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Abstract 

This dissertation presents a simple design method to predict the safety of rocking multi-block columns. 

As the background of the design method Housnerôs refined impact model and a new model for multi-

block columns subjected to earthquakes, which contains an impact and an opening model are presented.  

The reasons of the well-known fact that rocking block experiments show lower energy loss during impact 

than it is predicted by Housnerôs impact model is investigated. It is found that a reasonable explanation 

for the difference is that in the original model the best case scenario was assumed: that impact occurs at 

the edges, which results in the maximum energy loss. In reality, due to the unevenness of the surfaces, or 

due to the presence of aggregates between the interfaces, rocking may occur with consecutive impacts, 

which reduces the energy loss. This hypothesis is also verified by experiments. 

The new 2D column model is purely mechanical: assuming rigid blocks and classical (inelastic) impact. 

Both in the impact and in the opening model all the possible opening configurations are investigated, 

since it is shown that in many practical cases unexpected patterns may occur. The effect of energy 

dissipation during impact is investigated. Using the model in accordance with the literature it is found that 

monolithic blocks are more vulnerable to overturning than multi-block systems. 

With the aid of the column model it is shown that an earthquake can be reasonably well represented for 

overturning by two parameters: the peak ground acceleration and the replacement impulse duration. The 

Overturning Acceleration Spectra of rigid blocks is presented for 100 different earthquake records. Based 

on the response of the elements a new parameter, the ñreplacement impulse durationò is defined, that 

leads to a simple design method to predict the safety of rocking blocks. 
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Chapter 1 Introduction 

Historic masonry and stone buildings are vulnerable to earthquakes. Most of the churches built in 

Hungary in the XII-XIX th centuries contain stone or brick columns, walls and arches. Many of them were 

severely damaged by moderate ground motions. For example, in 1956 the vaults of a baroque church in 

Taksony was collapsed during the Dunaharaszti earthquake, M5.6 (Szeidovitz 1984). In the archive 

photos (Fig. 1) it is clearly visible, that the motion of the arches were so big that the vaults collapsed, 

while the arches themselves became seriously damaged but were not destroyed. This is the reason that in 

the investigation of stone or brick buildings both the stability of the structure and the motions during the 

excitation must be examined. It is also important to note that these structures were not designed for 

earthquakes, however today they must be investigated for the expected seismic event. 

 

Fig. 1 The ruined Szent Anna parish church after the earthquake in Dunaharaszti, 12th Jan. 1956 (Historia 

Domus 1956) 

Static analysis of brick or stone structures are well explored and they are usually based on the thrust line 

analysis (see e.g. the fundamental paper of Heyman (1966)) with the aid of which a pushover analysis can 

also be performed. For earthquake design these methods are inapplicable. To illustrate this, we recall 

Housner's (1963) statement that these structures subjected to earthquakes show a clear size effect (the 

smaller the structure, the more vulnerable for earthquakes) which can not be modelled with the static 

analysis. 

It is well known, that the classical analysis used for the design of regular buildings, such as the Response 

Modal Analysis (RMA) or even the time history analysis of elasto-plastic structures are not directly 

applicable for masonries, where the ñrockingò of the blocks (opening and closing with impact) plays an 

important role in the nonlinear response of masonry structures (Makris and Konstantinidis 2003). The 

main reason that RMA is not applicable is that these structures do not have a definite period of vibration, 

since motion occurs by the opening and closing of the cracked interfaces (the elastic deformations are 

negligible) and the length of ñperiodò depends on the opening of the interface. 

As a rule, we may say that there is no generally accepted method to analyze and design these kinds of 

structures. 
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In this thesis we will make three important steps to reach a design methodology: 

- modelling of single (rocking) blocks for earthquakes, 

- modelling of columns consisting of rigid blocks, subjected to earthquakes, 

- develop a design method to evaluate rocking structures. 

The literature summary presented below follows these major steps. 

 

Modelling of single blocks 

Housner (1963) published his classical paper more than five decades ago, in which he presented a simple 

model for the rocking rigid block (Fig. 2). He investigated a block which rotates around corner A, then ï 

when the block reaches the vertical position ï impact occurs, and the block rotates further around corner 

B. Assuming identical angular momentum about corner B before and after the impact (Fig. 2), he 

determined the angular velocity after impact, ɤa (Fig. 2c) as a function of the geometry and the angular 

velocity before impact, ɤb (Fig. 2a): 

 a ‘ bȟ         ‘Hous
ςὬ ὦ

ςὬ ςὦ
 

(1) 

where ɤb and ɤa are the angular velocities before and after rocking, h and b are the dimensions of the 

block (Fig. 2a), ɛ is the angular velocity ratio. 

 

Fig. 2 Housnerôs model for a rocking block 

The square of the angular velocity is proportional to the kinetic energy of the rocking block, and hence at 

every impact there is an energy loss. The relative loss in kinetic energy during rocking can be calculated 

as: 

 
–
 


ρ ‘  (2) 

The motion of a rocking block ï subjected to gravity load only ï according to Housnerôs model is shown 

in Fig. 3. Note that both the amplitude and the time between impacts decrease with time. 

The rocking block was investigated experimentally by several researchers: Anooshehpoor and Brune 

(2002) used timber blocks, Prieto-Castrillo (2007) and Ther and Koll§r (2017d) granite, Aslam et al. 

(1980) and Ma (2010) concrete, Lipscombe and Pellegrino (1993) used steel elements. In almost every 

case, it was found that in the experiments the energy loss (and the decrease in angular velocity) is smaller 

than the one predicted by Housnerôs model (Fig. 3). The results are shown in Table 1 and in Fig. 4.  
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Fig. 3 Typical time- displacement curve of a rocking block according to Housnerôs model (dashed line), 

and according to our experiment (solid line). 

In case of the experiments of Elgawady et al. (2011) rocking did not occur freely but through a steel 

mechanism, which was applied on the system. This is the reason that this experiment was not included in 

Fig. 4. Aslam et al. (1980) reported high slips (and, accordingly, high energy loss) during the 

experiments, which explains that in this case the energy loss is higher than in case of Housner's model. 

Researchers gave different explanations for the significant differences between the results of the 

experiments and the model (see the summary of Lagomarsino (2015)), and several improvements were 

suggested. Augusti and Sinopoli (1992) and Kounadis (2015) took into account the sliding between the 

block and the base, which, especially for small aspect ratios, is a necessary and important improvement. 

Note, however, that it cannot explain that the model underpredicts the energy loss (Table 1). A possible 

explanation assumes that the impact is neither plastic nor elastic: Lipscombe and Pellegrino (1993) stated 

that the bouncing is significant for short blocks. They insert the coefficient of restitution into Housnerôs 

equations to reach an agreement with the experiments, where the bouncing of the element was detected. 

This effect has been experimentally tested by Elgawady et al. (2011), by investigating the material of the 

surface of the base under the rocking element. Ma (2010) ran over 400 experimental tests with a built-in 

steel mechanism that prevents sliding to explain the discrepancy. In conclusion, he stated that the 

experiments have demonstrated that despite the very simple appearance of free rocking motion, highly 

complex interactions play an important role. To overcome the differences between the model and the 

experiments, some of the researchers suggested to use an angular velocity ratio (ɛ) which agrees with the 

experiment and not with Housnerôs model (Priestley et al. 1978; Aslam et al. 1980; Lipscombe and 

Pellegrino 1993; Anooshehpoor and Brune 2002; Elgawady et al. 2011). 
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Fig. 4 The reduction in speed (ɛ) and the loss of kinetic energy (ɖHous=1-ɛ2
Hous) for different aspect ratios. 

Experimental results (Ogawa 1977; Aslam et al. 1980; Prieto-Castrillo 2007) compared with Housnerôs 

model. (Aslam reported significant slips, which explains the high energy loss.) 

Note that in spite of the presented inaccuracies Housnerôs model is widely applied because of its 

simplicity and physical clarity. Numerical solutions were developed to follow the motion (Augusti and 

Sinopoli 1992; Lipscombe and Pellegrino 1993; Prieto et al. 2004; Kounadis 2015), and with the aid of 

these, several authors determined overturning curves (see Chapter 5) to analyse the stability of a single 

rocking block (Housner 1963; Yim et al. 1980; Ishiyama 1982; Hogan 1989; Sinopoli 1991; Shi and 

Anooshehpoor 1996; Psycharis et al. 2000; Makris and Konstantinidis 2003; Pe¶a et al. 2006; Pe¶a et al. 

2007; Prieto-Castrillo 2007; Makris and Vassiliou 2012; Voyagaki et al. 2013a; Voyagaki et al. 2013b; 

Vassiliou et al. 2016). Oppenheim (1992) extended this for the investigation of arches and De Lorenzis 

(2007) defined stability maps for impulse-ground motions. Housnerôs model was also extended to 

investigate non-symmetric monolith blocks (Shi and Anooshehpoor 1996; Di Egidio and Contento 2009; 

Zulli et al. 2012) and two (Psycharis 1990; Spanos et al. 2001) or multi degree of freedom structures 

(Ther and Koll§r 2014; Ther and Koll§r 2017b). 

Housnerôs model is a very important element of the analysis of structures subjected to earthquakes, where 

cracks may open and close during excitations. These are, for example: columns, walls and arches made of 

masonry, stone or unreinforced concrete blocks (Fig. 5). 

 

Fig. 5 Columns and arches, where Housnerôs model is applied 

 

Modelling of columns consisting of rigid blocks 

Masonry and stone columns are important structural elements. Their modelling must include the possible 

openings and closings of the cracks between the blocks, which require the use of an impact model. 
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Single-block columns were first investigated by Housner (1963), who derived a formula for the change in 

velocity of rocking elements.  

The motion of multi-block columns, when the locations of the open interfaces are given, were 

investigated by Prieto-Castrillo (2007), who described a robust method for predicting their motion 

between two consecutive impacts. 

For the impact of multi-block columns only a few mechanical models are available. Housner solved the 

single block, Psycharis (1990) presented a model for the two-block mechanism. His solution is accurate 

when at impact all the elements are vertical, and approximate for inclined elements. This solution was 

generalized by Spanos et al. (2001) for the impact of a two-block inclined system. As far as we know no 

mechanical model of impact is available for columns with more than two blocks. (It might be worthwhile 

to mention that Housnerôs model was generalized for arches (Oppenheim 1992; De Lorenzis 2007; 

DeJong et al. 2008; DeJong 2009). The presented four-hinge mechanism is a one degree of freedom 

system.) The opening pattern during impact was investigated by Psycharis (1990) for a two-block system. 

An alternative method to investigate the multi-block system is the discrete element method (DEM) 

(Winkler et al. 1995; Psycharis et al. 2000; Komodromos et al. 2008; DeJong 2009; T·th et al. 2009; 

Dimitri et al. 2011; Lengyel and Bagi 2015) or other commercially available softwares, where the 

properties of the contact interfaces between the rigid blocks must be defined (Konstantinidis and Makris 

2005). By setting certain parameters they seem to be robust methods for investigation multi-block 

columns. Using the discrete element method it was observed that monolithic blocks are more vulnerable 

to overturning than multi-block systems with the same overall dimensions (Psycharis et al. 2000; Dimitri 

et al. 2011). 

 

Design methodology of rocking mechanisms 

Overturning of rigid blocks on rigid foundations subjected to earthquakes has been investigated by 

several researchers. For the design of overturning of blocks the following approaches were suggested: 

(1) to evaluate a limit (or push over) analysis; 

(2) to apply an equivalent viscous damping model to take into account the impact during rocking; 

(3) to determine a single replacement pulse (Fig. 6) from the earthquake record, and then, 

evaluate the element with the overturning curve (OC) for the pulse; or 

(4) to determine the response of the block for a given earthquake by time history analysis. 

 

Fig. 6 Suggested signal shapes for generating OC (see (Makris and Vassiliou 2012) for signals e and f) 

The limit analysis of rigid blocks, or structures made of rigid blocks (Livesley 1978) subjected to 

horizontal loads is relatively simple. However, it may be very conservative and it does not show the size 

effect for rocking blocks subjected to earthquakes, which was observed and also analytically proven by 

Housner (1963) in his classic paper: larger structures are less vulnerable to overturning than smaller ones.  
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Priestley et al. (1978) suggested to use equivalent viscous damping to take into account the impact in the 

analysis. Makris and Konstantinidis (2003) criticized this approach and stated that rocking structures 

cannot be replaced by óequivalentô single degree of freedom (SDOF) oscillators. 

Several researchers recommended replacing earthquake records by simple signals (Fig. 6a-c). Housner 

(1963) and Yim et al. (1980) investigated a half sine and a single rectangular pulse, Voyagaki et al. 

(2013b) investigated the effect of a range of idealized single-lobe pulses, while Ishiyama (1982); Augusti 

and Sinopoli (1992); Anooshehpoor et al. (1999); Zhang and Makris (2001); Makris and Vassiliou 

(2012); Dimitrakopoulos and DeJong (2012) and Dimitrakopoulos and Fung (2016) applied full-cycle 

pulses where impact plays an important role (Fig. 6d-f). 

Voyagaki et al. (2013a) suggested using a single-lobe triangular pulse with a duration defined by Baker 

(2007), and it was shown numerically that this pulse gives a conservative solution for the investigated 

earthquakes. There are several recommendations on the calculation of the shape and duration of simple 

signals (Mavroeidis and Papageorgiou 2003; Baker 2007; Vassiliou and Makris 2011; Mimoglou et al. 

2014), see also the literature review of Lagomarsino (2015). 

To evaluate the safety of the elements the overturning curve (acceleration as a function of duration) was 

introduced first by Housner (1963) for a half sine and a single rectangular pulse, then for other shapes by 

other researchers (Yim et al. 1980; Ishiyama 1982; Augusti and Sinopoli 1992; Anooshehpoor et al. 1999; 

Zhang and Makris 2001; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; Voyagaki et al. 

2013a; Voyagaki et al. 2013b; Dimitrakopoulos and Fung 2016) and harmonic shaking by Spanos and 

Koh (1985) and Hogan (1992). It was also shown that for complex signals the overturning curve may 

contain bays and islands (Zhang and Makris 2001; Makris and Vassiliou 2012; Dimitrakopoulos and 

DeJong 2012; Voyagaki et al. 2013a; Dimitrakopoulos and Fung 2016; Ther and Koll§r 2017a). (This 

overturning curve is called overturning acceleration spectrum by some researchers (Zhang and Makris 

2001; Makris and Vassiliou 2012). In this thesis the latter name is used for a modified diagram, see 

subsection 5.1.1.) 

Researchers investigated overturning for white noise-based artificial earthquake records (Housner 1963; 

Priestley et al. 1978; Aslam et al. 1980; Yim et al. 1980; Ishiyama 1982; DeJong 2012) and also for real 

earthquakes (Ishiyama 1982; Makris and Konstantinidis 2003; Pe¶a et al. 2006; Pe¶a et al. 2007; DeJong 

2012; Makris and Vassiliou 2012; Voyagaki et al. 2013a). Makris and Vassiliou (2012) showed that the 

effect of a near-fault, pulse-like earthquake can be replaced by a single rectangular pulse with properly 

chosen pulse duration. Ther and Koll§r (2017a) have shown that fullness of the replacement pulse and the 

secondary pulse have a major effect on the OC.  

 

Fig. 7 Geometry of the rigid block (the aspect ratio is: H/B=cotŭ, moment of inertia about the corner 

point is Ὸ Ὑά, where m is the total mass)  

As mentioned above, the overturning curve of a single rectangular block subjected to a half sine pulse 

was introduced by Housner (1963). For a given block and a given signal shape (e.g. a simple half sine) it 

can be defined as the curve which separates the safe and unsafe regions on the ap, tp plane where ap is the 

maximum intensity of the main pulse lobe (acceleration) and tp is the duration of the pulse (Fig. 8a). If the 

ap and tp parameters of a pulse correspond to a point on the left side of the curve, it will not overturn the 

block. If ap<ap,min the block will not move at all, where (Fig. 7) 
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ὥȟ ὫÔÁÎ(3)  

and g is the acceleration of gravity. The OC can be calculated for other signal shapes (Zhang and Makris 

2001; Makris and Konstantinidis 2003; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; 

Voyagaki et al. 2013a; Voyagaki et al. 2013b; Dimitrakopoulos and Fung 2016), examples for two and 

three consecutive half sines are shown in Fig. 8b and c (tp is the duration of the half sine). Within the 

unsafe region there are (narrow) safe bays. In this case (or for more complex signals, where there are 

several bays and islands) a single envelope can be used for design purposes. All three figures show that 

for a given block both a shorter pulse with higher intensity and a longer pulse with lower intensity can 

cause the overturning of the block. The rotations of the block for different pulses are presented in Fig. 9. 

 

Fig. 8 Overturning curve (OC) for a single block subjected to a half sine pulse (a) a full sine signal (b) and for a 

signal of three half sines (c) 

 

 

Fig. 9 Motion of the rocking block for different impulses. (See the numbered dots in Fig. 8b.) 
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Chapter 2 Problem statement 

Modelling of single blocks 

As we stated in Chapter 1 (see Fig. 3 and Fig. 4) experiments show lower energy loss during impact than 

it is predicted by Housnerôs model, which means that ï as a rule ï Housnerôs model is not conservative. 

Although, in practice, fudge-factors may be successfully used to obtain proper results, it is worthwhile to 

find a physical explanation for the difference, and ï if possible ï to have an improved mechanical model.  

Table 1 Experimental results (Ogawa 1977; Prieto-Castrillo 2007; Elgawady et al. 2011) compared with 

Housnerôs model. ɖHous is the relative energy loss. (ɖHous was calculated by  Eq.(1) and (2) except the last 

one, where Eq.(A3) and (2) were used). 

Author  
Material of the 

block 
2h 2b 2b2 h/b 

Loss in Energy 

Ɫ ɖHous 

Ogawa (1977)  timber 200 100  2.00 37.6% 51.0% 

Ogawa (1977) timber 300 100  3.00 22.6% 27.8% 

Ogawa (1977) timber 400 100  4.00 11.6% 16.9% 

Aslam et al. 

(1980) 

concrete block with 

aluminum plate 
771.5 152  5.08 14.4% 10.9% 

ElGawady et al. 

(2011) 

concrete block with 

steel plate 
950 190  5.00 15.6% 11.2% 

Prieto (2007) granite 1000 250  4.00 12.4% 16.9% 

Prieto (2007) granite 1000 170  5.88 5.3% 8.2% 

Prieto (2007) granite 1000 120  8.33 4.4% 4.2% 

Prieto (2007) granite 500 246 160 2.03 14.0% 25.2% 

Our aim is to give a physical explanation why Housnerôs model overpredicts the loss in energy, and to 

develop a physical model which agrees better with the experiments. 

 

Modelling of columns consisting of rigid blocks 

As can be seen in the Introduction mechanical models are available for single blocks (Housner 1963) and 

two-block columns (Psycharis 1990; Spanos et al. 2001), no model is available for multi-block columns 

with more than two blocks. 

Available FE codes (e.g. ANSYS, OpenSees, etc.) might be able to calculate the motion of blocks 

including the deformability of the elements and the geometrical nonlinearities. However, no proper 

ñimpactò and ñopeningò routines are available, hence these codes must be combined with ñopeningò and 

ñimpactò models. We did so and connected OpenSees with our own MatLab ñopeningò and ñimpactò 

routines (described in section 3.2), however, we had numerical difficulties. The reason was the high 

frequency axial vibration of the elements (also mentioned by Vassiliou et al. (2016)), which made it 

difficult to verify the eccentricities of the normal forces and, in a few cases, resulted in unstable solutions. 
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This is why we decided to develop our own code with a low number of degrees of freedom, to obtain a 

robust, reliable tool to calculate the response of multi-block columns assuming rigid body theory. 

We consider a column which consists of rigid (brick or stone) blocks. It is subjected to an arbitrary 

excitation. During motion, any interface may split open or close and the crack pattern may change with 

time (Fig. 10). We wish to develop a model, which is capable of following the response of the structure. 

In the analysis only the planar displacements of the columns are taken into account. 

 

Fig. 10 Multi -block column 

Damping during motion is neglected, however, at the closing of interfaces there is a loss in energy due to 

inelastic impact (Housner 1963).  

Using the new model we wish to investigate the observation made by Psycharis et al. (2000) and Dimitri 

et al. (2011) that monolithic blocks are more vulnerable to overturning than multi-block systems. 

 

Design methodology of rocking mechanism 

For the design of blocks for single pulse-like signals the overturning curve (OC) was introduced by 

Housner (1963). 

We consider a multi-block column (Fig. 10), which is subjected to base (earthquake) excitation. We wish 

to develop a design methodology to determine whether the structure is safe. Similarly to the response 

spectrum analysis (RSA), where the design can be performed on the basis of the response spectrum, we 

wish to determine the required design parameters (or curves) which can be applied for the checking of 

overturning of columns. We wish to give recommendations on how the earthquakes (both near field and 

far field types) can be represented by a few parameters, in such a way that the responses of rigid columns 

calculated by time history analysis and by the developed procedures are close to each other or at least the 

latter one can be used as a conservative approximation to predict overturning. 
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Chapter 3 Method and modelling 

In the following subsections the modelling of single and multi-block structures are presented. 

3.1 Refinement of Housnerôs rocking model 

First, we apply a simple modification on Housnerôs classical model. It is assumed that the surface of the 

block (or the ground surface) is not perfectly smooth, but there is a small bump (or aggregate) in the 

middle (Fig. 11a). In this case the rocking occurs with two impacts (Ther and Koll§r 2014). Before 

rocking the block rotates around corner A. Then, impact occurs, and the 

¶ block rotates around point C (bump or aggregate). Following that a 

¶ second impact occurs and the block rotates around corner B. 

If the size of the bump (or aggregate) is small, then the time between the two impacts is also small, 

however, the final angular velocity is higher than in Housnerôs model. (This can be shown simply by 

applying Housnerôs model twice. See Eq.(A8) in Appendix A.) 

If there are two bumps (Fig. 11b), rocking occurs with three impacts, and if there are n bumps (which 

form a convex surface), rocking occurs in n+1 impacts. Fig. 12 shows the loss in kinetic energy as a 

function of the aspect ratios with 1, 2, ...100 bumps. If the number of bumps goes to infinity, the block 

will ñrollò and the energy loss is zero. 

 

Fig. 11 Rocking block. a: one bump in the middle, b: two bumps, c: several bumps 

 

 

Fig. 12 Loss in kinetic energy as a function of slenderness of the block for n bumps 
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In reality, there is no perfect surface (Fig. 13a), and as it was shown above, even a small unevenness of 

the surface (bump or aggregate) changes the loss in the kinetic energy during rocking significantly.  

We assume that the main reason that Housnerôs model overpredicts the loss in kinetic energy is the 

following: 

¶ impact does not occur purely at the edges of the blocks (Fig. 13b), rather ï in consecutive steps ï 

at bumps and then at the edges (Fig. 13c). 

We suggest that Housnerôs model can be improved by taking into account these additional impacts during 

rocking. 

 

Fig. 13 Comparison of Housnerôs model and the modification with an additional bump in the middle 

To evaluate the above hypothesis experiments were carried out, which are presented in subsection 4.1. In 

addition, we investigated some of the experiments available in the literature. 

 

To demonstrate the importance of the improvement of Housnerôs model we simulated the motion of a 

block subjected to a base excitation recorded at the Northridge earthquake (Fig. 14a, 1994, 

NORTHR/MUL009 component). The aspect ratio of the element is 4, while its diagonal is 2.6 m, hence 

its sizes are b=0.315 m and h=1.261 m. When Housnerôs classical model is applied (Fig. 14b) the block 

does not overturn, its maximum inclination is about 80 percent of the neutral position (at about 9 s). 

When the above improved model is applied (with one additional bump), which agrees better with the 

experiments (see section 4.1), it can be observed that the inclination of the block becomes bigger and 

bigger during the excitation, resulting in overturning at about 11 s. 
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Fig. 14 The rocking motion of a block considering the original Housnerôs model and the proposed 

improvement 

 
































































































