduling, but after a certain point almost no 
further development can be obtained. Since, once the frequency of rescheduling action exceeds 
the frequency of disruptions to the system, the rescheduling action is just causing system 
nervousness without improving the schedule quality. 

Aytug et al. [3] conclude that in an environment with moderate uncertainty, predictive-
reactive methods based on global information and optimization techniques perform better than 
completely reactive dispatching procedures. However, once unpredictability in the system 
exceeds a certain level, i.e., the system is getting more and more instable or nervous, and the 
gathered global information on which the predictive-reactive approaches are based, turns to be 
invalid. By this way, poor schedules are generated, due to solving not the proper problem: the 
problem data they use do not correspond any more to the problem encountered on the shop-
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floor. Research results on scheduling with uncertainties such as completely reactive, robust 
scheduling and predictive-reactive approaches are also categorized and presented in [3]. 

Cowling & Johansson [10] propose a framework using real time information to improve 
scheduling decisions, which allows users to trade off the quality of the revised schedule against 
the production disturbance which results from changing the planned schedule (schedule 
revision), by selecting an appropriate schedule repair strategy. They tested the method on a 
single machine scheduling model. 

First, they examine the effect of a single event on stability and efficiency measurements, 
taking processing time variance as the only disruption category into consideration, and conclude 
that utility and stability depend not only on the nature of the anticipated future event, but also 
on the time of arrival of the information. Second they use simulation to consider how to use 
these measures to decide on a schedule repair or rescheduling strategy in case multiple real 
time events (disruptions). 

Sabuncuoglu & Karabuk [64] study the frequency of rescheduling in the multi-resource 
environment of a flexible manufacturing system with random machine breakdowns and 
processing times. For the scenario considered, they conclude that never reacting to 
disturbances or reacting to every disturbance does not seem to be appropriate policies. A 
moderate level of rescheduling frequency is suggested to ease the negative effects of machine 
breakdowns. 

One of the major objectives of Shafaei & Brunn ([68],[69]) and Rangsaritratsamee, et al. [33] 
is to examine whether a more frequent rescheduling policy would always improve system 
performance. They conclude that under loose due date conditions, the performance is not 
particularly sensitive to changes in rescheduling interval. However, at tight due date conditions, 
the rescheduling interval has a much more significant effect on performance. They also show 
that frequent rescheduling becomes more effective as the level of uncertainty increases. 

Leon et al. [27] show that the rescheduling problem can be formulated as a stochastic 
control problem using decision trees. They apply multiple objectives as a combination of 
makespan and deviation from the original predictive schedule. At each decision point the 
controller takes one of the existing corrective actions in anticipation of a particular disruption 
(proactive) or because of a particular disruption (reactive). 

A number of control rules and procedures of varying complexity for identifying sets of 
operations to reschedule are presented in Sadeh et al. [81]. These are evaluated on a set of 
randomly generated problems with or without bottleneck resources, with a single simulated 
machine breakdown. In their study, they show that the total rescheduling of all remaining 
operations produce the best quality solutions, however, results in the greatest disruption to the 
original schedule (and took the longest time). Moreover, it is shown that one of the most 
sophisticated operation selection procedures during rescheduling is able to find almost as good 
schedules (regarding efficiency) as complete rescheduling of the remaining operations, while 
rescheduling 30% fewer operations. 
 
Summary 

As a summary, we can state that the applied rescheduling policy (e.g. appropriate selected 
rescheduling interval) and rescheduling method (e.g. fixed ratio of operations to be 
rescheduled) have a major effect on system performance, however, a too frequent revision of 
the initial (original) schedule might cause some degree of system nervousness. This behaviour of 
rescheduling systems is discussed more in details in Section 5.1. The detection of correct timing 
of the rescheduling action (rescheduling policy) and the proper method applied for formulating 
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the revised schedule (rescheduling method) are not a trivial issue and depends very much on 
the characteristics of the system investigated. 

In Chapter 2, we introduced and categorised previous solutions, and derived some results 
gained from simulation-based evaluation of predictive-reactive rescheduling systems. A 
comparative evaluation of proposed methods is presented in Table 2. 

 
Table 2. Selected previous papers on the simulation-based evaluation of predictive-reactive rescheduling 
systems. 
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Scheduling environment            
Internal disruptions            

Deterministic, no disr.   x     x    
Machine breakdown x    x x   x x x 
Stochastic process time  x  x  x x  x   
St. operator availability      x      

External disruptions            
Dynamic job arrival   x  x  x x x x x 
Static, i.e. no job arrival x x  x  x   x   

Rescheduling strategy            
Policy            

Periodic   x   x x x x x  
Event-driven x x  x x     x x 
Hybrid   x      x x  

Schedule repair            
Partial x   x x  x x x x x 
Complete x x x x x x x x x x x 

Performance measures            
Efficiency measures            

Flow-time    x x  x  x x  
Lateness   x  x       
Makespan x x x     x   x 
Tardiness  x   x x  x    

Stability measures            
Actuality       x x    
Rescheduling Frequency   x       x  
Starting time deviation x   x   x x   x 
Sequence deviation x   x       x 

Schedule evaluation classes            
Absolute      x  x    
Relative x x x x x  x  x x x 
Dynamic x x x x x x x x x x x 
Static            

Monitored performance index            
% difference in efficiency x x  x  x      
End effect      x      
New job   x  x      x 
Time   x   x x x x x  
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2.4 Schedule evaluation 

In this section, a categorization and classification of different schedule evaluation techniques, as 
well as several aspects of performance measurement techniques are treated. 

 

2.4.1 Evaluation classes 

As stated in [22], an important aspect of schedule measurement is whether an individual 
schedule or a group of schedules is evaluated. Individual schedules are evaluated for measuring 
their individual performances. Regarding a predictive schedule, the result may determine 
whether it will be implemented or not. 

There might be different reasons for evaluating a group of schedules. One of them is to 
compare the performance of the algorithms the different schedules were calculated with. The 
comparison of different schedule instances against different performance measures is another 
option in the evaluation of a set of schedules for the same problem.  

Two main schedule evaluation categories are defined in [22]. The first category refers to the 
evaluation criteria based on the measurement of the schedule quality. Relative comparison 
assumes that for the same initial factory state, two or more schedules are available, and the 
task is to decide which one is better, while the absolute measurement of schedule quality 
Ŏƻƴǎƛǎǘǎ ƛƴ ǘŀƪƛƴƎ ŀ ǇŀǊǘƛŎǳƭŀǊ ǎŎƘŜŘǳƭŜ ƻƴ ƛǘǎ ƻǿƴ ŀƴŘ ŘŜŎƛŘƛƴƎ Ƙƻǿ αƎƻƻŘέ ƛǘ ƛǎΦ ¢Ƙƛǎ ǊŜǉǳƛǊŜǎ 
some sets of criteria or benchmarks against which to measure. 

The second category deals with the environment in which the schedule is evaluated. A static 
measurement means the evaluation of the schedule independently of the execution 
environment, while during the dynamic measurement, beyond the static quality, the robustness 
of the schedule against uncertainties in the system should also be taken into consideration. 

Another aspect in the evaluation of schedules is the state of the manufacturing system after 
executing of the schedule. In [22] these parameters are compared as state measurements by 
which the end effects of the schedule are evaluated at the end of the schedule horizon. An 
example of state measurement could be, e.g., the variance of workload represented by the 
work in progress in the input queues of the machines. Thus, a schedule that results in a high 
variance will probably cause major bottlenecks developing during rescheduling in the next 
scheduling period. 

The cases described in the papers highlighted in Table 2 are categorized as absolute/relative 
and dynamic/static, regarding the evaluation classes listed above. 

 

2.4.2 Performance measure categories 

As the objective during rescheduling a variety of measures can be applied. These measures 
can be categorised in two main groups ([46],[43]): 

¶ time-based measures 
o measures of schedule efficiency, 
o measures of schedule stability, 

¶ cost-based measures. 
We do not consider cost-based performance measures in this thesis work, therefore, only a 

short explanation of existing cost-based measures are presented in this section. Time-based 
measures are introduced and detailed here, regarding efficiency, while stability measures are 
explained in Sections 5.1 and 5.1.2. 
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Time-based measure ς Schedule efficiency 
Similarly to the multiple ways of expressing predictive schedule, multiple notations can be 

ǊŜŀŘ ǿƘŜƴ ǘƘŜ άƎƻƻŘƴŜǎǎέ ƻŦ ŀ ǎŎƘŜŘǳƭŜ ƛǎ ŘŜŦƛƴŜŘΦ ¢Ƙƛǎ ǇŜǊŦƻǊƳŀƴŎŜ ƳŜŀǎǳǊŜ Ƴŀȅ ŎƻǾŜǊ 
schedule efficiency, utility, effectiveness or quality with mostly the similar meaning, naturally 
depending on the context. 

Regarding a single-machine model, (m = 1), let denote ready time (rj ) the point in time at 
which job J is available for processing, completion time (cj), the point in time when the 
processing of job J is finished, and due date (dj) the point in time at which job J must be 
completed. For job-shop scheduling problems (JSP), where a job J has m operations (noted as o) 
and these attributes can be applied to each operation of each job. (The basic formulation of JSP 
can be found in Sec. 2.2.1) 

Basic schedule efficiency measurements cover flow time, lateness, tardiness and makespan 
(or total production time).  

¶ Flow time (Fj) is the amount of time job J spends in the system:  
Fj = cj ς rj. 

¶ Lateness (Lj) is the amount of time in case the completion time of job J differs form 
its due date: Lj = cj ς dj. 

¶ Tardiness (Tj) is the lateness of job J if it fails in meeting its due date, and zero 
otherwise: Tj = max{0, Lj }. 

¶ Makespan, or total production time (cmax) is usually measured in multi-machine 
cases. It is formulated: cmax = max{ c1 ,c2 ,..,cn }, where n is the number of jobs. 

Generally, schedules are evaluated by aggregating basic schedule efficiency measurements 
(flow-time, make span, tardiness, lateness) resulting in one-dimensional performance 
measurements, e.g., weighted mean flow-time, mean or maximum tardiness, maximum 
lateness. Furthermore, the number of tardy jobs can be calculated [5],[32]. (In Table 2 only the 
basic metrics are highlighted). 
 
Cost-based measures 

Time-based performance measures (measures to reach schedule efficiency) do not always 
completely reflect the economic performance of the manufacturing system [41]. Therefore, due 
to the lack of an overall, efficient, time-based performance measure, the scheduling decisions 
should also be evaluated by using an economic performance measure. In this case the objective 
is to define and minimize, e.g., the cost of starting jobs too early, work-in-process inventory, and 
tardiness [99]. Managerial indices, as for instance job profitability, productivity, total cost of 
production, or the cost of missed due dates are more important for managers ς at the higher 
level of decision making than the time-based measures mentioned above (which are reflecting 
more the quality a decisions form the production point of view)3. Shafaei & Brunn [68],[69] 
propose the use of a total cost function in terms of job due date, completion time, number of 
jobs, number of operations, operation processing time, job raw material cost, processing cost of 
operations, job revenue, processing start times, job release time, job tardiness, holding cost 
rate, and tardiness cost rate. 

Considering rescheduling activity again, Vieira et al. [41] categorise rescheduling costs in 
three groups: 

¶ Computational costs ς computational burden running the scheduling system, 
investment costs in the necessary ICT systems4.  

                                                 
3
 Note that this statement is strongly model dependent. 

4
 In case rescheduling is done manually then the computational cost includes the time that the planners, managers, 

etc., spend generating and revising the production schedules. 
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¶ Setup costs ς tooling and fixtures are allocated in advance based on the schedule. 

¶ Transportation or material handling costs - related to delivering materials earlier 
than required, or additional material handling work to transport jobs from one 
scheduled machine to other points in the shop. 

 

2.4.3 Multi -objective solutions 

The so called production-triangle reflects one of the conflict sets of multi-objective 
optimisation. This is arising in case the objective is to minimise work in process inventory while 
maximise resource utilisation, as well as to keep delivery reliability at a high level. It can be easily 
seen that it is impossible to increase tow of the measures without degrading the third one [52]. 

As it was stated before, in most scheduling systems, more than one performance measures 
are treated. According to the surveys of Kempf [22] and Aytug et al. [3] in these directions, the 
problem of scheduling in the face of multiple, often conflicting objectives is not well researched 
in practical scheduling. Solutions only for simple systems are usually given. However, based on 
their review, three main approaches can be distinguished, such as: 

¶ Primary-secondary criteria ς the problem is to minimize the primary metric while 
keeping the secondary within a predefined range. This is often done by converting 
the secondary metric to a constraint. 

¶ Dominated and efficient ς discussed more in details under Pareto-optimality. 

¶ Weighted sum ς this approach is to combine different metrics by using a weighted 
sum of the original metrics a surrogate metric. These weights reflects the trade-offs 
between the metrics. 

In order to be able to have highly utilised resources, as well as less system nervousness 
during rescheduling, i.e., effectively combine the hereinabove introduced schedule efficiency 
and stability measures, the way of formulating multi-objective optimisation problems are 
treated in the followings. In most cases, a multi-objective optimisation problem (MOP) can be 
described (for minimizing g()), without loss of generality, using the following formulation (Eq. 1 ): 

 
Eq. 1  

( ))(),...,(),(min 21 xfxfxfg L
x WÍ

  

where x is a possible solution for the considered problem, Ҡ is the feasible solution space and 
fqόϊ) is the qth objective function (for 1 < q < L). It is obvious that in general, there does not exist 
an exact solution to a problem of this art [65]. However, in order to be able to use the above 
description, the optimality notion should be reformulated when the objective functions to be 
minimized are not linear.  

 
Pareto-optimality solution 

As one of the most known multi-objective optimality notions, the Pareto-optimality concept 
has been widely used in the literature and has significantly contributed in the elaboration of a 
huge set of works. This concept is expected in MOPs to provide flexibility and a large set of 
choices for the decision-maker, and thus it means not to have one global optimum, but rather 
to have a set of solutions in which a trade-off is given. 

Solutions included in the Pareto-optimal set are those that can not be improved along any 
dimension without simultaneously being deteriorated along other dimension(s). The term 
optimality in the Pareto approaches can be formulated as follows: 
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¶ the Pareto-optimal set is constituted of non-dominated solutions; 

¶ x dominates y if for each м Җ q Җ L, fq(x) Җ fq(y) and at least one index r exists where 
fr(x) < fr(y); 

¶ a solution is termed non-dominated, if it is not dominated by any other solution. 

In Figure 7, two objective functions are considered as an example. The solutions C, D, and F 
are dominated and {A,B,E,G} is the Pareto-optimal set of solutions. It can be seen that the 
Pareto-optimal set (highlighted as Pareto frontier) is constituted of several non-dominated 
solutions. The main goal in these approach is to find all the elements of this set (to have the 
solutions spread over the two axes (f1,f2) as close as it is possible, thus ensuring the diversity of 
results) in order to give more choices to the decision maker [84]. 

f1

f2

A

B

C
F

D

E G

Pareto frontier

 
Figure 7: Example for the Pareto optimality approach 

Weighted-sum solution5 
Several authors propose a method for dynamic or stochastic scheduling problem, based on a 

multi-objective function that simultaneously considers efficiency and stability, compromising 
between these measures. A bicriteria-objective function (multi-objective solutions comprising 
two objective functions) is provided in [10],[24],[27],[33],[43] and [87], in order to minimize 
makespan and deviation from the initial schedule (D) which is measured by the difference 
between starting times and/or the sequence of operations in the initial and revised schedules. 
During schedule calculation they apply the bicriteria-objective function as follows (Eq. 2): 
 
Eq. 2  

DrMrZ ³-+³= )1(  

where M is the efficiency measure and r is the weighting factor for stability measure [ ]1,0Ír . In 

some cases the efficiency or stability itself is a combination of the related measures [33]. Results 
regarding efficiency and stability as well as multi-objective solutions are presented more in 
details in Appendix C. 

 
Impact of stability on schedule efficiency 

Vieira, et al. [40] realized the existence of a conflict between avoiding setups (as a measure 
of stability) and reducing flow-time (measure of efficiency). The rescheduling period significantly 
affects the above objectives, which statement is also concluded in [9],[27],[31],[33] and [34]. 

In their study, Mehta & Uzsoy [29] and Cowling & Johansson [10] indicate that schedules 
that are robust to stochastic disturbances can be generated without a lot of degradation of 
system performance. As it is demonstrated by the evaluation of test problems in [43], 
introducing the proposed bicriteria objective function, schedule calculation may result in 

                                                 
5
 It is important to point out that determination of the weights is not a trivial task and depends very much on the 

experience of the decision maker. Therefore, this seriously affects the quality of the results. 
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significantly more stable schedules, while retaining near-optimal makespans. Bidot et al. [6] 
conclude that while rescheduling frequency increases with an enhanced sensitivity factor of the 
rescheduling threshold, the selected performance measure (makespan) improves. Nevertheless, 
the number of rescheduling is increased, though they do not consider the effect of rescheduling 
as a matter of stability. 

 
 
 

2.5 Scope of the research 

As a conclusion of this chapter, in manufacturing systems, difficulties arise from unexpected 
tasks and events, non-linearities, and a multitude of interactions while attempting to control 
various activities in dynamic shop-floors. Complexity and uncertainty seriously limit the 
effectiveness of conventional control and (predictive) scheduling approaches.  

Taking the uncertain and complex environment into consideration, the selection of the most 
appropriate control decision(s) is a very difficult task. The results of the research to be 
presented in the following sections focus on the simulationςbased decision support on the 
operational level of manufacturing systems. Special emphasis is given to the scheduling and 
rescheduling decisions. None the less new scheduling algorithms were developed during the 
research, it should be stressed that the main goal of the work was not the development of new 
scheduling algorithms. Instead, having as input a given production schedule, our main goal was 
to support the decision makers to be able to utilize their scheduling system on its best 
performance. Naturally different scheduling algorithms can be compared and evaluated with 
the methodology presented in the Dissertation. 

Taking the manufacturing control into consideration, in this thesis we do not consider the 
whole manufacturing system, but mainly focus on the solutions related to control decisions at 
the shop-floor level. Therefore, the corresponding ICT systems found on the operational level of 
manufacturing systems is considered with special focus on manufacturing execution and 
manufacturing automation (Figure 8). 

 
 

MESïcontrol and execution, scheduling 

(SFC, PAC, SCADA)

ERP/CAE ïproduction & req. planning 

(MP, MRP, MRP II, CAD)
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MA ïmanufacturing automation 

(CNC, PLC, SPC)

ERPïcapacity and facility planning.

Operational

Tactical

Strategic

 
Figure 8: The scope of the research in hierarchical PPS systems 
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Previous studies in the literature, as well as the daily industrial practice mostly consider only 
two main goals defined for the rescheduling action:  

¶ make the schedule executable/feasible again, 

¶ improve the efficiency performance measure due to adaptation of the schedule to 
the situation occurred. 

In the recent years, as the third goal, several studies deal with the effect of the rescheduling 
also from the stability point of view. One of the aims of the thesis is to analyze the control 
action taken by the scheduler on several rescheduling scenarios (especially focusing on the 
timing), this way, fostering decision-making activities at the operational level of PPS systems. 

Limitations of previous simulation-based approaches are inhibiting the real-time, interactive 
evaluation of (re)scheduling decisions. In these solutions, simulation is not integrated to the PPS 
or manufacturing execution systems. Therefore, without the on-line data connection and 
common database structure with the planner/scheduler, advantageous features, e.g., 
automated model building or automated model parameterization are not available, and by this 
way, the application areas and effectiveness of simulation in production systems are 
considerably reduced. 

In the following chapters, new solution methods are introduced for simulation modelling of 
production systems, enabling their easier integration to MES systems. Applying this technique, 
several aspects of stability-oriented rescheduling are performed and analysed.  
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3. Simulation systems in production planning and 
control 

In this chapter, the possible application areas of modern, discrete event simulation tools in 
production planning and control systems are discussed. We give an introduction into simulation 
(basic issues and categorisation of simulation systems, simulation modelling), we underline the 
challenges and limitations in productions system modelling as a recent research issue in this 
field, as part of the DET solutions.  
 

3.1 Introduction to simulation in production 

3.1.1 Definition of simulation 

Simulation6 is the art and science of creating a representation (model7) of a process or system 
for the purpose of experimentation and evaluation [47]. In other words: building a model of a 
real system (or a system-to-be), making experiments with this model, and creating output result 
for decision making and implementation support. VDI guideline 3633 defines simulation as the 
imitation of a dynamic process within a system employing an experimental model.  
¢ƘŜ ŀƴǎǿŜǊ ǘƻ ǘƘŜ ǉǳŜǎǘƛƻƴ άWhy should simulation be used in production planning and 

scheduling systems?έ ŎƻǳƭŘ ōŜ ǎǳƳƳŀǊƛǎŜŘ as follows. Simulation experiments can be made for 
several reasons but they, actually, are of the same primary purpose; as it is described in [48], all 
simulations are made to be able to make good decisions in some way. Good decisions lead to 
increased efficiency and reduced costs, which are usually two of the main goals of a company. In 
other words, the main reason of simulations is to support decision making. Moreover, the aim 
of simulation is to receive results that may be transferred to real systems. In addition, 
simulation defines the preparation, execution and evaluation of directed experiments within a 
simulation model. 

Some examples of what simulation can be used for are: prediction of system performance, 
evaluation of certain features in the system, comparison between several alternatives, gaining 
knowledge of the system at different life-cycle phases, problem detection and presentation of 
predicted results, assessing the cost of quality, and several others. 

In general, operations research processes are intended to make the right decisions, 
qualitatively as well as quantitatively [26][96]. They formulate optimization models, containing 
all relevant factors, such as destination function, conditions and destination description. These 
processes require large amounts of processing power the more detailed the model is. Besides, 
the results and acceptance of operations research processes are often not satisfactory. In 
addition to linear optimization models nowadays simulation is increasingly used for making the 
άǊƛƎƘǘέ ŘŜŎƛǎƛƻƴǎΦ Lǘ ƻŦŦŜǊǎ ǊŜŀǎƻƴŀōƭŜ ǎƻƭǳǘƛƻƴǎ ŦƻǊ complex problems but does not automatically 
create the actual optimum.  

As processes to be analyzed become more complicated and complex and as more 
parameters have to included, the more important simulation becomes with its capability of 

                                                 
6
 The Oxford English Dictionary describes simulation as: The technique of imitating the behaviour of some situation or 

system (economic, mechanical, etc.) by means of an analogous model, situation, or apparatus, either to gain 
information more conveniently or to train personnel. 
7
 Model is defined in the same book as: A simplified or idealized description of a system, situation, or process, often 

in mathematical terms, devised to facilitate calculations and predictions. 
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analyzing real processes (regarding complexity of manufacturing systems see Section 2.2). These 
processes cannot be covered by mathematical solution methods or optimization processes or 
they may be realized only by using a large amount of resources. The aim of simulation is to 
arrive at objective decisions by dynamic analysis, to enable managers to safely plan and, in the 
end, to reduce cost.  

As mentioned in [26], the greatest overall benefit of using simulation in manufacturing 
environment is that it allows a manager or engineer to obtain a system-wide view of the effect 
ƻŦ άƭƻŎŀƭέ ŎƘŀƴƎŜǎ ǘƻ ǘƘŜ ƳŀƴǳŦŀŎǘǳǊƛƴƎ ǎȅǎǘŜƳΦ hƴ ǘƘŜ ƻƴŜ ƘŀƴŘΣ ƛŦ ŀ ŎƘŀƴƎŜ ƛǎ ƳŀŘŜ ŀǘ ŀ 
particular workstation, its impact on the performance of the station concerned may be 
predictable. On the other hand, it may be difficult, if not impossible, to determine the impact of 
this change on the performance of the overall system in advance. 

The potential benefits of applying ς traditional or conventional8 ς simulation in production 
planning and scheduling are as follows: 

¶ Increased throughput, decreased times, reduced in-process inventories of parts, 
increased utilizations of resources, reduced capital requirements or operating 
expenses. 

¶ Better overview and understanding of the system and system-processes during the 
model building phase. 

¶ α±ƛǊǘǳŀƭέ ǎǘatistical data by analyzing results from simulation. 
 

3.1.2 Types of simulation 

Traditional methods like statistical analysis often are insufficient for the analysis of complex 
production systems. These methods mostly work in the way that they divide the system into 
subsystems in order to reduce the complexity. As a result they lose the information about the 
dynamics that means the change of relations in the course of time [59]. Methods of non-linear 
dynamics look at the system at a whole by displaying the dynamic behaviour in a multi-
dimensional state space. Dynamic systems generally can be classified in stochastic and 
deterministic ones. A system is deterministic when the state at a definite time (tB) is explicitly 
determined by the state at the time (tA). With the same initial state, at the same time and with 
the same circumstances the temporal development of the system will always be identical. The 
transient likelihood from state (A)ς(B) is 1 (denoted as ID1 in Figure 9). The development of a 
stochastic system cannot be predicted explicitly [59],[93]. For a state at time (tC) different 
alternative states (C1,...,Cn) with the likelihood (P1,...,Pn) are possible (marked as ID2 in Figure 9). 

time

state

ID1
ID2

tCtAB

A

B

Cn

C1

 
Figure 9: Transient likelihood of stochastic systems 

                                                 
8
 In this context, the terms traditional and conventional simulation are used for simulation studies or experiments, 

where simulation is formulated in order to find a solution for a defined problem, or evaluate a certain policy or 
strategy. Typically, these are situations where the objective of the simulation is to, e.g., evaluate a factory layout, or 
the control strategy of a conveyor track. Simulation is designed for one purpose and the time horizon of the 
application is limited to the study in which it is realised. 
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From modelling perspective, manufacturing systems are typically dynamic discrete event 
systems (DDES). For constructing valid models of manufacturing systems and their processes the 
models should represent the discrete event evolution of the system, as well as features of the 
underlying continuous processes [20]. 

In most manufacturing simulations, time is a major independent variable. Other variables 
included in the simulation are state variables, which describe what is happening in the process 
or system as functions of time [76]. In contrast, continuous simulation models are used for state 
variables that change continuously with respect to time [26][74]. Typically, continuous 
simulation models involve mathematical and differential equations that give relationships for 
the rates of change of the state variables with time. 

In the discrete event simulation approach, state variables change only at event times (see 
definitions below). Examples of state variables include the number of jobs waiting in the queue 
in front of a machine, the status of each machine on the shop floor, and the location of each job 
in the factory. DES models are mainly flow models that track the flow of entities through the 
factory. The tracking is done using times at which the various events occur. The task of the 
modeller is to determine the state variables that capture the behaviour of the system, events 
that can change the values of those variables, and the logic associated with each event. 
Executing the logic associated with each event in a time-ordered sequence produces a 
simulation of the system. As each event occurs and expires, it is removed from the sequence, 
called an event list, and the next event is activated. This continues until all the events have 
occurred. Statistics are gathered throughout the simulation and reported with performance 
measures. Different probability distributions can be associated with each process to simulate 
variations.  

A discrete, event oriented simulation program only takes points in time (events) into 
consideration that are of importance to the further course of the simulation. Such events may, 
for example, be a part entering a station or leaving it or of it moving on to another machine (see 
Figure 10). Any movements in between are of little interest to the simulation as such. It is only 
important that the entrance and the exit events are displayed correctly. When a part enters a 
material flow object, simulation calculates the time until it exits that object and enters an exit event 
into the list of scheduled events (event list) for this point in time.  
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Figure 10: Event-oriented and continuous representation of a material flow process, regarding events 

as the function of time 
 

In reality, on the other hand, time passes continually. When inspecting a part move along a 
conveyor system, one will detect no leaps in time. The curve for the distance covered and the time it 
takes to cover it is continuous, i.e., it is represented by a straight line in Figure 10. 

Finally, the most important basic terms, related to the simulation modelling of dynamic, 
discrete systems are cited and categorised here. 
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Dynamic discrete event systems (DDES) might be characterised as follows: 

¶ both time and state variables are defined on discrete set; 

¶ state variables can change only a countable number over time. 
While terms regarding simulation modelling are: 

¶ System ς a collection of entities (e.g. facility, process) that comprise a system for 
one might study; 

¶ State of a system ς the collection of state variables necessary to describe the system 
at a particular point in time; 

¶ Event ς point in time where state variable may change value; 

¶ Model ς description of the system behaviour (e.g. logical relationships); 

¶ Simulation ς usage of computer to evaluate a model numerically; 

¶ Emulation ς a simulation model without the control functions modelled inside 

¶ Dynamic simulation models ς system evolves over time. 
Contrary to the traditional application of simulation tools, in the research work an attempt 

was made to use the simulation as a development platform and create a system whose building 
elements, beyond the traditional characteristics provided by the basic system, incorporates 
advanced features. 

 

3.1.3 Steps and life-cycle of a simulation study 

Based on the steps required for a simulation study, defined by Banks [76], the simulation 
study must contain the following phases (Figure 11): 

¶ Problem formulation and objectives. Define the problem to be studied, including a 
statement of the problem-solving objective. 

¶ System definition, Model conceptualisation. Abstract the system into a model 
described by the elements of the system, their characteristics, and their 
interactions. 

¶ Data collection. Identify, specify and gather data in support of the model. 

¶ Model building (or translation). Capture the conceptualised model using the 
constructs of a simulation language or system. 

¶ Verification and validation (VV&T). Establish that the model executes as intended 
and that the desired accuracy or correspondence exists between the model and the 
system (we make a difference between communicative, programmed and 
experimental model VV&T). 

¶ Experiment design. Design the simulation trials regarding the objects formulated in 
the beginning of the study. 

¶ Analysis. Analyse the simulation outputs to draw interferences and make 
recommendations for problem resolutions. 

¶ Presentation of simulation results, Documentation. Supply supportive or evidential 
information for a specific purpose. 

¶ Acceptance, Implementation. Fulfil the decisions resulting from the simulation. 

According to [20],[26], the previous sequence the execution of a simulation study is a 
cyclical and evolutionary process. The first draft of the model will frequently be altered to make 
use of in-between results and in general the final model can only be achieved after several 
cycles. The aim of such a traditional simulation study is to arrive at objective decisions by 
dynamic analysis and support the user in the decision making process. Because of cost and time 
constraints the real manufacturing systems cannot be utilised to conduct trials, therefore, 
modelling, simulation and animation is more widely used in this field today. 
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Figure 11: Steps and related activities in a simulation study (based on [76]) 

 

3.1.4 Challenges and limitations of simulation modelling 

Because of its great versatility, flexibility, and power, simulation is one of the most widely 
used evaluations and decision-support techniques ([21],[34],[75], [76]). While simulation, in 
theory, has great potential to assist in the understanding and efficient operation of 
manufacturing systems, several studies show that there is a low usage of simulation by industry.  

An extensive study of the penetration and use of discrete event simulation in the UK 
manufacturing industry identified only 11% of sites out of a sample of 431 which were currently 
utilizing simulation as a decision support tool, reported in [75]. This view of the penetration of 
simulation into industry is also supported by more recent surveys presented in Appendix C. The 
literature on manufacturing systems simulation reported reinforces our conviction that 
simulation is a technique that still has a lot of underexploited potentialities. 

As it was shown in the previous sections, describing the application areas as well as the 
penetration of simulation in production control, simulation has been typically used for off-line 
decision-making. One of the limitations of its use for on-line decision-making is the considerable 
amount of time spent in gathering and analysing data. Consequently, this has resulted in 
decision-makers relying on simulation primarily for off-line decision support and not for the 
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critical on-line decision-making9 that may arise. In real-time control, the three key issues are 
data acquisition, quick response and instantaneous feedback.  

During the last 20 years, simulation became one of the most popular techniques for 
evaluating the impact of manufacturing decisions. Sometimes it is used alone; sometimes it is 
used in conjunction with operational research (OR) or artificial intelligence (AI) techniques [74]. 
Many types of simulation techniques are used including physical, Monte Carlo, process, discrete 
event ones, and system dynamics simulation. For production decisions, DES is by far the most 
popular and wide-spread member of the set of these techniques [26][76]. At different levels of 
detail, DES models typically describe the flow of materials, the flow of information, the flow of 
jobs, and a number of performance measures. 

When conducting a simulation study it is recommended that a structured systematic 
approach be carefully planned and rigidly adhered to. The 40ς20ς40 rule is a widely quoted rule 
ƛƴ ǎƛƳǳƭŀǘƛƻƴ ǊŜƭŀǘŜŘ ǇŀǇŜǊǎΦ ¢ƘŜ ǊǳƭŜ ǎǘŀǘŜǎ ǘƘŀǘΣ ƛƴ ŘŜǾŜƭƻǇƛƴƎ ŀ ƳƻŘŜƭΣ ŀƴ ŀƴŀƭȅǎǘΩǎ ǘƛƳŜ 
should be divided as follows [75]: 

¶ 40% to requirements gathering such as problem definition, project planning, system 
definition, conceptual model formulation, preliminary experiment design and input 
data preparation;  

¶ 20% to model translation; 

¶ 40% to experimentation such as model validation and verification, final 
experimental design, experimentation, analysis, interpretation, implementation and 
documentation. 

The previous principle is confirmed in [96], where the authors point out that collecting and 
preparing the data in order to use in the simulation study is one of the most important tasks, as 
it takes up about 35% of the project time. Creating the model takes up another huge amount of 
time (25%), while validating and correcting needs 15%, running the experiments 10%, finally 
analyzing and evaluating 15% of the project time. 

Similar ratio highlighted in Figure 12, given by Banks [76], however here a curve is defined 
which reflects the possible benefits as a function of the progress of the simulation study. Data 
collection and model building considerably contribute to the overall expenditures of a 
simulation project. Therefore, it is obvious to focus on those advanced solutions, which 
encourage these two intensely important phases. 

 
Figure 12: Development of benefits and expenditures of a simulation problem (from [76]) 

 
 

                                                 
9
 In this thesis, we present the results of the research efforts made in the field of simulation-supported decision-

making, which resulted new approaches and solutions might contravene the following quotation of Scott Adams. 
άThere are many methods for predicting the future. For example, you can read horoscopes, tea leaves, tarot cards, or 
crystal balls. Collectively, these methods are known as nutty methods. Or you can put well-researched facts into 
sophisticated computer models, more commonly referred to as a complete waste of timeέ. (Scott Adams, [71]) 
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3.2 Simulation for decision support in PPC 

3.2.1 Simulation in production decisions 

The discrete event simulation (DES) approach has been applied to decisions in design, 
scheduling, and planning related to production applications ([26],[76],[91]). The simulation 
models that are used for making or evaluating these decisions generally represent the flow of 
materials to and from processing machines and the operations of machines themselves [74]. 
Design simulations focus on long-term questions regarding plant design and continuous 
improvement. Before building a new manufacturing system (or a part of it), the designer must 
decide on the processing machines, storage devices, and transportation systems to buy, and the 
proper physical layout. Building the manufacturing system on the computer using DES model, 
before equipment purchased and construction begun, one can save a lot on the investment 
costs. Purchasing the needed equipment only and ensuring that the facility can produce at the 
anticipated demand rate, the designer can minimize risk and capital expenditures [91].  

Once a manufacturing system is in operation, DES models can be used to evaluate system 
improvements. A system engineer can analyze the impact of the system changes like adding 
new equipment, reducing work-in-process buffers. Potential problems can be identified and can 
be corrected using a DES model. By far the most common use of DES models is for operational 
decisions such as planning and scheduling [26]. Rabelo et al. [74] differentiate between capacity 
planning, production planning, and process planning simulations regarding the planning 
decisions.  

¶ Capacity planning simulations evaluate the impact of changing product mix or 
demand.  

¶ Production planning simulations evaluate the impact of various aggregation 
schemes and their associated material-order policies. The planner can use a DES 
model to test material reorder points and delivery procedures to manage inventory 
buffers.  

¶ Process planning simulations evaluate assignments of jobs to machines and routings 
for those jobs through the shop.  

Scheduling simulations (or simulation-based scheduling) try to find solutions to daily issues 
including on-time order completion, priority changes, and unexpected changes in resource 
availability. The simulation approach provides a great level of detail without being 
computationally too heavy. DES helps a system engineer in detecting potential scheduling 
problems through checking the resource and schedule performance during the scheduling 
interval (shift, day, or week). The new alternative policies are then executed and performances 
of alternatives are compared. This process is repeated until a feasible and desired schedule is 
achieved [72][73]. Indicated in another way, a schedule is created by simply simulating the 
execution of the factory and taking the recorded execution history as the schedule [100]. The 
result will be a feasible schedule if all the relevant constraints are included. Simulation-based 
scheduling systems tend to include at least two modules: one for generating a preliminary 
schedule, and another module that verifies or refines it [104]. Simulation is used in the latter 
module. In addition, the systems contain a connection to company ERP systems so that 
operative data can be downloaded. Unlike tactical simulation models used for policy 
formulation, operative simulation models are usually deterministic. If a random event such as a 
machine failure occurs, a new schedule can be quickly generated and evaluated [63],[62]. 

In simulation-based scheduling, simulation is used for evaluating the feasibility of the 
preliminary schedule, getting more precise start and end times for events and identifying 
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potential problems. Musselman et al. [62] point out that exact durations of events are usually 
not needed on the ς real ς shop floor as long as there are no problems. The usefulness of 
simulations lies in detecting and preventing these problems before the detailed schedule 
reaches the shop floor. 

Thus, the key benefit of a simulation-based scheduling system comes not from optimal 
solution designed by experts. Instead, the key is feedback of the schedule performance to the 
expert human scheduler and his tools for improving it.  

From the preceding brief discussion, we can see that DES is a widely used and increasingly 
popular method for studying the design and operations of manufacturing systems. In fact, DES is 
often the only type of investigation possible. There are three main reasons we can define. 

¶ DES has the ability to describe the most complex manufacturing systems and to 
include stochastic elements, which cannot be described easily by mathematical or 
analytical models.  

¶ DES allows one to track the status of individual entities and resources in the facility 
and estimate numerous performance measures associated with those entities under 
a wide range of projected operating conditions.  

¶ Alternative system designs or operation policies for a system can be compared via 
DES, to see which best meets a specified performance goal.  

 

3.2.2 Simulation supported schedule evaluation 

A number of authors present simulation-based experimental studies aiming at analyzing 
scheduling problems and rescheduling techniques in a dynamic and stochastic environment. The 
categorization of the selected papers is also highlighted in Table 2. 

The analytical solutions proposed in [40] are able to estimate important performance 
measures for rescheduling strategies in a dynamic, stochastic manufacturing system, and are 
evaluated based on the simulation test environment developed. Rangsaritratsamee et al. [33] 
present simulation for analyzing the effect of rescheduling interval on job-shops by using 
periodic rescheduling. In [6] and [10] the simulation-based execution of the calculated 
schedules is introduced, by applying event-driven rescheduling and considering uncertain 
activity durations in the form of probability distributions. 

Regarding the robustness and flexibility of tardiness and total flow-time in job-shops, 
several schedule repair methods are investigated in [17], and an experiment is performed on a 
set of benchmark problems by executing schedules against simulated machine breakdowns. 

Sabuncuoglu et al. [34] propose a simulation-based approach for testing the rescheduling 
methods in a dynamic and stochastic manufacturing system, applying uncertain processing 
times and machine breakdowns. In their approach the system consists of three components: 
simulation model, controller and scheduler. Hadeli et al. [14] and Cavalieri et al. [8] describe 
different prototype implementations of agent-based manufacturing controlling systems, 
focusing on disturbance handling. The prototype systems are evaluated by using a simulation 
model of a flexible manufacturing system where simulation generates both internal and 
external disturbances. Kim & Kim [23] and Jeong & Kim [19] present a scheduler connected to a 
simulation model where simulation helps to evaluate and select situation-dependent 
dispatching rules. An extension of the dispatching approach is to allow the system to select 
dispatching rules dynamically as the state of the shop changes. Wu & Wysk [103] examine the 
problem of dispatching rule selection in a flexible manufacturing system environment. They 
divide the time horizon into shorter intervals. At the beginning of each interval a variety of 
dispatching rules are simulated, and the rule that yields the best performance is implemented 
for the next time period.  
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An interesting combination of deterministic and stochastic simulation is given by Honkomp 
et al. [95]. They describe a simulator for semi-continuous and batch processing manufacturing 
environments that can accept deterministic schedules and simulate both a deterministic and a 
stochastic realizations of the schedule. The stochastic version can also use rescheduling logic. 
Running two versions of the simulation the authors compare the performance and robustness 
of the schedules. Two metrics are used for comparison.  

PB = avg(OF) / OFDB is a measure of how well the average objective function (OF) value of the 
stochastic simulation compared to the objective function of the best deterministic schedule 
(OFDB).  

DBSD = SD / abs(OFDB) is the standard deviation (SD) of the replicas of stochastic version 
compared to best deterministic objective function (OFDB). This is used as a measure of 
robustness. In simulations, without rescheduling schedules with the best performance also had 
the best robustness which is somewhat counter intuitive. In cases with rescheduling, 
rescheduling strategy with no penalties (i.e., can reschedule anything in the future) or no 
rescheduling created the best performance. Again those that had the best performance had the 
best robustness. 

Watt [94] presents a case-study where several information sources and applications are 
integrated. Simulation is applied for both off-line simulation and scheduling. Most of the 
information used was present in the MES and MRP/ MRPII systems and missing data were 
added. Periodically snapshots of the plant status and static data from the MES are collected and 
schedules are generated by a commercial scheduling package. Off-line simulations are 
performed to test what-if scenarios and reused the same information for scheduling. New rules 
can be created and tested against history data. The improved rules are then applied in the 
scheduling system. 
 
 

3.3 Summary 

In contrast to the needs discussed mainly in Section 3.1, there are a number of problems 
ŀƴŘ ƭƛƳƛǘŀǘƛƻƴǎ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ǘƘŜ άŎƭŀǎǎƛŎŀƭέ simulation techniques that keep potential. 
Limitations of previous simulation-based approaches, presented in Sections 3.2.1 and 3.2.2 are 
inhibiting the real-time, interactive evaluation of operational level decision making. In these 
previous solutions, simulation is not integrated into the PPS or manufacturing execution 
systems. Therefore, without the on-line data connection and common database structure with 
the planner/scheduler, advantageous features, e.g., automated model building or automated 
model parameterization are not available, this way, considerably reducing the application areas 
and effectiveness of simulation in production systems.  
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4. New simulation approaches for planning and 
analysis of complex productions systems 

In this Chapter it will be shown, how some of the problems, described in Chapter 3, are relaxed 
due to alternative modelling and application solutions. As the main contribution of this Chapter, 
we propose a model, extended simulation, which reflects a new approach in simulation 
modelling of productions systems and may support better integrity to manufacturing ICT 
systems. The necessity and actuality of applying this new technique is proven through a 
literature review, furthermore, the proof of the concept is reinforced by two case-studies, as well. 

 

4.1 Key requirements of production simulation 

In the coming space we will introduce, how and why key elements (requirements) for simulation 
influence the needs and expenditures of the realisation process of a simulation. We specify the 
requirements, based on the challenges formulated in the previous sections, and highlight the 
main directions to be followed in order to be able to fulfil the requirements. Thus, key 
requirements can be listed as follows. 

¶ Data acquisition, preparation and modelling capability are key elements, while 
during the other phases, regarding a production simulation study the reduction of 
the expenditures is fairly not as promising as by the others (see section 3.1.4). 

¶ Consequently, improving model building techniques, applying reusable model 
elements, through modular software architecture (similarly to software engineering 
tasks, such as UML) and object oriented modelling. 

¶ Integration to ERP, MES systems might results in a reasonable data acquisition platform. 

¶ Reuse model components for different purposes in different life-cycle phases of the 
system modelled. 

Data acquisition and preparation 
Simulation input data is a major problem which usually takes considerable time to collect. 

The simulation input data problem actually consists of a set of problems: 

¶ availability, 

¶ syntax and semantics, 

¶ information model, 

¶ dependencies, autocorrelation, and inhomogeneities, 

¶ information content, and 

¶ input data analysis. 

Availability of input data is stated by several authors as the main problem. Many companies 
seem to plan and control production with simple rules of thumb, which approach makes correct 
data not necessary. Others have the data, but well hidden in their information systems. The 
same data can also be in several information systems, but with inconsistent values. Yet another 
problem is the dependencies hidden in the data. 

Two problems occur as information is being transferred between applications. The first 
problem is that of syntax. The second problem is that of semantics; in automating the 
conversions. Instead, the major problem in the information content that tends to be focused on 
static means instead of the distributions desired for DES. For a more detailed discussion on 
simulation input data see, e.g. [26],[76] and [92]. 



  

33 
 

 

 
Model building, model translation 

As the second key element, model building is an overwhelming task that requires much 
training and experience. The level of detail required can be hard to define. Traditionally, 
simulation has been applied to the long-term planning, design and analysis of manufacturing 
ǎȅǎǘŜƳǎΦ ¢ƘŜǎŜ ƳƻŘŜƭǎ ƘŀǾŜ ōŜŜƴ ǘŜǊƳŜŘ άthrow awayέ or άǎǘŀƴŘ-ŀƭƻƴŜέ models because they 
are seldom used after the initial plans or designs are finalized [54]. As opposed to the 
άǘǊŀŘƛǘƛƻƴŀƭέ ǳǎŜ ƻŦ ǎƛƳǳƭŀǘƛƻƴΣ ²ȅǎƪ Ŝǘ ŀƭΦ [36] proposed that once the system design has been 
finalized, the simulation that was used for evaluation could be used as the basis for system 
control. Moreover, simulation is created by using neutral system components, i.e., they made 
efforts to build simulation models for SFC, generated automatically.  

Another problem is the exchange of system logic. Application integration partially solves 
that problem, but a neutral modelling language that is capable of describing the systems logic 
would solve the problem of exchanging both models in between DES tools and the exchange of 
logic in between DES systems and, DET components. Randel [92] gives a quite pessimistic view 
regarding the possibility to, e.g., exchange DES models in between tools. He states it might 
never ever come true, because software vendors are interested in protecting their own 
interests. Hitchens [106] presents a life cycle approach to the simulation and emulation of 
automated systems. The approach uses conventional discrete event simulation in all the phases 
for different purposes and reuses the model from stage to stage. And thus, regarding simulation 
from the project point of view, a distinction is made between simulation and emulation. 
Simulation is generally applied in the early stages of a project while emulation is applied during 
the detailed design and implementation phases. 

 
Complexity and granularity in the face of computational efforts 

The level of detail defines the depth or resolution of the model. At one extreme, an entire 
production system Ŏŀƴ ōŜ ƳƻŘŜƭƭŜŘ ŀǎ ŀ ǎƛƴƎƭŜ άōƭŀŎƪ ōƻȄέ ƻǇŜǊŀǘƛƻƴ ǿƛǘƘ ŀ ǊŀƴŘƻƳ ŀŎǘƛǾƛǘȅ 
time [115]. At the other extreme, every detailed motion of a machine could be modelled with a 
one-to-one correspondence depicting the entire machine operation. Unlike the model scope 
which affects only the size of the model, the level of detail affects model complexity as well as 
model size. Determining the appropriate level of detail is an important decision. Considerable 
high detail makes it difficult and time consuming to develop a valid model. Too low-level of 
detail makes the model unrealistic by excluding critical variables. Figure 13 illustrates how the 
time to develop a model is affected by the level of detail. The importance of including proper 
detail to meet the objectives of the study is also highlighted. 
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Figure 13: Effect of level of modelling detail on model development time (from [115]) 
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The complexity of model building should never be underestimated and it is always better to 
begin simple and add complexity rather than create an entire complex model at once (see 
different modelling details at the different phases in Figure 14). Building a model in phases (or 
stages) enables failures to be more readily identified and corrected as well. It is also easier to 
add detail to a model than it is to remove it from it, furthermore, a model with excessive detail 
may be too expensive to program and to execute.  

Our hypothesis on the extended simulation approach to be verified is that if the level of 
modelling detail increases, the features and functions modelled must be reduced, required by 
the limited computational efforts available. 
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Figure 14: Granularity of the model objects at the different phases of the simulation models 

 
 

4.2 Extended simulation 

One of the most important objectives of the research presented here is related to the potential 
improvement of computer simulation as applied to manufacturing systems. Among the current 
limits of simulation, existing tools fall short of offering effective integration into the control 
process of production. In order to enhance the capabilities of simulation and make it more 
responsive ǘƻŘŀȅΩǎ ƛƴŘǳǎǘǊƛŀƭ ƴŜŜŘǎΣ ǘƘŜ ǘŀǎƪ ǿŀǎ ǘƻ ŦƛƴŘ ŀ ǿŀȅ ƻŦ ƛƴǘǊƻŘǳŎƛƴƎ ǎǳŎƘ ŀǇǇƭƛŎŀōƭŜ 
approaches. 

The Section describes the possible applications of simulation on the different levels of a 
production system, as well as the requirements are specified, which are necessary for the 
successful application of the model. Our proposed hierarchical view of the combination of DE 
components and simulation, as well as the related information systems in interface connections 
are introduced here. Hereafter, we refer to it as extended simulation. 

The different roles of simulation in production planning and scheduling as well as in 
production control systems are shown in Figure 15. In order to make the categorization easier 
three main levels are defined. 
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Figure 15: Proposed structure, possible functions and connections of productions simulation, given at 
the different levels of production information systems. 

 

A real production environment is presented on the left side of the figure. The physical 
system constitutes the lowest level that includes the real manufacturing facilities of the factory. 

The middle level corresponds to the schedule and control of manufacturing systems. 
Generally, the multifunctional application system is the Manufacturing Execution System (MES). 
It controls the physical system, i.e., propagates the scheduled tasks as commands to the 
physical system and receives reports about the execution state of the plan. This level, generally, 
does not have any complex strategic planning or tactical decisions-making function but a close 
connection to the resources at a lower level (operational). Any change in the state of the lowest 
level is described by events, and these events will cause reactions in the control system. 

The highest level represents the integrated planning and master scheduling system where 
complex decision-making and planning processes are carried out. The plan is executed by the 
physical system under the control of the second level. The planning and scheduling system gets 
feedback information about the plan from the second level. Both, the new planning and 
scheduling tasks and feedback information are received from the production database. With 
regard to production systems, the here described highest level is usually very complex. As 
described in [49], these systems are tested on the shop-floor after the installation only, which 
results in costly failures at the start-up stage. In order to eliminate the technical problems in the 
design phase, the modelling and simulation of the whole system is needed.  

 

4.2.1 Vertical extension 

However, in order to model the three levels in one framework, substantial compromise is 
needed. A good solution is to distinguish the model of the systems, in the same way as in 
reality, as represented on the right side of Figure 15. 

Generally, a simulation model is developed, for modelling the overall behaviour of the 
system, including control methods and reflecting the physical system by modelling the 
resources. Mainly this kind of simulation model (simulation model in Figure 15) is applied for 
testing and validating production plans and collecting statistical data. The details, the 
granularity and the time-horizon of the simulation model depend on the system to be modelled. 
These features should be chosen in a way that they should enable fast simulation runs, ensuring 
a great number of model runs, which gives statistical confidence. A guideline for the appropriate 
selection of these key elements are described in section 4.1. Naturally, the simulation model 
applied in this level must fulfil the requirements regarding data acquisition and modelling 
capability, i.e., must have a common database structure as the production information system 
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connected, as well as simulation must follow a modularised, component-based structure and 
must be realized in an object-oriented tool. 

Expanding the simulation with additional components (e.g. optimization algorithms) 
powerful simulation-based solvers can be created that may be applied in the solution of 
planning and scheduling problems (simulation-based solver in Figure 15). Generally, in a system 
like this, the simulation module is applied as an evaluation (fitness) function of an optimization 
algorithm. These algorithms may reside outside the simulation software in a separate solver 
system or in the simulation system as an integrated sub-module. 

In contrast to simulation, emulation reflects only the system-state of the underlying 
production structure. Emulation (emulation model in Figure 15) is actually a simulation model 
without control inside. This differs from the typical discrete event simulation models, but the 
applied modelling techniques are the same. Instead of validating production plans, emulation is 
applied for testing and evaluating control systems. Emulation models are used in a much more 
precisely defined way; in order to test the operation of the control system under different 
system loading conditions, and as a risk-free means of training system operators and 
maintenance staff. Emulation and simulation models are used for experimentation in a different 
way. Emulation reflects more precisely the system that will be implemented, and as such, can 
be used to carry out a constrained series of verification procedures to ensure the performance 
or reaction of the control system [50]. Emulation may reduce the developing time of control 
systems and shortening this way the time-to-market, furthermore, allows testing of control 
systems faster than it is done in real-time and under safe conditions. The conditions under 
which the tests are carried out can be better controlled, allowing the study of different 
scenarios the control system has to deal with. The effects of worst-case scenarios and machine 
break-downs can easily be studied.  

 

4.2.2 Extension of simulation to different life-cycle phases 

We propose a second direction for the extension of simulation, namely extension of 
simulation to different life-cycle phases (orange arrow in Figure 16), such as for example factory 
planning, process planning and installing control systems or machines. This is only feasible if the 
features provided by the advanced modelling capability and data integrity, defined above, are 
strictly kept in focus during the realisation of the different phases.  

In the conception phase the simulation is used for marketing a project to the management. 
The modeller should realize the simulation meta-model following the principle that the first-
phase models usually do not require model components which are too detailed, i.e., the system 
itself to be modelled is very complex (see Figure 16). At this work-phase simulation is not 
connected usually to the company information systems. Another constraint in this phase is to 
provide data mainly regarding investment cost and capacity, moreover these results must be 
interpreted to managerial personnel, which usually means high level graphical representation of 
the system modelled. 

In the design phase simulation is used to find the best solution from a set of potential 
designs. The focus in this phase is the overall operating strategy. From the modelling point of 
view, the model-structure created in the preceding phase, is expanded with the static data 
gathered from the DE, i.e., an interface to the company database has to be realised. 

During the implementation phase ς where usually subsystem of the production system are 
built, delivered, and installed ς the simulation is connected to the real control software to test 
the software implementation. The controllers use the emulation (refined simulation) model as a 
replacement for the physical equipment. In this way the control logic can be tested for the 
entire facility. 
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Figure 16: Proposed extension of simulation to different life-cycle phases of a production system 

In the operation phase the emulation is used as a diagnostic tool and runs in parallel with 
the operation of the physical system (the functions of emulation are described in the details 
above). If changes of the system are required the simulation model can be applied for improving 
the installed system or testing suggested modifications before implementing the changes. 

The introduced new approach, extended simulation, reflects a new conceptual view in 
simulation modelling of productions systems and may support better integrity to manufacturing 
ICT systems. The necessity and actuality of applying this new technique is proven through a 
literature review, furthermore, the proof of the concept is reinforced by a case-study, in the 
coming space, as well. 

 

4.2.3 Summary 

The hereinabove introduced and detailed approach, extended simulation, gives the answer 
to the question and challenge arising during the simulation modelling and analysis of complex 
production systems.  

Thus, in this section, extended simulation architecture was introduced and described, as a 
possible application approach of simulation modelling on the different levels and in different 
life-cycle phases of production systems, based on the requirements specified. Vertical extension 
of the simulation on the hierarchical levels was proposed, by applying parallel (instead of 
separate, stand-alone simulation models), demand-driven, temporary simulation models, based 
on a common model structure (e.g. capacity planning then validating production schedules). We 
developed novel methods aiming at the extended application of simulation over time. In the 
proposed approach, key requirements of simulation considered and thus the needs and 
expenditures of the realisation process of a simulation are reduced.  

Emphasizing the importance of applying progressive refinement to model building, is also 
reinforced by our view of simulation modelling. We can state, if the level of modelling detail 
increases (Figure 16), the features and functions modelled must be reduced, because of the of 
the model complexity and computational efforts trade off theorem.  
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4.3 Evaluating and improving PPC systems by using simulation in 
different lifecycle-phases 

In this section, a new method is introduced, aiming at the extended application of simulation 
over time. The basic idea of the solution is to develop a simulation method appropriate for the 
different life-cycle phases, following the changes occurring over time in the production system 
under examination (e.g. design, implementation and operation phases of productions control 
systems) 
 

4.3.1 The emulation and control in an event scheduling simulation environment 

One of the biggest challenges in manufacturing today is to plan a system to produce a high 
variety of customer specific products in the shortest amount of time. In doing this, the 
motivation of using a simulation tool is obvious, as virtual, simulated manufacturing models 
create a test field for conducting experiments on the influences of design on production, for 
supporting operations planning and for testing new methods of production management. 
Simulation is often combined with search and optimization algorithms where the simulation is 
applied as a fitness function.  

The section highlights the results of a research and development work on the optimization 
of temporary storage- and intra-plant transportation operations related to an existing factory 
producing cylindrical sub-assemblies for machine tools. The work highlights the combination of 
a genetic algorithm (GA) and a simulation model, where the main aim is the improvement of 
performance of an intra-plant logistic system. Furthermore, the study described here also 
focuses on the separation of the emulation and control and suggests new control strategies to 
optimize and improve the functionalities of the storage and transportation unit. 

Within emulation, the real control system is connected to a simulation model that imitates 
the machines or the production systems. Emulation may reduce the developing time of control 
systems and thus shorten the time-to-market. It allows testing of control systems faster than in 
real-time and under safe conditions. 

Based on the possible combinations between reality and simulation, we describe four 
possible approaches to test control systems: 

¶ The traditional way to test control systems. Both the control and logistic systems 
exist. The control system is tested after installation. 

¶ Emulation is a combination of a real control system and a simulated logistic system.  

¶ Combination of a simulated control system and a real logistic system. 

¶ Off-line simulation. Both the control system and the logistic systems are simulated. 
 

The main steps of the development process 
Because of the possible iterative steps through the creation of conceptual model, model 

implementation and testing, three main steps have to be defined for the model (Figure 17). 
First, a classical simulation model is created, focusing on the material handling system in the 
design phase. After that the model is separated into two model parts, fostering the 
implementation of the control system, regarding mainly ICT solutions. Finally, in the operation 
phase the implemented and deployed real control system is trained to real-life situations on the 
emulation model and real interface. 

It is clear that this realization process fits into the life-cycle extension concept, described 
under extended simulation. 
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Figure 17: Main steps of how to separate the controller and emulation and of how to evaluate the 

control system 

 
The case study 

As a reference case study, the "long parts" production segment (Figure 18) of a leading 
Belgian manufacturer is addresses. In the segment under consideration, different products are 
manufactured, starting from raw material. These products are long cylindrical and square pipes, 
of different length and diameter. The production is organized around the ASRS, the only 
temporary buffer in the system. A TRAM system serves the ASRS and the workstations. Each 
container contains a various number of identical parts travelling together till the completion of 
their processing plans. 
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Figure 18: Topology of the inspected part of the plant 

The machines are grouped in workstations, with a variable number of container docks and 
with different processing capacities. Typically, two containers are included into a workstation: 
an empty container to be filled with the finished parts, and a container full of parts to be 
worked on. Inside the workstation a part is taken from the full container and loaded into the 
processing machines by the human operator. Then it is processed and unloaded, furthermore, 
stored in the originally empty container. When this last container is full, the ASRS is prompted 
to take it away. Because the TRAM has two container docks, prior to picking up the finished 
containers, it travels to the ASRS to bring the next container which is going to be processed in 
the requesting workstation. Therefore, once the TRAM transported the container with the 
finished parts, it unloads the next one without an additional movement. 

Finished pieces are stored in the ASRS and retrieved in a given number on a daily base, 
according to the assembly orders. The human operators are assigned to workstations and not to 
a single machine on the basis of their skills, shifts and preferences. Overall, the plant holds the 
characteristics of a classical open job-shop, with different alternatives to carry out a processing 
operation. 
 
Preparing off-line simulation 

In the first phase both the emulation and controller were developed in eM-Plant, in the 
same simulation model, in order to be able to test the behaviour of the physical system. 
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Predefined commands and events are available for the controller making the communication 
with the resources possible. Most of them are implemented and used in our simulation model 
as string messages. By using eM-Plant, these messages can be handled asynchronously by 
applying dynamic message lists. 

The message processing component was built to be able to handle the incoming and 
outgoing messages parallel. This enables processes to send messages without expecting an 
immediate answer. A process sends messages to the message processing component and goes 
on as normal, without having to wait for the other process. The message we use is a 
standardized string message: 

 
<msg_ID|time|SensorID|sender|order|name|param1|param2| param3|param4|param5|param6|receiver> 

 
At this state of the work, the only dispatching rule is to store the containers as near to the 

next process as possible. In the initialization phases all the slots of the ASRS are totally empty. 
Applying this setup, the internal rack-serving algorithm of the ASRS was tested to discover the 
most frequent places in the store. 

During the whole model development we have focused on the message-oriented 
communication approach between the controller and emulation parts, which made the 
separation of the controller from the classical simulation easier. When running the controller 
and emulation in the same simulation environment, it is easy to synchronise the two models, 
because the same event controller generates the events and both models have the same 
internal (simulation) clock. This behaviour could be applied very well in the development and 
testing phases. 

In the second phase our communication interface was specified and implemented to be able 
to separate the model, which was divided into emulation and controller. DDE communication 
was established between two eM-Plant licences running on two different computers. The 
structure of the communication between emulation and the external controller is a standard 
string-message-based-real-time-communication, similar to the tested one in the first phase.  
 

 
Figure 19: The interface of the emulated model of the production system in eM-Plant. The controller is a 

separated library in the model 
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Emulation 
The eM-Plant emulation model of the Picanol longpart section (see Figure 19) is a detailed 

simulation model όǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άPicanol Simέύ without the control functions. The emulation 
part is highly detailed: e.g. sensors on the track of the TRAM are implemented, and the 
acceleration of the TRAM is taken into account. The simulation clock (EventController) is built in 
the emulation but generates also events for the controller. 

The relation between emulation and controller, the methods and the main message types 
are shown in Figure 20. 
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Figure 20: The main methods applied in the controller and emulation 
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4.3.2 Suggestions on optimizing the TRAM and the ASRS 

Finding an optimal place in the store 
As it is described above, most workstations do not have a buffer capacity for more than two 

containers. Between operations, the temporary storage of the containers is needed, so the 
most important questions are when and where to store the containers in the ASRS. The answer 
to the question when depends on the schedule of the resources as discussed above. As another 
major possibility for improving the control logic of the internal logistic system, we suggest 
optimizing the utilization of the store. 

Comparing this system to that of in common high-raise warehouses, there are no exact in- 
and output points defined for the material flow in the store. For this reason, the classical zone-
strategy ς applied in most warehouses ς had to be modified.  

The main idea to improve the utilisations level of the ASRS is to collect information about 
the resource, by monitoring the store-in (or store-out) operations. This took place by applying 
data tables frequent_places and inventory_stat ς at the controller side ς representing the slots 
of the ASRS where the number of the store-in operations at one defined slot and the priority of 
the slot are collected. This gives enough information to build from these tables utilisations maps 
of the storage system (see Figure 21). 

 
Figure 21: Utilisation map of the storage system. The axis x, y, z represents the columns, the levels 

and the number of times the slot was used, respectively. 

After discovering the location of the most frequently used slots, e.g., the main in- and 
output points of the material flow, it is obvious to set the initial priority for these slots relatively 
high. Priority for slots is a dynamically changing value reflecting the actual turnover rate. A 
monitoring system has been developed and tested in the controller, to make the store adaptive 
to changes. If the number of the store-in operations exceeds a predefined value at a defined 
slot (e.g. the value of the dynamic priority for each slot), then this slot will be inspected. 
Inspection is a special operation for filtering the inactive orders in frequently used slots by 
moving the container to a slot with a lower priority.  

The results of the simulation study showed that, the above described method results faster 
temporary-storage operations for the TRAM. The maintenance operation technique (inspection) 
ς responsible for the best allocation of the containers ς required only about 3.6% more 
operations from the transportation resource. 

 
Figure 22: The store at the initialisation 

 
Figure 23: The store at the end of the simulation run. 

Entities marked with red (see Figure 23) are inactive containers removed from frequently 
ǳǎŜŘ ǎƭƻǘǎ ŘǳǊƛƴƎ ǘƘŜ ƳƻŘŜƭ ǊǳƴΦ LŦ ƛǘ ƛǎ ǇƻǎǎƛōƭŜΣ ǘƘŜ άƴƻǊƳŀƭέ ǎǘŀǘǳǎ ƻŦ ǘƘŜ ǎǘƻǊŜ όŀƭƭƻŎŀǘƛƻƴ ƻŦ 
the containers) is always similar to the inverse of the actual utilisation map. 
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4.3.3 Optimization of the transportation resource ς Experimental design 

Regarding the current state at the factory, the production schedule is calculated without 
directly scheduling the TRAM. That means the system calculates with a fixed transportation 
time which is considered in the schedule after each operation on a machine. This way, the 
¢w!a ƛǎ ƴƻǘ ŎƻƴǘǊƻƭƭŜŘ ōȅ ǎŎƘŜŘǳƭŜŘ ŜǾŜƴǘǎΣ ōǳǘ ƛǎ ƻǇŜǊŀǘŜŘ ōȅ αŘƛǊŜŎǘέ Ŏŀƭƭǎ ŦǊƻƳ ǘƘŜ ƻǇŜǊŀǘƻǊǎ 
at the workstations (the operators use their terminals to call the TRAM). This is an obvious and 
flexible solution in the current situation, but this kind of dispatching rule is responsible for the 
periodically occurring overbooking of the TRAM, as it is proved by the simulation. In the 
situation where the TRAM is called by several operators in a very short time, it becomes a 
bottleneck in the system, because it is not able to carry out the needed transportations in time, 
moreover, the scheduled tasks for the workstations will be delayed. There is no feedback 
information during the schedule calculation to ensure if it is able to do the task, i.e. whether it is 
free at that moment. By applying this control strategy, our simulation model represented the 
above problems very well. 

In such an environment sensibility in the schedule of the transportation resource could 
question the effectiveness and fault-tolerance of a prescheduled production schedule compared 
to a distributed controller system. This pre-scheduled system lacks robustness and for this 
reason it had to be rescheduled several times in one shift to handle uncalculated disturbances 
occurring in the system, and thus resulting in a high level of system nervousness (regarding the 
impact of frequent rescheduling see section 2.3.5). 

Changing the layout of the physical system or placing new resources is not allowed, so only 
the improvement of the control logic or scheduling method of the resources is effective. One of 
these control logics is the rack selection strategy (RSS) in the temporary storage system. 
Applying optimization by simulation, we searched for an optimal RSS taking into account the 
actual state of the production system (independent variables, namely work in process, stock 
level, order-pattern), while as output of the simulation (as a fitness or evaluation function for 
the GA) we considered the utilization rate and the distance run by the TRAM, as well as the 
average and the maximum service time (the time spent by the worker waiting for the 
transportation operation). 
 
Problem encoding and Genetic Algorithm settings 

The main task is to specify the optimal rack serving strategy (RSS) for the TRAM. In this case 
the RSS means a percentage value, defined by the quotient (Q) of the temporary storage and 
next-operation positions. Q is zero, when ς at a given relation ς it is obvious to store the 
containers near to the location of the last operation, and is 100, when it should be stored near 
to the workstation for the next operation. A matrix (M) represents the relations between 
ǊŜǎƻǳǊŎŜǎ όǊƻǿǎΥ άŦǊƻƳ-ǿƻǊƪǎǘŀǘƛƻƴέ ŀƴŘ ŎƻƭǳƳƴǎΥ άǘƻ-ǿƻǊƪǎǘŀǘƛƻƴέύ όǎŜŜ Figure 24). Elements 
of M are the Q for the given relation. 
 
3. Eq. 

SPWjWiSP

WiSP
ij

dd

d
Q

+
=  

where 
Qij is the calculated quotient from workstation i to workstation j, 
dWiSP is the distance between workstation i and storage point SP, 
dSPWj is the distance between storage point SP and workstation j. 
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Figure 24: The calculation matrix of the Genetic Algorithm 

Initial values are not specified. The search criteria are the minimum and maximum value of 
v ōŜǘǿŜŜƴ л ŀƴŘ мллΣ ǎǘŜǇ ƛǎ млΦ ¢ƘŜ ƳŀǘǊƛȄ a ŀƭǎƻ Ŏƻƴǘŀƛƴǎ άƴƛƭέ ǾŀƭǳŜǎ ŦƻǊ ƴƻƴ-existing 
relations, which can be neglected. This is done by converting the matrix M to a single vector, 
containing values only for the existing relations. The individuals in one generation are these 
vectors. Standard settings for the GA are as follows: mutation rate: 0.1, crossover rate: 0.8, 
fitness reference: absolute, parent selection: deterministic, generation level: 20, number of 
generations: 100. Note that the reason for selecting GA and the detailed description of the 
tuning of the GA is presented in Appendix A. 

The optimization engine defines the input parameter set for the simulation ς in our case the 
actual RSS ς and the simulation returns the resulted fitness value after each simulation run. The 
optimization engine creates new RSS and evaluates the new fitness from the simulation, until 
the predefined stop condition. 
 
Results 

The value of the fitness is 71852 in average (for 100 orders and 10-20 orders/day), without 
the GA optimization (Table 3). Applying the optimized M input matrix after 2000 model runs, 
the fitness value calculated by simulation is reduced to 67269 which is a 7% reduction of the 
considered value. This percentage value changes to 6,4% when the ASRS is filled up to about 
92% at the initial phase of each model run. 

 
Table 3. Results for optimizing RSS considering the utilization of the TRAM and the ASRS 

Applied RSS ASRS is empty ASRS is filled up to 92% 

Currently applied 71852 72471 
Optimized 67269 68115 

 
In Table 4 the comparison of the utilization level, the average and the maximum service 

ǘƛƳŜ ŦƻǊ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ŀǇǇƭƛŜŘ άƴŜȄǘ-ǘƻέ ŀƴŘ ǘƘŜ ƻǇǘƛƳƛȊŜŘ ǎǘǊŀǘŜƎȅ ƛǎ ƘƛƎƘƭƛƎƘǘŜŘ (more results 
are highlighted in Appendix A).  

However, these values could be considered as a are relatively low improvement, it is 
important to outline that the processing time on a machine takes hundred times more than the 
transportation time (Table 5). 
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Table 4. Results for optimizing RSS considering the utilization, the average service time and the maximum 
service time of the TRAM 

Applied RSS Utilization level (%) Average service time (s) Maximum service time (s) 

Currently applied 36,3% 25,6 134 
Optimized 38,7% 24,03 88 

 
 

4.3.4 Summary 

The study showed that the resulting combination of the developed control system and 
emulation model coupled with an optimization module is highly advantageous. Based on the 
extended simulation approach three different phases of the resulted simulation system has 
been developed (design, implementation and operation, thus the first two phases were detailed 
in this section). 

The results of the experiments show that designing new control systems or testing existing 
ones through interactive, object-oriented simulation provides unique designing and testing 
features. As to the results of the simulation study, by using the optimized control strategies, the 
average and maximum time needed for a transportation operation as well as the distance run 
by the transportation resource has been reduced. 
 
Table 5.Production schedule for a particular production order (note that there is a high difference in the 

processing times compared to the transportation times scheduled) 

Resource Startingtime Duration Status 

W3495 2001/01/11 17:25:00.0000 1:17:00.0000 COMPLETED 

TRANSPORT 2001/01/11 18:49:50.0000 3:20.0000 COMPLETED 

TRANSPORT 2001/01/11 18:53:10.0000 3:30.0000 COMPLETED 

W1264 2001/01/11 21:59:50.0000 1:48:00.0000 COMPLETED 

TRANSPORT 2001/01/11 23:47:50.0000 3:20.0000 COMPLETED 

TRANSPORT 2001/01/11 23:51:10.0000 3:30.0000 COMPLETED 

W1529 2001/01/12 14:27:10.0000 2:25:00.0000 COMPLETED 

TRANSPORT 2001/01/12 16:52:10.0000 3:20.0000 COMPLETED 

TRANSPORT 2001/01/12 16:55:30.0000 3:30.0000  

W3754 2001/01/12 16:59:00.0000 2:15:00.0000  

TRANSPORT 2001/01/12 19:14:00.0000 3:20.0000  

TRANSPORT 2001/01/12 19:17:20.0000 3:30.0000  

W3234 2001/01/14 15:45:00.0000 4:08:00.0000  

TRANSPORT 2001/01/14 19:53:00.0000 3:20.0000  

TRANSPORT 2001/01/14 19:56:20.0000 3:30.0000  

W3513 2001/01/14 21:25:10.0000 6:45:00.0000  

TRANSPORT 2001/01/15 04:10:10.0000 3:20.0000  

TRANSPORT 2001/01/15 04:13:30.0000 3:30.0000  

W3234 2001/01/15 04:17:00.0000 58:00.0000  

TRANSPORT 2001/01/15 05:15:00.0000 3:20.0000  

TRANSPORT 2001/01/15 05:18:20.0000 3:30.0000  

W1528 2001/01/15 05:21:50.0000 1:45:00.0000  

TRANSPORT 2001/01/15 07:06:50.0000 3:30.0000  

FINISH    
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4.4 Component-based simulation modelling for off-line schedule 
evaluation 

In this section the proposed new component-based simulation modelling approach is 
introduced. By applying the extended simulation architecture presented in the previous sections 
constituted the stochastic evaluation environment in which we performed absolute evaluation 
of static schedules. The overall goal of these experiments is to prove that the proposed 
extended simulation architecture can be successfully applied for off-line decision support 
purposes at shop-floor level. Thus, the detailed description of the ICT solutions enabling the 
integration of the scheduler and the simulation are presented. Experimental results gained on 
real industrial-sized data are discussed as well. 
 

4.4.1 Simulation model as a schedule evaluator  

As it was stated in the previous sections, simulation captures the relevant aspects of the PPS 
problem, which cannot be represented in a deterministic, constraint-based optimization model. 
The most important issues in this respect are uncertain availability of resource, uncertain 
processing times, uncertain quality of raw material, and insertion of conditional operations into 
the technological routings. 

Here the proposed simulation model is utilized as a component of a higher level system 
taking the role of the real production system. The reason of the intention to connect the 
scheduler to a discrete event simulator is twofold. On the one hand, it serves as a benchmarking 
system for evaluating the schedules on a richer model, on the other hand, it covers the non-
deterministic character of the real-life production environment. Additionally, in the planning 
phase it is expected that the statistical analysis of schedules should help to improve the 
execution and support the scheduler during the calculation of further schedules. The evaluation 
of schedules is measured over several runs of the discrete event simulation where the number 
of replications (independent simulation runs, with different random numbers) depends on the 
construction of confidence intervals. The main functions of the discrete event simulator are as 
follows: it 

¶ evaluates the robustness of daily or weekly schedules against the uncertainties, 

¶ helps in visualizing and verifying the results of a PPS system, 

¶ supports the systematic test of a pilot PPS system, 

¶ offers a benchmark platform for the calculated schedules, 

¶ supports off-line rescheduling decisions. 

¶ sensitivity analysis of the schedules 
 

4.4.2 Architecture of the proposed PPS system 

Based on previous explanatory experiments and basic research, a multi-tiered system 
structure was defined. The layers of the system are as follows: 

¶ the solution of medium-term, integrated capacity and production planning problem 
is provided by an integer-linear programming approach (Capacity requirements 
planning in Figure 25), 

¶ the solution of the short term, detailed finite scheduling problem is calculated by a 
constraint programming technique (Finite capacity scheduling in Figure 25), 

¶ the evaluation and analysis of the predictive short term schedules is carried out by a 
DES model (Simulation in Figure 25). 
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Figure 25: Outline of the developed prototype PPS system 

An important practical requirement is that the system components should be able to work 
with the data stored in existing production information systems. The details of the capacity 
planning module and the finite capacity scheduler are described in [25] and [39]. (Interested 
readers may find more figures introducing the user interface of the short-term scheduler and 
the simulator in Appendix F.) 

 

4.4.3 Architecture of the simulation module 

In the following sections the simulation module of the above architecture and the schedule 
evaluation approach are described. The main requirements for the simulation module (for off-
line schedule evaluation) are as follows: 

¶ common data, on-line and bi-directional connection to the scheduler, 

¶ support for input/output inspections, 

¶ support for different playback strategies, 

¶ playback time horizon: 1 day to 1 week, 

¶ short response time, making multiple model runs possible. 

In order to meet all the requirements for a flexible simulation system, the structure 
presented in Figure 26, namely the component10-based simulation method, has been developed. 
The simulation module and the finite capacity job-shop scheduler (highlighted in Figure 25) have 
connection to the same production database (DB ς Production data in Figure 26). Resources, 
products, process plans, production information, i.e., directly and indirectly usable data are 
transformed exactly to the same form for all system components. This necessitates an on-line 
database connection, which can be realized by standard database interfaces (e.g. simulation 
tools usually offer built in ODBC or Oracle interfaces). Note that simulation relevant data are 
stored locally in the simulation model (DB ς Simulation data in Figure 26). 
 

                                                 
10

 Component-based software engineering (CBSE) is a branch of the software engineering discipline, with emphasis 
on decomposition of the engineered systems into functional or logical components with well-defined interfaces used 
for communication across the components. Components are considered to be a higher level of abstraction than 
objects and as such they do not share state and communicate by exchanging messages carrying data. In this context, 
hereafter, we use the term component for the simulation units, constituting the different functional elements. 
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Figure 26: Architecture and the main process flow in the simulation module 

Hereby, the complexity of integrating the simulation module into the system is significantly 
reduced. None the less, the common data tables ensure data integrity during the creation of the 
simulation; moreover, the data-model serves as a basis for the more detailed shop-floor model. 
Running the simulation by applying the basic data tables results in a waste number of queries 
during the model run, reducing the simulation speed significantly. However, in order to ensure 
enough number of simulation replications for the evaluation of a short time production 
schedule, the total response time should be minimized. In order to resolve the above two 
contradictory objectives an exhaustive data pre-processing phase is included in the simulation 
process.  

The data-processing is carried out before the overall simulation (phase a in Figure 26). The 
redundant data storage in the simulation model is compensated by the advantage of the 
shorter response time. 

Modelling real production systems frequently brings up the problem of handling hundreds 
of resources in a simulation model. Having the modelling objects in hand, which were created 
on the base of the conceptual model, in our architecture the simulation model is created 
automatically based on the pre-processed data (phase b in Figure 26). Note that the processes 
phase a) and phase b), as the key elements for the successful application of extended 
simulation, are described in the following subsection more in the details. 

The automatic generation of the model is followed by the initialization phase (phase c in 
Figure 26). In this phase, besides classical parameter settings, the procedure involves the 
generation of input-parameter-specific model components (entities such as products, 
operators). Contrary to the previous phase, this one is carried out for each replication. 

The simulation runs are repeated until the required number of replications is obtained 
(phase d in Figure 26). Each replication is a terminating, non-transient simulation run, having the 
same initial parameters and settings, but different parameters for uncertain simulation times 
and events generated on the base of random numbers. In the last phase the schedule is 
evaluated by using the evaluation criteria and the results of the evaluation process are 
interpreted by shop-floor managers who are predestined to take necessary actions (the 
Decision maker, phase e in Figure 26). 
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4.4.4 Implementation and experiments 

Case-study for component-based simulation 
The capabilities of the extended simulation approach are presented in this section, aiming at 

to bring the theoretical results/solutions into practice. Thus, a case-study of industrial character 
intended to evaluate schedules in a large job-shop environment was also carried out. By 
applying the new component-based simulation modelling (introduced in the section), the 
resulted model constituted the stochastic evaluation environment in which we aimed to 
perform absolute evaluation of static schedules. The case-study was elaborated at a factory that 
produces mechanical products (Figure 27) by using machining and welding resources, assembly 
and inspection stations and some highly specialized machines. Production is performed in a 
make-to-order manner where deadline observance is an absolute must, even regarding 
unpredicted orders. Since quality assurance is a key issue, tests may result in extra adjustment 
operations. The planning and scheduling method was validated and tested with the real-life data. 

The object-oriented hierarchical simulation model of the plant to be modelled is based on 
the functional decomposition approach. The simulation includes the modelled elements of the 
real plant and each unit of a production set is identified uniquely and traced during its lifecycle. 
¢ƘŜ ǎƛƳǳƭŀǘƛƻƴ ƳƻŘŜƭ όƘŜǊŜŀŦǘŜǊ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴ ƳƻŘŜƭ ƻŦ ǘƘŜ Ǉƭŀƴǘ ƛǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άPS Simέύ ƛǎ 
created following the simulation modelling process described above. The deterministic inputs of 
the simulation are provided in three main data tables. These are tables of resources, process 
plans, and the short time schedule, passed by the scheduler (for more information on the 
simulation ς ERP interface, please read Appendix F) 
 

 
Figure 27: One representative product type of the factory considered 

 
Implementation of the simulation  

The simulation model of the case-study implements a dual-frame architecture (PlantModel 
and SimManager, Figure 28). SimManager component is responsible for the management issues 
related to the simulation experiments (control of the simulation, run simulation replications and 
evaluate results). DataPreparator component manages the ERP interface to the production 
database and pre-processes the downloaded data to the required format. Model creation, 
initialisation and parameterisation is executed by the ModelBuilder component. This 
component contains the meta-model of the resources, as well as the built in execution logics 
and policies. The components of the model are created into the PlantModel frame.  
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Figure 28: Component structure of the simulation model 

 
The detailed process flow of the data preparation and automated model building is depicted 

in Figure 29. 
At the current application phase, and regarding the needs, the simulation experiment is 

initiated11 by a human user. The DataPreparator component opens an ODBC connection to the 
remote production database. Data tables are downloaded, by using sql queries and stored into 
local object tables (highlighted as Schedule_tab, ProcessPlans_tab and resource_Tab). 
Schedule_Table is a result of the basic schedule_tab, expanded with data regarding process 
plans. Again, the user selects the desired week of interest to be evaluated, thus the data stored 
in the schedule_ofSelectedWeek table give the basis for the ModelBuilder component, to create 
the product part objects ASSY and COMPONENT (depending on whether the part needs to be 
assembled with other parts or not). These object instances are then registered to the 
mach_ScheduleTable. Next step is the build-up of the resources (the resources of the plant are 
categorized in two main groups: machine and personnel), based on the weekly calendar 
(resources_Tab), and the object class RESOURCE. The stochastic inputs (Simulation-relevant 
data), such as for example, distribution function of MTBF, are represented by the uncertainty 
parameters mentioned above and stored locally in the simulation. The model resulted, contains 
all the exactly parameterised resources (which are also registered objects of the 
mach_ScheduleTable), and thus the part objects can be placed on these resources. This is the 
initialisation phase (phase c), which is followed by the next phases detailed in the previous 
section. As it is described previously, the realisation process of the schedule execution in the 
simulation is totally object-oriented, i.e., part objects are moving from resource to resource 
following the reference of these objects, stored in a list as an attribute of the part object. 
Therefore, this results in a very high-speed execution, despite the large number of resources and 
tasks.) 

In order to reduce the rigidity of the schedule during execution, the fixed start times of 
operations are removed and only the sequence of the operations on the various resources are 
kept (phase c). We use this control rule in order to follow the predictive schedule as far as 
possible. By default, an operation can be processed if it is in the front of all of its queues. 
However, since there are not only single, but also alternative resources, we may apply a 
relatively liberal execution policy, while keeping the consistency of the overall job-shop 
schedule. Accordingly, an operation may be processed any time if it does not cause lateness in 
the subsequent operations. As a main principle, the simulator should play back the schedule 
only without changing the optimized sequence of the tasks. 

 

                                                 
11

 We have successfully implemented remote control of simulation models via COM interface, which facilitates 
connection to and control of eM-Plant models. A remote control console has been developed in Borland Delphi, 
which has a limited control over the simulation model (load, save, run, read/write parameters, etc.) according to a 
predefined set of functions. 
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Figure 29: The simplified description of the process flow of data preparation and component-based model 

building realised in eM-Plant (phase a and phase b) 

Four main criteria simulation model has to cope with: 

¶ During the simulation, only the sequences of the scheduled operations are 
considered, while, the calculated starting times are neglected because of the 
discrete event-driven execution. 

¶ All of the operators should return to the operators pool when the shift ends. 
Operations not finished within the current shift should request new operator in the 
following shift. The reordering process of the operators to the unfinished operations 
is sequential. 

¶ Each processing activity of an operation requires at least one operator. 

¶ It is possible that the processing time off the operator is shorter than the processing 
time of the machine, for the same operation. 

 
Simulation model of the manufacturing process (execution) 

Regarding the resource modelling of the designated production system (e.g. flow/job-shop 
model) a meta-machine model (Figure 31) is developed and applied for all the machine 
resources. These are preprogrammed component objects in the simulation, consisting of a 
generalized model of the resource, a built in execution policy as well as the process flow. As a 
main principle, the simulator should play back the schedule without changing the optimized 
sequence of the tasks, but considering the calculated start times of the processes. Therefore, as 
a new solution, an ordered queue of the tasks (jobs) is built up in front of each scheduled 
machine (TaskObject in Figure 31), and the parts to be processed are forwarded into these 
objects. Each part has a list of the TaskObjects to be visited during the manufacturing process, 
according to its process plan and the production schedule. Arriving parts at the stations are 
processed in the simulation as follows: 
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Figure 30: Machine group level, workstations, representation of the machine (set-up and operation) 

 
1. Parts waiting for operation are stored in the input buffers of the workstations, always 

sorted by the starting times of the operations (TaskObject in Figure 31). Each operation 
in the schedule contains one of these TaskOject, which, at the initialisation phase of the 
simulation, are distributed to the input buffer of the workstations  
(Figure 31).  

2. The first TaskObject in the input buffer queue reserves the first position of the IN buffer 
on the machine. This ensures that the designated machine is reserved for the 
designated task. 

3. If there is a TaskObject in the IN buffer of the machine (Figure 30), which become ready 
at the moment, the setup process will be immediately started (regarding the task 
represented by the TaskObject). Setup processes even have to be started also in cases 
the part itself has not arrived at the TaskObject. In this case, there is no event generated 
by the arrival of the part for the simulation, however, because of the first criteria 
(enlisted above), it is not allowed to start the setup process based on the calculated 
starting times. The proposed solution is to start the setup process, but freeze it 
immediately, before requesting the operator. It will be restarted only if the simulation 
time equals the planned starting time of the setup process. 

4. In order to start the process at least one operator is needed with the designated service 
skills. One setup operation is executed by one operator (Human resources are allocated 
ǘƻ ǘŀǎƪǎ ŀǎ ŘŜǎŎǊƛōŜŘ ǳƴŘŜǊ αƻǇŜǊŀǘƻǊǎέύΦ 

5. If the setup process has finished and ς in case it is an assembly process ς all the required 
parts (Component type) are already exist in the input buffer, the main process can be 
initiated. 

6. Before the parts are reallocated to the machines, the processing times of the operations 
are set, according to the (_tasks) attributes of the part objects. The processing of the 
parts are realized on two machine objects. For the first one no operator (with service) is 
necessary, while, for the second, it is mandatory to have at least one operator (see 
fourth criteria). In this case, the processing time of the first machine is calculated as 
processing time = sum machine time ς operator time. Of course, for the second machine 
ǘƘŜ ǇǊƻŎŜǎǎƛƴƎ ǘƛƳŜ Ŝǉǳŀƭǎ ǘƘŜ ƻǇŜǊŀǘƻǊǎΩ ǘƛƳŜΦ 

7. Human resources are allocated to operations ŀǎ ŘŜǎŎǊƛōŜŘ ǳƴŘŜǊ αƻǇŜǊŀǘƻǊǎέΦ LŦ ƴƻ ŦǊŜŜ 
operator is available then the process cannot be started. 

8. After processing, parts are sent to a virtual transportation unit (for a predefined 
transportation time interval), before being reallocated to the input buffer of the next 
workstation. 
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Figure 31: Object-oriented model of the execution of the pre-calculated production schedule in the 

simulator, by applying the TaskObject-structure 

 
Table 6. Precedence constraints and assembled parts 

ID Week Version OrderID TaskID Starttime Precedes 

43256 17 1 4 79 128 0 

43257 17 1 4 80 72 79 

43258 17 1 4 81 65 80 

43259 17 1 4 82 60 81 

 

4.4.5 Experimental results 

The planning and scheduling method, described in section 4.4.2, was validated and tested 
with the real-life data. First, projects were generated from existing routing tables and Bill of 
Materials (BOMs), then, using the resource calendars, the planning problem was solved on a 15-
week horizon, with a time unit of one week. Then, the production plan was passed to the 
constraint/based finite job-shop scheduler that worked with a 10 min. time unit. 

The shop-floor of the case-study includes more than 100 resources, all of which are 
modelled in the simulation module. The short-term schedule table contains approx. 2000 tasks 
to be executed in one replication. The time frame of one simulation replication is one week. The 
statistical data are collected both on the resource and product sides. Figure 32 shows the 
developed simulation model. Table 7 summarizes the size of the case-study scheduling problem. 
The initial schedule and the schedules after the simulation runs can be visualized in the 
simulation module providing a comfortable user interface for necessary interventions (Figure 32). 

The most important objective regarding the factory in the case-study was the minimization 
of tardy jobs and WIP level. Additionally, the simulation runs always have a one-week time 
horizon. Taking these facts into consideration, mean tardiness (Tmean), maximum tardiness (Tmax) 
and the number of unprocessed tasks (nupt) after the schedule execution were considered as 
responses and performance measures in the evaluation of the schedules.  

 
Table 7. Summary of the size of the scheduling problem in the case-study. 

Input Size 

Number of tasks in a job 20-500 
Working resources/week 80-120 
Average number of jobs/week 15-20 
Average number of tasks/week 1500-2000 
Scheduling horizon 1 week 
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Figure 32: Screenshot of the simulation model of the case-study and the Gantt charts of the initial and the 

executed schedule, respectively 

Uncertainties in the simulation model 
The basic types of uncertainties modelled in the simulation model are as follows: 

¶ downtimes: due to failures or the unexpected absence of machines and/or workers, 

¶ processing time: the actual processing time of some operations may depend on the 
proficiency and skill of the worker; processing times may be shorter or longer than 
planned, 

¶ rework and adjustment: the execution of specific operations depends on the result 
of quality check operations; based on the result of the check, they may be repeated 
or some adjustment operations are to be performed. 

 
The effect of different uncertainty factors 

Table 8 demonstrates the results of the experiments after the execution of a predictive 
schedule in the simulation model including different uncertainty levels. 

Deterministic execution means that no uncertainty was set in the simulation. As expected, 
in this case the executed schedule is exactly the same as the planned one. In the stochastic 
processing time scenario (row 2 in Table 8) the processing times of the tasks were set randomly 
applying the uniform distribution. The lower bound is 90%, while the upper one is 130% of the 
planned process time. This set-up includes a variation of processing times deriving from the 
difference of the skills of operators, as well. Row 3 in Table 8 refers to machine availability 
which is 95% in the case-study. Tasks not executed are added to the plan for the next week. 

Figure 33 shows the effect of both machine availability and processing time variance on 
average tardiness. Apart from the fact that the chart reinforces the prior expectations about the 
average tardiness effect of input values from different interval sets can be analysed together. In 
the figure, the upper bound for the processing time variance is highlighted. 

Table 8: Illustrative results of deterministic and stochastic schedule execution regarding one week 
(average values in hours, calculated from 250 simulation replications). 

Applied play-back strategy Average tardiness (h) Max. tardiness (h) 
No of unprocessed 
tasks 

Deterministic process times - 0 0 
Stochastic process times 2.74 17.13 5 
95% machine availability and stoch. 
process times 

5.25 18.65 27 
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Figure 33: Response surface: the dual effect of machine availability and processing time variance on 

average tardiness, for a selected production schedule 

 
The effect of missing operators 

Figure 34 ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŜŦŦŜŎǘ ƻŦ ǘƘŜ ƻǇŜǊŀǘƻǊǎΩ ŀǾŀƛƭŀōƛƭƛǘȅ ƻƴ ŀǾŜǊŀƎŜ ǘŀǊŘƛƴŜǎǎ ǾŀƭǳŜ ŦƻǊ 
one selected weekly schedule. The dark bars show the results where the number of operators 
per group was decreased by 10%, while the white bars represent the results with 20% less 
operator per group. The replications were carried out sequentially, group by group, analyzing 
the effect of only one group at one time. The results of the experiment show that it is the 
groups 7 and 8 that have the main effect on the average tardiness. The other operator groups 
have no significant influence on the same output value. Results were calculated from 20 
different parameter settings, each of 10 replications. 

 
Figure 34: The possible effect of missing operators on the calculated schedule 

 
The effect of employees with lower skills 

The major part of manufacturing processes in the factory concerned comprises welding 
which depends highly on the skills of the workers. Experiments were carried out for evaluating 
different worker groups including operators with different skills. We suppose that new 


