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Introduction

Markov processes have been widely examined; the theory is well developed and applications are abun-

dant. Different fields of applications include statistical mechanics, chemistry, economics, population

dynamics and queueing theory.

As models become more and more complicated, a natural need arises to extend results available

for Markov processes to systems where the Markov property does not fully hold, that is, to random

processes with long memory. The exact nature of the memory in such systems can be very different;

in mathematical physics, examples include interacting particle systems or a single particle moving

in a random environment. In these cases, the memory corresponds to the state of the environment.

In queueing theory, non-exponential service or interarrival times lead to M/G/1 and G/M/1 queues

respectively; in such cases, the memory corresponds to the age of non-exponential clocks.

Non-Markovian behaviour can be handled using several different approaches. First, the state space

may be extended to include more information about the process in order to make it Markovian. The

difficulty of this approach is that the state space may end up being extremely large and difficult to

handle. Nevertheless, this approach works for many physical systems, and theory has been constantly

developed over the last decades. Initiated by Kipnis and Varadhan [16], martingale approximation

techniques provide central limit theorem for a wide class of interacting particle systems and random

walks in random environments. Traditionally, sufficient conditions that guarantee central limit the-

orem have been called sector conditions. One specific type of random walks of interest is the “true”

(myopic) self-avoiding walk, where the walker is pushed to areas less-visited by the random walk. It

has been introduced in the physics literature in the 1980’s [1].

For basic queueing models, matrix analytic methods are available, and direct calculations are also

possible using Laplace–Stieltjes transform. These are established and straightforward methods. For

more involved queuing models, another way to handle non-Markovian behaviour is via approximation

by Markovian processes. General distributions may be approximated by specific classes of distributions

that result in Markovian models. One of the most relevant classes of distributions for Markovian

modelling is phase-type distributions.

Behaviour of Markov population models with a large population size has been examined extensively

in the last few decades. One of the first results is Kurtz’s theorem [20], which describes the mean-field

limit (the limit of the system as population size goes to infinity) as the solution of a system of ordinary

differential equations. Since then, a lot of effort from people from many different backgrounds (e.g.

computer science, biology, chemistry) has been spent to extend the classic model to include a varying

degree of non-Markovian behaviour. One such class of population models is the so-called population

generalized semi-Markov process.

The thesis is divided into four chapters.

The topic of Chapter 2 is sufficient conditions for the martingale approximation and central limit

theorem for functionals of stationary and ergodic Markov chains. It is joint work with B. Tóth and

B. Vető and is based on [15] and parts of [14].

The topic of Chapter 3 is the behaviour of the “true” (myopic) self-avoiding walk in d ≥ 3. It is
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joint work with B. Tóth and B. Vető and is based on parts of [14].

The topic of Chapter 4 is O’Cinneide’s characterization theorem for phase-type distributions. The

main result is a new, constructive proof of the sufficient direction of the characterization theorem. It

is joint work with M. Telek. The chapter is based on [13].

The topic of Chapter 5 is the mean-field limit for a class of population generalized semi-Markov

processes (PGSMPs). It is joint work with M. Telek and R. Hayden and is based on [11].

In the rest of this outline, we first give a background on each of the four topics, then present the

results of the thesis in four numbered sections.

Central limit theorem for functionals of stationary and ergodic Markov

processes; sector conditions

Let (Ω,F , π) be a probability space: Ω is the state space of a stationary and ergodic Markov process

t 7→ η(t). We put ourselves in the Hilbert space H := L2(Ω, π). Denote the infinitesimal generator of

the semigroup of the process by G, which is a well-defined (possibly unbounded) closed linear operator

on H.

Let f ∈ H, such that (f, 11) =
∫
Ω
f dπ = 0. We ask about central limit theorem/invariance

principle for

N−1/2

∫ Nt

0

f(η(s)) ds (1)

as N → ∞.

The main tool to prove martingale approximation and central limit theorem is the following the-

orem by Kipnis and Varadhan [16]:

Theorem KV. With the notation and assumptions as before, if the following two limits hold in H:

lim
λ→0

λ1/2
(
λI −G

)−1
f = 0,

lim
λ→0

S1/2
(
λI −G

)−1
f =: v ∈ H,

then there exists a zero mean L2-martingale M(t) adapted to the filtration of the Markov process η(t),

with stationary and ergodic increments such that

lim
N→∞

N−1E

((∫ N

0

f(η(s)) ds−M(N)
)2)

= 0.

Theorem KV is an abstract result that might be difficult to apply to specific models; hence the

need to formulate consequences that are easier to check.

In [16], Kipnis and Varadhan proved that in the reversible case (when G is self-adjoint), Theorem

KV can be applied and thus martingale approximation and central limit theorem hold with no extra

assumptions other than finiteness of the asymptotic variance of f (which is clearly necessary):
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Theorem. If G = G∗, then martingale approximation and central limit theorem applies to every

function f with

lim
t→∞

t−1E

(
(

∫ t

0

f(η(s)) ds)2
)

< ∞. (2)

Later, more general sufficient conditions have been formulated, known collectively as sector con-

ditions.

In 1996, Varadhan introduced the strong sector condition (SSC) [37]; using the notation

S := −1

2
(G+G∗), A :=

1

2
(G−G∗).

for the symmetric and antisymmetric parts of the operator G.

Theorem (SSC). If ∥∥∥S−1/2AS−1/2
∥∥∥ < ∞.

holds, then martingale approximation and central limit theorem applies to every function

f ∈ Ran(S1/2). (3)

(3) is dubbed the H−1-condition; it guarantees finiteness of the asymptotic variance of f in 2.

In 2000, Sethuraman, Varadhan and Yau proved the graded sector condition (GSC) [30]. Assume

that the space has an orthogonal decomposition (in other words, the space is graded):

H = ⊕∞
n=1Hn (4)

such that the grading is consistent with S and A in the sense that S is diagonal (with respect to the

grading):

S =
∞∑

n=0

Sn,n, Sn,n : Hn → Hn (5)

and A changes the grade by 1:

A =
∞∑

n=0

An,n+1 +An,n−1, An,n+1 : Hn → Hn+1, An,n−1 : Hn → Hn−1, A
∗
n,n+1 = −An+1,n. (6)

Theorem (GSC).

If∥S−1/2
n+i,n+iAn,n+iS

−1/2
n,n ∥ ≤ cnβ (i = ±1)

where β < 1 or β = 1 and c is small enough, then martingale approximation and central limit theorem

applies to every function f ∈ Ran(S1/2).
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For some applications, the GSC has been improved to allow some parts of A to be diagonal and

some parts of S to be offdiagonal.

For applications for the various sector conditions, see the survey [17].

The results in Section 1 and [15] are the introduction of a new sector condition called the relaxed

sector condition and an improved version of the graded sector condition.

“True” (or myopic) self-avoiding random walk

The ‘true’ (or myopic) self-avoiding walk model (TSAW) was introduced in the physics literature by

Amit, Parisi and Peliti in [1]. This is a nearest neighbor non-Markovian random walk in Zd which

prefers to jump to those neighbors which were less visited in the past. Long memory effects are caused

by a path-wise self-repellence of the trajectories due to a push by the negative gradient of (softened)

local time.

Let t 7→ X(t) ∈ Zd be a continuous time nearest neighbor jump process on the integer lattice Zd

whose law is given as follows:

P
(
X(t+ dt) = y

∣∣ Ft, X(t) = x
)
= 11{| x−y |=1}w(ℓ(t, x)− ℓ(t, y)) dt+ o(dt) (7)

where

ℓ(t, z) := ℓ(0, z) + | {0 ≤ s ≤ t : X(s) = z} | z ∈ Zd (8)

is the occupation time measure of the walk X(t) with some initial values ℓ(0, z) ∈ R, z ∈ Zd, and the

self-interaction rate function w is assumed to be increasing. This is a continuous time version of the

‘true’ self-avoiding random walk defined in [1].

Non-rigorous (but nevertheless convincing) scaling and renormalization group arguments suggest

the following dimension-dependent asymptotic scaling behaviour (see e.g. [1], [25], [28]):

– In d = 1: X(t) ∼ t2/3 with intricate, non-Gaussian scaling limit.

– In d = 2: X(t) ∼ t1/2(log t)ζ and Gaussian (that is Wiener) scaling limit expected. (We note that

actually there is some controversy in the physics literature about the value of the exponent ζ in the

logarithmic correction.)

– In d ≥ 3: X(t) ∼ t1/2 with Gaussian (i.e. Wiener) scaling limit expected.

In d = 1, for some particular cases of the model (discrete time TSAW with edge, rather than

site repulsion and continuous time TSAW with site repulsion, as defined above), the limit theorem

for t−2/3X(t) was established in [33], respectively, [35] with the truly intricate limiting distribution

identified. The limit of the process t 7→ N−2/3X(Nt) was constructed and analyzed in [36].

In d = 2, superdiffusive lower bounds of order t1/2(log log t)1/2 for the isotropic case, respectively,

of order t1/2(log t)1/4 for the anisotropic case, have been proved for these two-dimensional models, cf.

[34].
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A closely related model to the TSAW is the so-called self-repelling Brownian polymer, which

is essentially the continuous-space counterpart of TSAW. For diffusive bounds for the self-repelling

Brownian polymer in 1-dimension, see [31], and for dimensions d ≥ 3, see [14] and the PhD thesis of

Bálint Vető [38]. This model is not part of the present thesis.

We address the d ≥ 3 case in Section 2 and in [14]. We identify a natural stationary (in time)

and ergodic distribution of the environment (the local time profile) as seen from the moving particle.

For a wide class of self-interaction functions, we establish diffusive lower and upper bounds for the

displacement and for a particular, more restricted class of interactions, we prove full CLT for the finite

dimensional distributions of the displacement.

These results settle part of the conjectures in [1]. The proof of the CLT follows the non-reversible

version of Kipnis –Varadhan theory, using an improved version of the graded sector condition.

Phase-type distributions

Consider a continuous-time Markov chain on n + 1 states with exactly one absorbing state. We

assume that the initial probability distribution of the absorbing state is 0. Let X denote the time of

absorption; its probability density function (pdf) is the following function f : R+ → R+:

f(t) = −αAetA1, t ≥ 0, (9)

where α is the initial row vector of size n (not including the absorbing state), and A is the vanishing

infinitesimal generator; it is essentially the infinitesimal generator of the Markov chain, with the

absorbing state removed. That is, A is a substochastic matrix of size n× n, where the sum of row i

is equal to the negative of the rate of absorption from state i. 1 is the column vector of size n whose

elements are all equal to 1. The 0 initial probability of absorption corresponds to α1 = 1; equivalently,

X does not have a probability mass at 0.

Distributions that can be obtained in the above form are called phase-type distributions; their class

is denoted by PH.

Phase-type distributions can be used to approximate general distributions; PH is dense in total

variation distance among all absolutely continuous positive distributions [5].

The pdf of a phase-type distribution is always analytic and takes the form

f(t) =
∑
i

ni∑
j=1

cλi,jt
j−1e−λit

where −λi are the eigenvalues of A, ni is the multiplicity of λi and cλi,j are constants.

For a given f in PH, α and A are not unique; not even their dimensions are unique. Hence it

makes sense to call the pair (α,A) a representation for f if (9) holds. The dimension of α (and A) is

called the order of the representation.

The class of matrix exponential functions (ME) is defined as follows:
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Definition 1. A nonnegative random variable X with probability density function f is in the class

ME if there exists a vector α of size n and a matrix A of size n× n for some finite n such that

f(t) = −αAetA1, t ≥ 0,

In this case, we will also say that f (and X) is ME(α,A)-distributed.

The difference of an ME pdf compared to a PH pdf is that we do not pose nonnegativity conditions

on α and A. While the formula is exactly the same, if either α has negative or A has negative

offdiagonal elements, the stochastic interpretation that X is the time of absorption of a Markov chain

is no longer available.

Clearly, PH is a subclass of ME. The difference between the two classes is characterized due to

O’Cinneide [26]. We need two more definitions.

Definition 2. f satisfies the positive density condition if

f(t) > 0 ∀t > 0.

Note that the definition allows the density at 0 to be equal to 0.

Definition 3. f satisfies the dominant eigenvalue condition if for some ME representation of minimal

order (α,A) of f , A has a single eigenvalue with maximal real part.

The dominant eigenvalue is always real to avoid oscillation of f around 0; the above definition

excludes the case when a is the dominant real eigenvalue and there is a pair of complex eigenvalues

with the same real part. However, the multiplicity of a may be higher than 1. We also remark that if

the dominant eigenvalue condition holds for some minimal ME representation, it holds for all minimal

ME representations of f .

Theorem 1 (O’Cinneide). If fX is ME(α, A) distributed, then fX has a finite dimensional PH(β,

B) representation iff the following two conditions hold:

• fX satisfies the dominant eigenvalue condition and

• fX satisfies the positive density condition.

The main importance of the theorem is the sufficient direction; that is, if the dominant eigenvalue

condition and the positive density condition hold, then a PH representation always exists. O’Cinneide’s

original proof of the theorem is not constructive; Maier [22] offers another approach using automata-

theoretic algorithms.

In Section 3 and in [11] we provide a constructive proof for the sufficient part of the characterization

theorem. We propose an explicit procedure for computing a PH representation of a matrix exponential

function and showing that the procedure always terminates successfully if the matrix exponential

function satisfies the positive density condition and the dominant eigenvalue condition.
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Compared to existing results, one of the main advantages of the presented constructive proof is

that it is rather elementary, using basic function and matrix theory and stochastic interpretation of

Markov processes. It also links more recent results (such as the sparse monocyclic representation of

[8]) to the characterization theorem.

Generalized semi-Markovian population models

A (homogeneous) Markov population model is defined as follows. Fix a positive integer N . Each of

N individuals is inhabiting a state from a finite set S. Each individual performs Markov transitions

in continuous time: an individual in state i transitions to state j with rate rNij . The rates may depend

on the global state of the system; the global state of the system is defined as the total number of

individuals in each state, that is, a vector xN ∈ ({0, 1, . . . , N})|S| with xN
1 + · · ·+xN

|S| = N . It is easy

to see that the global state of the system xN (t) is a continuous-time Markov chain.

We are interested in the behaviour of such a system for large values of N . A usual assumption is

that a family of Markov population models is density-dependent ; this means that the transition rates

depend only on the normalized global state of the sytem, independent of N . The normalized global

state of the system is defined as x̄N = xN

N .

Density-dependence commonly occurs in real-life scenarios in the field of chemistry (chemical

reaction speed may be affected by concentration), biology and many computer network applications.

While the global state of the system is Markovian, an explicit analysis of this Markov chain is

infeasible because the size of the state space increases exponentially in N .

The classic result of Kurtz [20] says that, upon some further regularity conditions (rij are Lipschitz-

continuous and the initial conditions converge), the evolution of a density-dependent Markov popula-

tion model converges to the solution of a system of ordinary differential equations (ODEs) as N → ∞.

The main advantage of Kurtz’s approach is that the size of the system of equations is |S| regardless of
N , thus avoiding the state-space explosion issue. Another consequence is that the limit is determinis-

tic: for large values of N , the behaviour of the global state of the system is very close to deterministic.

The deterministic limit is called the mean-field limit of the system.

Just like for the Markov population model described above, a population generalized semi-Markov

process (PGSMP) has a finite local state space S; each of N individuals is inhabiting a state from

S, but apart from each individual making Markov transitions, some of the states have a so-called

active clock. When an individual enters a state with an active clock, a generally-timed clock starts.

The distribution of the time before the clock goes off may depend on the state. Once the clock goes

off, the individual makes a transition to another state. Such non-exponential waiting times between

transitions are usually called delays since they are assumed to be non-interruptible by Markovian

transitions.

There has been a recent interest for PGSMPs; in 2012, Hayden [12] and Bortolussi and Hillston

[4] both proved the mean-field limit for PGSMPs with deterministic delays in different ways using

different methods.

In Section 4 and [13], we determine and prove the mean-field limit for PGSMPs with generally-
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timed delays; the main difference compared to Kurtz’s theorem is that the mean-field limit is the

solution of a system of delayed differential equations (DDEs), where the evolution of the system

depends not just on the current state of the system, but also on its entire past. The change from

ODEs to DDEs corresponds to the fact that a “memory” has been introduced to the system by the

generally-timed clocks.

1 The relaxed sector condition and the improved graded sec-

tor condition

The main results of this section are the so-called relaxed sector condition and an improved version of

the graded sector condition. It is joint work with B. Tóth and B. Vető and is based on [15] and parts

of [14].

Relaxed sector condition

Let C ⊂ H be a common core for the operators G, G∗, S and A and let

Bλ := (λI + S)−1/2A(λI + S)−1/2, λ > 0. (10)

Bλ are densely defined and skew-self-adjoint on (λI + S)1/2C.
The main point of the relaxed sector condition is that if there exists another essentially skew-self-

adjoint operator B, formally identified as

B := S−1/2AS−1/2, (11)

and a sufficiently large subspace on which the sequence of operators Bλ converges pointwise (strongly)

to B, as λ → 0, then, the H−1-condition (3) implies that the martingale approximation and CLT of

Theorem KV follow.

Theorem 2 (Relaxed sector condition). Assume that there exist a subspace C̃ ⊆ ∩λ>0 Dom(Bλ)

which is still dense in H and an operator B : C̃ → H which is essentially skew-self-adjoint and such

that for any vector φ ∈ C̃

lim
λ→0

∥Bλφ−Bφ ∥ = 0. (12)

Then the martingale approximation and CLT of Theorem KV follow.

The proof of this theorem shows close similarities with the Trotter-Kurtz theorem. See Theorem

2.12 in [21].

The main point in applications is the proper choice of C̃ and proving that B is not just skew-

symmetric (which follows from its formal definition) but actually essentially skew-self-adjoint.
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Theorem SSC follows directly. Assume now the existence of a grading as in (4)–(6); the following

diagonal version of the GSC also follows:

Theorem (GSC from RSC). If there exists a positive nondecreasing sequence cn such that

∞∑
n=1

c−1
n = ∞

such that

∥S−1/2
n+i,n+iAn,n+iS

−1/2
n,n ∥ ≤ cn (i = ±1),

then martingale approximation and central limit theorem applies to every function f ∈ Ran(S1/2).

The key to the proof is proving

Ran(I ± S−1/2AS−1/2)⊥ = 0, (13)

which is the counterpart of the basic criterion of self-adjointness. See e.g. Theorem VIII.3. of [29].

Improved graded sector condition

We reformulate the graded sector condition from [27] and [17] in a somewhat enhanced version.

Assume that the Hilbert space H = L2(Ω, π) is graded

H = ⊕∞
n=0Hn, (14)

and the infinitesimal generator is consistent with this grading in the following sense:

S =
∞∑

n=0

r∑
j=−r

Sn,n+j , Sn,n+j : Hn → Hn+j , S∗
n,n+j = Sn+j,n, (15)

A =
∞∑

n=0

r∑
j=−r

An,n+j , An,n+j : Hn → Hn+j , A∗
n,n+j = −An+j,n (16)

for some finite positive integer r. Here and in the sequel, the double sum
∑∞

n=0

∑r
j=−r · · · is meant

as∑∞
n=0

∑r
j=−r 11{n+j≥0} · · · .

Theorem 3 (Improved GSC). Let the Hilbert space and the infinitesimal generator be graded in the

sense specified above. Assume that there exists an operator D = D∗ ≥ 0 which acts diagonally on the

grading of H:

D =
∞∑

n=0

Dn,n, Dn,n : Hn → Hn (17)
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such that

0 ≤ D ≤ S. (18)

Assume also that, with some C < ∞ and 2 ≤ κ < ∞, the following bounds hold:∥∥∥D−1/2
n,n (Sn,n +An,n)D

−1/2
n,n

∥∥∥ ≤ Cnκ, (19)∥∥∥D−1/2
n+j,n+jAn,n+jD

−1/2
n,n

∥∥∥ ≤ n

12r2κ
+ C, j = ±1, . . . ,±r, (20)∥∥∥D−1/2

n+j,n+jSn,n+jD
−1/2
n,n

∥∥∥ ≤ n2

6r3κ2
+ C, j = ±1, . . . ,±r, (21)

Under these conditions on the operators, for any function f ∈ ⊕N
n=0Hn, with some N < ∞, if

D−1/2f ∈ H, (22)

then the martingale approximation and CLT of Theorem KV hold.

In the original formulation of the graded sector condition (see [30], [17] and [27]), the bound

imposed in (21) on the symmetric part of the generator was of the same form as that imposed in (20)

on the skew-symmetric part. We can go up to the bound of order n2 (rather than of order n) in (21)

due to decoupling of the estimates of the self-adjoint and skew self-adjoint parts. The proof follows

the main lines of the original one with one extra observation which allows for a more precise estimate

of the order of the term corresponding to (21).

2 Central limit theorem for the “true” (or myopic) self-

avoiding random walk in d ≥ 3

The main results of this section and [14] is diffusive bounds for the TSAW for a wide class of self-

interaction functions in d ≥ 3, and for a more restricted class of interactions, we prove full CLT for

the finite dimensional distributions of the displacement.

Let t 7→ X(t) ∈ Zd be a continuous time nearest neighbor jump process on the integer lattice Zd

whose law is defined by (7), with w : R → (0,∞) a fixed smooth “rate function” for which

inf
u∈R

w(u) := γ > 0, (23)

and denote by s and r its even, respectively, odd part:

s(u) :=
w(u) + w(−u)

2
− γ, r(u) :=

w(u)− w(−u)

2
. (24)

Beside (23), we make the following assumptions: there exist constants c > 0, ε > 0 and C < ∞ such
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that

inf
u∈R

r′(u) > c, (25)

s(u) < C exp{(c− ε)u2/2}, (26)

and, finally, we make the technical assumption that r(·) is an analytic function which satisfies:

∞∑
n=0

(
2

c− ε

)n/2 ∣∣∣ r(n)(0) ∣∣∣ < ∞. (27)

Condition (23) is ellipticity which ensures that the jump rates of the random walk considered are

minorated by an ordinary simple symmetric walk. Condition (25) ensures sufficient self-repellence of

the trajectories and sufficient log-convexity of the stationary measure identified later. Conditions (26)

and (27) are of technical nature.

We consider the d ≥ 3 cases. First, we identify a rather natural stationary and ergodic (in time)

distribution of the environment (essentially: the local time profile) as seen from the position of the

moving point. In this particular stationary and ergodic regime, we prove diffusive (that is of order t)

bounds on the variance of X(t) and diffusive limit (that is non-degenerate CLT with normal scaling)

for the displacement.

It is natural to consider the local time profile as seen from the position of the random walker

η(t) =
(
η(t, x)

)
x∈Zd η(t, x) := ℓ(t,X(t) + x). (28)

It is obvious that t 7→ η(t) is a c.a.d.l.a.g. Markov process on the state space

Ω := {ω =
(
ω(x)

)
x∈Zd : ω(x) ∈ R, (∀ε > 0) lim

|x |→∞
|x |−ε |ω(x) | = 0}. (29)

Note that we allow initial values ℓ(0, x) ∈ R for the occupation time measure and thus ℓ(t, x) need

not be non-negative. The group of spatial shifts

τz : Ω → Ω, τzω(x) := ω(z + x), z ∈ Zd (30)

acts naturally on Ω.

Let

U := {e ∈ Zd : | e | = 1}. (31)

We will denote by e the 2d unit vectors from U and by el, l = 1, . . . , d, the unit vectors pointing in

the positive coordinate directions.
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The infinitesimal generator of the process t 7→ η(t), f : Ω → R, is

Gf(ω) =
∑
e∈U

w(ω(0)− ω(e))
(
f(τeω)− f(ω)

)
+Df(ω) (32)

where the (unbounded) linear operator

Df(ω) :=
∂f

∂ω(0)
(ω) (33)

is well-defined for smooth cylinder functions.

The meaning of the various terms on the right-hand side of (32) is clear: the terms in the sum are

due to the random shifts of the environment caused by the jumps of the random walker while the last

term on the right-hand side is due to the deterministic linear growth of local time at the site actually

occupied by the random walker.

Next, we define a probability measure on Ω which will turn out to be stationary and ergodic for

the Markov process t 7→ η(t). Let

R : R → [0,∞), R(u) :=

∫ u

0

r(v) dv. (34)

R is strictly convex and even. We denote by dπ(ω) the unique centered Gibbs measure (Markov field)

on Ω defined by the conditional specifications for Λ ⊂ Zd finite:

dπ
(
ωΛ

∣∣ ωZd\Λ
)
= Z−1

Λ exp

−1

2

∑
x,y∈Λ

|x−y |=1

R(ω(x)− ω(y))−
∑

x∈Λ,y∈Λc

|x−y |=1

R(ω(x)− ω(y))

 dωΛ (35)

where ωΛ is the Lebesgue measure on Λ. Note that the (translation invariant) Gibbs measure given

by the specifications (35) exists only in three and more dimensions. For information about gradient

measures of this type, see [10]. The measure π is invariant under the spatial shifts and the dynamical

system (Ω, π, τz : z ∈ Zd) is ergodic.

In the particular case when r(u) = u, R(u) = u2/2, the measure dπ(ω) is the distribution of the

massless free Gaussian field on Zd, d ≥ 3 with expectations and covariances∫
Ω

ω(x) dπ(ω) = 0,

∫
Ω

ω(x)ω(y) dπ(ω) = (−∆)−1
x,y =: C(y − x) (36)

where ∆ is the lattice Laplacian: ∆x,y = 11{| x−y |=1} − 2d11{| x−y |=0}. We will refer to this special

setup as the Gaussian case.

Proposition 1. The probability measure π(ω) is stationary and ergodic for the Markov process t 7→
η(t) ∈ Ω.
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The proof of stationarity relies on the so-called Yaglom-reversibility property: with the notation

Jf(ω) := f(−ω), (37)

we get

JSJ = S, JAJ = −A, JGJ = G∗. (38)

Actually, (38) means slightly more than stationarity: the time-reversed and flipped process

t 7→ η̃(t) := −η(−t) (39)

is equal in law to the process t 7→ η(t). This time reversal symmetry is called Yaglom reversibility and

it appears in many models with physical symmetries. See e.g. [40], [41].

Ergodicity comes from ergodicity of the shifts on (Ω, π).

The law of large numbers for the displacement of the random walker follows:

Corollary 1. For π-almost all initial profiles ℓ(0, ·), almost surely

lim
t→∞

X(t)

t
= 0. (40)

The main results of this section refer to the diffusive scaling limit of the displacement.

Theorem 4. (1) If conditions (23), (25), (26) and (27) hold for the rate function, then

0 < γ ≤ inf
| e |=1

lim
t→∞

t−1E
(
(e ·X(t))2

)
≤ sup

| e |=1

lim
t→∞

t−1E
(
(e ·X(t))2

)
< ∞. (41)

(2) Assume that

r(u) = u, s(u) = s4u
4 + s2u

2 + s0, (42)

and we also make the technical assumption that s4/γ is sufficiently small. Then the matrix of

asymptotic covariances

σ2
kl := lim

t→∞
t−1E (Xk(t)Xl(t)) (43)

exists and it is non-degenerate. The finite dimensional distributions of the rescaled displacement

process

XN (t) := N−1/2X(Nt) (44)

converge to those of a d dimensional Brownian motion with covariance matrix σ2.
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The proof uses the martingale + integral decomposition of the displacement X(t):

X(t) = N(t) +

∫ t

0

φ(η(s)) ds+

∫ t

0

φ̃(η(s)) ds. (45)

Here, N(t) is the martingale part due to the jump rates and φ : Ω− > Rd is the conditional speed of

the walker depending on the environment.

The diffusive lower bound is due to a part of N(t) being decorrelated with other terms.

The diffusive upper bound utilizes calculations in the Fourier transform domain and the following

consequence of the Brascamp-Lieb inequality (see e.g. Proposition 2.1 in [3]):

Lemma 5. For any smooth cylinder function F : Ω → R and 0 ≤ λ < c/2:

1

Z(λ)
E
(
F (ω)2 exp{λ(ω(0)− ω(e))2}

)
(46)

≤ 1

c

1

Z(λ)
E

 ∑
x,y∈Zd

∂xF (ω)(−∆)−1
xy ∂yF (ω) exp{λ(ω(0)− ω(e))2}


+

1

Z(λ)2
E
(
F (ω) exp{λ(ω(0)− ω(e))2}

)2
.

∂x denotes ∂
∂ω(x) .

The lemma guarantees finiteness of the asymptotic variance for any polynomial choice of w by

induction, and also for series with a fast enough decay of coefficients.

Finally, in the special case

r(u) = u, s(u) = s4u
4 + s2u

2 + s0,

the improved version of the GSC is applied. We set ourselves in the Fock space where Hn is equivalent

to polynomials of degree n (orthogonalized); to prove the upper bounds in Theorem 3, calculations

are carried out in this space, with one crucial part being∥∥∥D−1/2
n+j,n+jSD

−1/2
n,n

∥∥∥ = O(ndeg s/2),

which allows us to go up to degree 4 in the even part of the jump rate function.

3 Constructive proof of the phase-type characterization the-

orem

The main result of this section is a new, constructive proof of the sufficient direction of Theorem 1.

The publication containing the results of this section is [13].

The structure of the representation obtained is relatively simple and transparent, and also comes

with an explicit formula for the order of the representation. The algorithm consists of five main steps.
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Steps 1 and 2 are preparatory, and Step 5 is just correction related to Step 2. Step 3 has been proposed

in [8]; the main novelty here is Step 4, which is slightly more detailed in the following sketch of the

algorithm.

• Step 1. We find an equivalent minimal ME representation (α1,A1) for (α, A) if it is not minimal

by eliminating any “extra” eigenvalues of A, which does not contribute to the pdf (the pdf will

be denoted by fX).

• Step 2. This step applies only if density is zero at 0, that is, fX(0) = 0. This step is essentially

what may be called “deconvolution”: we represent fX as the convolution of some fY matrix

exponential density function with fY (0) > 0 and an appropriate Gamma (Erlang) distribution

Erlang(k, µ); if fY has a Markovian representation, then it gives a straightforward Markovian

representation for fX as well. Thus we only need to find a Markovian representation for fY (and

the corresponding representation), where fY (0) > 0. If this step is applied, Steps 3 and 4 are

applied for fY instead of fX , and we switch back to fX in Step 5.

• Step 3. An equivalent ME representation (γ, G) is given with Markovian matrix G, while γ may

still have negative elements. The main tool of this step is the so-called monocyclic structure

(with Feedback-Erlang blocks) [8]. Typically, the size of G is larger than that of A1 (because

each pair of complex conjugate eigenvalues is represented with at least 3 phases); that said, G

is a sparse matrix with a simple block bi-diagonal structure. For this step only the dominant

eigenvalue condition is necessary.

• Step 4. γ and G are transformed further into β and B where β is Markovian (and the Markovity

ofB is also preserved) essentially by adding an “Erlang-tail” (a number of sequentially connected

exponential phases with identical rates) of proper order and rate to the monocyclic structure

described by the Markovian matrix G. The main mathematical tool of this step is the ap-

proximation of elementary functions. The skeleton of this step is composed of the following

elements:

– Find τ such that γeτG > 0 (element-wise). Such τ always exists if the dominant eigenvalue

and the positive density conditions hold and G has Feedback-Erlang structure.

– Find λ′ such that

γ

(
I+

G

λ

)τλ

> 0 ∀λ ≥ λ′

which is always possible since
∥∥γ(I+ G

λ )
τλ − γeτG

∥∥→ 0 as λ → ∞.

– Let ϵ = inft∈(0,τ) fX(t). ϵ > 0 because of the positive density condition and the result of

Step 2. Find λ′′ such that∣∣∣∣∣−γeGτG1+ γ

(
I+

G

λ

)τλ

G1

∣∣∣∣∣ < ϵ ∀λ ≥ λ′′.

16



This ensures that −γ
(
I+ G

λ

)k
G1 > 0 for k = 1, . . . , n where n = τλ′′. This is always

possible when ϵ > 0.

– Extend the (γ,G) representation with an Erlang tail of rate λ = max(λ′, λ′′) and order

n = ⌈λτ⌉.

• Step 5. If Step 2 was applied, at this point we have a Markovian representation for fY , and we

switch back to fX . If Step 2 was not applied, Step 5 does not apply either.

Theorem 6. If the positive density condition and the dominant eigenvalue condition hold, then the

above algorithm always successfully finds a PH representation for fX .

The proof for the necessary direction is essentially a generalization of the Perron–Frobenius theorem

as in e.g. [23].

4 Mean-field limit for a class of population models with

generally-timed transitions

The main result of this section is the mean-field limit for a class of population generalized semi-Markov

processes (PGSMPs). It is joint work with M. Telek and R. Hayden and is based on [11].

We extend the homogeneous Markov population model. N is the population size, each individual

is inhabiting a state from a finite set S and each individual in state i performs Markov transitions

from transitions to other states j with rate rNij . The global state of the system is the total number

of individuals in each state, that is, a vector xN ∈ {0, 1, . . . , N}(S) with xN
1 + · · · + xN

|S| = N . The

normalized global state is x = xN

N .

We also assume that the density-dependent aggregate rates rij(x) = xir
N
ij (Nx) are Lipschitz-

continuous with common Lipschitz-constant R. R will be assumed to also be an upper bound on

rij .

We introduce generally-timed transitions. Partition the states into S = S0∪S1, where S0 con-

tains the states where no generally-timed transitions are allowed, while S1 contains the states where

generally-timed transitions are allowed (these will be called active states). For each i ∈ S1, a distri-

bution function Fi is given; our only assumption on Fi is that it is concentrated on [0,∞).

Whenever an individual enters a state i ∈ S1, it generates a random time according to Fi indepen-

dent of everything (we say that the clock is initialized). After that time has elapsed, the individual

makes a transition to some other state (these types of transitions will be called non-Markovian tran-

sitions). Upon leaving state i, the clock is disabled and will be resampled according to Fi if the

individual returns to i later.

To summarize: a single individual may have at most one active clock at any given time; however,

there is no restriction on the total number of simultaneously active clocks in the entire system.

We have a number of assumptions. We assume that the system is delay-only, that is, if i is an

active state then rij = 0∀j. We also assume that the non-Markovian transition from an active state
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i always targets the same state; we will formulate this by saying that the distribution pi of the target

state is deterministic: pij is equal to 1 for a unique j ∈ S and 0 otherwise. We also assume that the

target state is non-active, that is, j ∈ S0. This is a technical restriction ensuring that non-Markovian

transitions do not follow each other directly. However, it is not a modelling restriction as the state

space may be reconfigured so the generally-timed transition is followed by a (very fast) Markovian

transition sampling from an arbitrary distribution. We set pij = 0 for all other pairs (i, j).

We also assume that the initial state of the system is concentrated on S1; in other words, no

generally-timed clocks are active initially.

We are looking to construct the above model via Poisson-representation. Let Pij(.) be independent

Poisson-processes with rate 1 for every i ̸= j ∈ S. Let {T ij
k }∞k=1 be mutually independent sequences

of identically-distributed random variables distributed according to Fi for each i ∈ S1 and j ∈ S0.

(Taking a separate sample for each j will make formulating the Poisson-representation easier.) For

easier formulation, Fi will be included in the notation for i ∈ S0 as well, but with 0 coefficients, so Fi

is arbitrary for i ∈ S0.

The Poisson-representation of x̄N (t) is

x̄N
i (t) =x̄N

i (0)−
∑
j:j ̸=i

1

N
Pij

(
N

∫ t

0

rij(x̄
N (u))du

)
+
∑
j:j ̸=i

1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)

+
∑
h∈S0

∑
j∈S1

∫ t

z=0

pij1

(
T ji

Phj(N
∫ z
0

rhj(x̄N (u))du)
≤ t− z

)
1

N
dPhj

(
N

∫ z

0

rhj(x̄
N (u))du

)

−
∑
h∈S0

∑
j:j∈S0

∫ t

z=0

pji1

(
T ij

Phi(N
∫ z
0
rhi(x̄N (u))du)

≤ t− z

)
1

N
dPhi

(
N

∫ z

0

rhi(x̄
N (u))du

)
(47)

for i ∈ S.
The first term is the initial condition; the second and third terms correspond to Markovian jumps

when an individual transitions from and to state i, respectively.

The first of the last two terms in the formula (47) should be understood as follows. If i is active,

the term is 0 by our assumptions on pij . If i is inactive, consider an active state j with pij = 1 and

an inactive state h. If a Markov transition from h to j occurs at time z, a non-Markovian clock

distributed according to Fj starts. The clock samples from the list {T ji
k }∞k=1; to ensure that a new k

is used for each clock, k is set to Phj

(∫ z

0
rhj((x̄

N (u))du
)
(which increases with each arrival of Phj).

When the indicator variable is 1, the clock has already set off before time t and needs to be counted

among the actual transitions; when the indicator variable is 0, the clock has not yet set off by time t,

so the corresponding j → i transition has not yet occurred, and the contribution of the integral is 0.

Conversely, the last term of (47) is nonzero only if i is active; consider an inactive state j

with pji = 1 and an inactive state h. If a Markov transition from h to i occurs at time z, a non-

Markovian clock distributed according to Fi starts. The clock samples from the list {T ij
k }∞k=1 with

k = Pij

(∫ z

0
rij((x̄

N (u))du
)
(which increases with each arrival of Pij). When the indicator variable is

1, the clock has already set off before time t and needs to be counted among the actual transitions

(which decrease the number of individuals in state i, hence the negative sign); when the indicator
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variable is 0, the clock has not yet set off by time t, so the corresponding i → j transition has not yet

occurred.

The mean-field limit is defined by the following delayed differential equations (written in integral

form):

vi(t) =vi(0)−
∑
j:j ̸=i

∫ t

0

rij(v(u))du+
∑
j:j ̸=i

∫ t

0

rji(v(u))du

+
∑
h∈S0

∑
j∈S1

∫ t

u=0

pijFj(t− u)rhj(v(u))du

−
∑
h∈S0

∑
j:j∈S0

∫ t

u=0

pjiFi(t− u)rhi(v(u))du (48)

for i ∈ S.
Lipschitz continuity of rij guarantees that the solution of (48) uniquely exists.

Again, we assume convergence of the initial condition:

lim
N→∞

P(∥v(0)− x̄N (0)∥ > ϵ) = 0 ∀ε > 0.

Theorem 7. Under the assumptions and setup given above, we have, for any T > 0 and ϵ > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

∥x̄N (t)− v(t)∥ > ϵ

}
= 0

A few words about the proof. Define the auxiliary process yN (t) via

yNi (t) :=vi(0)−
∑
j:j ̸=i

∫ t

0

rij(x̄
N (u))du+

∑
j:j ̸=i

∫ t

0

rji(x̄
N (u))du

+
∑
h∈S0

∑
j∈S1

∫ t

u=0

pijFj(t− u)rhj(x̄
N (u))du

−
∑
h∈S0

∑
j:j∈S0

∫ t

u=0

pjiFi(t− u)rhi(x̄
N (u))du (49)

for i ∈ S.
Then

|x̄N
i (t)− vi(t)| ≤ |x̄N

i (t)− yNi (t)|+ |yNi (t)− vi(t)|

for any i ∈ S.
Denote

DN
i (T ) = sup

t∈[0,T ]

|x̄N
i (t)− yNi (t)|.
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We estimate ∥yN (t)− v(t)∥ by

|yNi (t)− vi(t)| ≤ C

∫ t

0

∥xN (u)− v(u)∥du

for some finite C (∥.∥ is the maximum norm on RS). We aim to show that DN
i (T ) → 0 in probability

as N → ∞ for each i ∈ S; once we have that, we have

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) + ZR

∫ t

0

∥x̄N (u)− v(u)∥du (50)

and an application of Grönwall’s lemma ([9], page 498) readily yields

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) exp(ZRT ),

proving the theorem.

DN
i (T ) → 0 in probability is proved by applying a number of probability concentration results,

notably the functional strong law of large numbers for the Poisson process ([39], Section 3.2) and

Azuma’s inequality [7, 2] after a proper setup.
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[31] P. Tarrès, B. Tóth and B. Valkó. Diffusivity bounds for 1d Brownian polymers. Ann. Probab.,

40(2):695–713, 2012.
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[38] B. Vető. Asymptotic behaviour of random walks with long memory. PhD Thesis, 2011.

[39] Ward Whitt. Internet supplement to Stochastic-Process Limits, 2002.

[40] A. M. Yaglom. On the statistical treatment of Brownian motion (russian). Dokl. Akad. Nauk

SSSR, 56:691–694, 1947.

[41] A. M. Yaglom. On the statistical reversibility of Brownian motion (russian). Mat. Sbornik,

24:457–492, 1949.

23


