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Abstract. The approximation of the multivariate probability dis-
tribution is a popular problem in many fields. In this paper we
give a survey of our results related to this problem. Our approach
exploits the conditional independences between the variables. We
present here some new concepts and our most important results.
In the last part there will be given an application of our new re-
sults in pattern recognition, namely in recognizing of Parkinson’s
disease based on voice disorder.
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1 Introduction

The modeling of multivariate probability distribution is a central problem for
many fields. One of the widely used approaches is the copula approach [5]
and [11]. Copulas offer a flexible method for combining marginal distributions
into a multivariate distribution, capturing various types of dependences. Also
the copula approach is useful in quantifying dependence between the random
variables involved.
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Another method for modeling a multivariate probability distribution uses the
Markov Random Field (MRF), which has its roots in statistical physics. The
standard stochastic model for spatially distributed systems is the random
field over multidimensional lattice Zd. The best-known of these lattice sys-
tems is the Ising model, invented in 1925 by E. Ising [10] to help explain ferro
magnetism. An MRF encodes in a graph structure the conditional indepen-
dences. The theory of random fields has several applications such as complex
engineering, physics, economics, pattern recognition, biology. In this respect,
the finding of convenient means of description of the random field poses an
important problem.
In order to approximate the probability distribution associated to an MRF
we introduced the t-cherry junction tree in [12] and the k-th order t-cherry
junction tree in [17]. This survey presents this new approach and some of
our most important results.
The paper is structured as follows. The second part contains a short review
of Markov random fields and junction trees. In the third part we present
the concept of a special hyper graph structure introduced in [2] called t-
cherry tree and in [3] called t-cherry hyper tree. In the fourth part we give
the concept of the t-cherry junction tree and present some of our essential
results. In the fifth part we show an application of this approach in pattern
recognition.

2 Markov Random Field and junction tree

Let G (V,E) be a finite graph, where V = {1, . . . , n} is the set of vertices,
and E is the set of edges. We denote by (i, k) the edge connecting the vertices
i and k.

Definition 2.1. The neighborhood of vertex k is the set N (k) = {i | (i, k)
∈ E} that is the set of vertices connected by edges with the vertex k.

A simple undirected graph can be equivalently defined by its set of vertices
V and a neighborhood set N = {N(k) | k ∈ V }, which associates to each
vertex its neighbors.

Definition 2.2. [1] The couple (V, N) is called topology.

Let X = {Xi}i=1,...,n be a set of discrete finite random variables over the
same (Ω,A, P ) probability space. Let Λi denote the set of values of Xi, and
V = {1, . . . , n} the set of indices. In physical literature the set Λi is called
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phase space, and the index set V , sometimes denoted by S, is called set of
sites.

Definition 2.3. [1] A random field on V with phase space in
n∏

i=1

Λi is a

collection X = {Xi}i=1,...,n of random variables Xi with values in Λi.

Definition 2.4. [1] A random field is called Markov random field (MRF)
with respect to the neighborhood system N if ∀i ∈ V, Xi is independent from
X − {Xj}j∈V \{N(i)∪{i}} given {Xj}j∈N(i).

Definition 2.5. [18] For a variable Xi the set {Xj}j∈N(i) is called set of
informative variable.

If we are interested in a variable Xi it is enough to study or model the
probability distribution of this variable together with its neighborhood. This
diminishes the number of variables involved in the model. For example if one
is interested in classification then it is useful to find the set of informative
variables for the classifying variable. For this purpose one needs to discover
the MRF, that in practice is mostly unknown.
As an example see the Markov random field of Figure 1. The informative
variables for X6 are X1, X3, X4.

1
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5

6

Figure 1: Markov random field over the set of variables with indices in V =
{1, 2, . . . , 6}
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Throughout the paper we will use the following popular notation:

∑
x

P (X) =

m1∑
i1=1

...

mn∑
in=1

P
(
X1 = xi1

1 , ..., Xn = xin
n

)
.

where xik
k , ik = 1, ...,mk are the possible values of the random variable

Xk, k = 1, ..., n. Apply similar notation for products, too.
The junction tree is a special tree with nodes containing random variables:

Definition 2.6. [17] A tree which fulfills the following properties is called
junction tree over X.

1) To each node of the tree, a subset of X called cluster and the marginal
probability distribution of these variables is associated.

2) To each edge connecting two clusters of the tree the subset of X, given by
the intersection of the connected clusters, and the marginal probability
distribution of these variables is associated.

3) If two clusters contain a random variable, than all clusters on the path
between these two clusters contain this random variable (running inter-
section property).

4) The union of all clusters is X.

The junction tree provides a joint probability distribution of X:

P (X) =

∏
C∈C

P (XC)

∏
S∈S

P (XS)νs−1 ,

where C is the set of clusters and S is the set of separators, P (XC) and
P (XS) are the marginal probability distribution associated to the random
vector, with variables from the set C and S, respectively νs is the number of
those clusters which contain all of the variables involved in S.

3 t-cherry hyper tree

For constructing lower and upper bounds on the probability of union or
intersection of events there was introduced by J. Bukszár and A. Prékopa
[2] the concept of t-cherry tree. Later this concept was generalized by J.
Bukszár and T. Szántai [3] and called t-cherry hyper tree.
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Definition 3.1. The recursive construction of the k-th order t-cherry tree:

(i) The complete graph of (k-1) nodes from V represent the smallest k-th
order t-cherry tree.

(ii) By connecting a new vertex from V , with all vertices of (k − 1) dimen-
sional complete subgraph of the existing k-th order t-cherry tree, we
obtain a new k-th order t-cherry tree.

(iii) Each k-th order t-cherry tree can be obtained from (i) by successive
application of (ii).

Remark 3.1. The k-th order t-cherry tree is a special case of the k-uniform
hyper graphs introduced by Tomescu [19].

Definition 3.2. The set of vertices of the (k − 1) dimensional complete sub-
graph used in step (ii) of Definition 3.1 is called hyper edge of the k-th order
t-cherry tree.

Definition 3.3. The set of vertices of a hyper edge together with a new vertex
is called hypercherry of the k-th order t-cherry tree.

The set of hyper edges of the k-th order t-cherry tree let be denoted by εk−1.
The set of hyper cherries of the k-th order t-cherry tree let be denoted by Ck.
The set of vertices V , the set of hyper edges εk−1and the set of hypercherries
Ck define the ∆k = (V, εk−1, Ck) k-th order t-cherry tree.
Figure 2. illustrates the construction of a t-cherry tree.

Figure 2: Construction of a 3-rd order t-cherry tree

4 t-cherry junction tree

Definition 4.1. The k-th order t-cherry junction tree [17] can be defined in
the following way.
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1) By using Definition 3.1 we construct a k-th order t-cherry tree over
V : ∆k = (V, εk−1,Ck).

2) To each hyper cherry ({i1, . . . , ik−1} , ik) we order a cluster set contain-
ing the variables

{
Xi1 , . . . , Xik−1

, Xik

}
.

3) To each hyper edge {i1, . . . , ik−1} we oder a separator set containing the
variables {Xi1 , . . . , Xik−1

}
(edge of the junction tree).

The junction tree provides a joint probability distribution of X:

Pk (X) =

∏
(Xi1

,....Xik)∈C

P (Xi1 , . . . .Xik)

∏
(Xj1

,...,Xjk−1)∈S

P
(
Xj1 , . . . , Xjk−1

)νj1,...,jk−1
−1 , (4.1)

where C is the set of clusters and S is the set of separators, P (Xi1 , . . . .Xik)
and P

(
Xj1 , . . . , Xjk−1

)
are the marginal probability distributions. νj1,...,jk−1

is the number of those clusters which contain all of the variables Xj1 , . . . ,
Xjk−1

.
We emphasize that for k = 2 we obtain the so called Chow–Liu dependence
tree [4]. The best fitting Chow–Liu dependence tree can be find by the Prim
or the Kruskal algorithm.
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Figure 3: Clusterization of MRF of Figure 1 which leads to the junction tree
of Figure 4

The junction tree of Figure 4 provides the real probability distribution of the
MRF of Figure 3 (under the assumption that the probability distribution
is positive and the variables associated to those pairs of vertices which are
connected in the MRF are contained in at least one of the clusters of the
junction tree):
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543 X,X,X

631 X,X,X

321 X,X,X

63 X,X 31 X,X

43 X,X

643 X,X,X

Figure 4: The 3-rd order t-cherry junction tree corresponding to the MRF of
Figure 3

P (X1, X2, X3, X4, X5; X6) =

=
P (X1, X3, X6) P (X3, X4, X6) P (X1, X2, X3) P (X3, X4, X5)

P (X3, X6) P (X1, X3) P (X3, X4)
,

In practice the MRF is not known. If the clusters of the junction tree are
not containing an edge of the real MRF then the probability distribution
associated to the junction tree will be an approximation of the real probability
distribution. Therefore we search for the junction tree which gives the best
approximation of the real probability distribution.
In order to find the best fitting junction tree we have to minimize the
Kullback–Leibler divergence [14] between the approximation and the real
probability distribution.
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Theorem 4.1. [17] The Kullback- Leibler divergence between the approxi-
mation (4.1) and the real distribution P (X) is given by:

KL (Pk (X) , P (X)) = −H (X)−

 ∑

(Xi1
,...,Xik)∈C

I (Xi1 , . . . , Xik)

− ∑
(Xj1

,...,Xjk−1)∈S

(νj1,...,jk−1
− 1)I

(
Xj1 , . . . , Xjk−1

)

 +

n∑
i=1

H (Xi) ,

(4.2)

where H (X) denotes the entropy of the random vector X and I (Xi1 , . . . ,
Xik) denotes the information content (see [6]) of the random variables Xi1 , . . . , Xik .

It can be seen that in the formula (4.2) the first and the last term does not
depend on the junction tree. The difference between the sums of information
contents depends on the structure of the junction tree. Therefore it is worthy
to introduce the following definition:

Definition 4.2. [17] The difference

∑

(Xi1
,...,Xik)∈C

I (Xi1 , . . . , Xik)−
∑

(Xj1
,...,Xjk−1)∈S

(νj1,...,jk−1
− 1)I

(
Xj1 , . . . , Xjk−1

)

is called the weight of the junction tree.

We can see that in order to find a better approximation using junction trees,
we have to find the junction tree having the greatest weight.

Definition 4.3. A junction tree containing k variables in its largest cluster
is called k-width junction tree.

We denote by Fk the family of k-width junction trees.
We proved in [17] that there exists a k-th order t-cherry junction tree giving
the best approximation among the k- width junction trees:

Theorem 4.2. In the class Fk the k-th order t-cherry junction tree giving
the smallest Kullback-Leibler’s divergence provides the best approximation of
a given P (X) probability distribution.

To prove this theorem we first transformed a general k-width junction tree
into a k-th order t-cherry junction tree (see Algorithm 2 of [17]). Then we
proved that the probability distribution associated to the k-th order t-cherry
junction tree obtained by Algorithm 2 gives at least as good approximation
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kipipii X,,X,X,,X KK
111 +−

kii X,,X K
1

1111 ++− kikipipii X,X,,X,X,,X KK

11 +kikii X,X,,X K

Figure 5: The transformation of a simple k-th order t-cherry junction tree
into a cluster which contains k + 1 variables

of the real probability distribution as the probability distribution associated
to the k-width junction tree does.
Another important result of our paper [17] is a method for improving k-th
order t-cherry junction trees into (k + 1)-th order t-cherry junction trees,
using just the k-dimensional information contents.
First we give an algorithm for building a (k+1)-th order t-cherry junction
tree from a k -th order t-cherry junction tree:
Algorithm 4.1.

Step 1. We fix a k-variable cluster in the k -th order t -cherry junction
tree, and call it root.

Step 2. We transform the root and one of the clusters connected to it
in a (k + 1)- variable cluster (Figure 4.)

Step 3. Using Algorithm 2 of paper [17], we transform the (k+1)-
width junction tree, obtained in Step 2, into a (k+1)-th order t-cherry
junction tree.

Theorem 4.3. [17] The (k+1)-width junction tree obtained in Step 2 of
Algorithm 4.1 gives at least as good approximation of P (X) as the k-th order
t-cherry junction tree did.

Applying Theorem 4.2 for the family Fk+1 it follows that the (k+1)-th order
t-cherry junction tree obtained in step 3 provides a better approximation of
the real probability distribution.
For random vectors containing great number of random variables (more than
50) the construction of higher order (5th order)t-cherry junction tree needs



110 E. Kovács, T. Szántai An. U.V.T.

too much CPU time and memory. So a new problem arises, is it possible
starting from a lower order (3rd order) t-cherry junction tree to improve the
approximation without calculating all of the 4th and 5th order information
contents? The basic idea of the method introduced in [13] was first to fit
a 3rd order t-cherry junction tree. Then we ,,cut” the branches and fit to
the variables contained in the branches higher order t-cherry junction trees.
Finally we assemble the improved branches into a 5th width junction tree.
In [13] was proved that this procedure provides a better approximation of
real distribution.
As an application was regarded a randomly generated 50 dimensional discrete
probability distribution. The underlying Markov network was not known.
First we constructed a 3-rd order t-cherry junction tree, using the informa-
tion content of the second and third order marginals. This was done in a
greedy way in order to maximize the weight of the junction tree (see Def-
inition 4.2). The K-L divergence between the approximation, belonging to
the 3-rd order t-cherry junction tree, and the true probability distribution is
6.72643. The 3-rd order t-cherry junction tree was partitioned into 6 branches
then the branches were improved by 4-th order t-cherry junction trees using
the ”branch cutting and refitting” procedure. After this procedure the K-L
divergence became 5.10920. We also improved the branches by 5-th order
t-cherry junction trees. In this case the K-L divergence became 4.61357. The
calculation of all of the five variable information contents should need enor-
mous amount of necessary CPU time. One can see that the new ,,branch
cutting and refitting” procedure produced low K-L divergence values with
relatively small number of information content calculations.

5 Application of t-cherry junction trees in pattern recog-
nition

Pattern recognition aims to classify data (patterns) based either on a priori
knowledge or on statistical information extracted from the data. In the
paper [18] we introduced a pattern recognition method which uses t-cherry
junction tree approach. This made also possible the selection of the so called
’informative’ features. The classifier was achieved by supervised learning.
The classification used Bayes decision rule.
We estimated the underlying multi-variate probability distribution, by the
exploitation of the conditional independences between the variables (fea-
tures). This was achieved by fitting to the training data a t-cherry junction
tree (see [12], [17]).
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Let us introduce some notations and assumptions, see [7].
Let (X, Y ) be an Rn×{1, . . . , M} valued random vector. A classifier is con-

structed on the basis of a training set (x1, y1)
T

. . . (xm, ym)T and is denoted
by gm. For a given x ∈ Rn the value y ∈ {1, . . . , M} of Y is guessed by

gm

(
x; (x1, y1)

T
, . . . , (xm, ym)T

)
.

So the classifier gn is a function:

gm : Rn × {Rn × {1, . . . , M}} −→ {1, . . . , M} .

The construction of gm in this way is called supervised learning.
We assume that (X1, Y 1)

T
, . . . , (Xm, Y m)T is a sequence of independent iden-

tically distributed random vectors with the same distribution as (X, Y )T .
On the basis of the constructed t-cherry junction tree we select the informa-
tive features by the following algorithm.
Algorithm 5.1. Selection of the informative features.

1. Give as input the training data set in discretized form.

2. From the empirical probability distribution determine all the k-th order
marginals (it is favorable if k is not to large (less than 7, say).

3. Find the heaviest weighted tree, in sense of Definition 4.2.

4. Output : the set of clusters C and the set of separators S.

5. Select those clusters which contain the variable Y .

6. Select those variables which occur in the clusters selected in step 5 as
informative variables.

Let be denoted by Xinf the random vector of those random variables which
are selected in step 6.
The joint probability distribution of the random vector (Xinf , Y )T can be
expressed using those marginals only, which correspond to the clusters that
contain Y .
For the classifier gm we give a formula which depends on the probability dis-
tribution of (Xinf , Y ). This way for classifying a new m-dimensional vector
we use the informative features only.
In the following we present a practical application of our method in pattern
recognition.
Voice disorders can be premonitory of different diseases. This observation
makes possible new ways of investigations and diagnosis. The idea to check
up our method in discovering the connection between voice disorders and
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having Parkinson’s disease (PD) came from [15]: ”Research has shown that
approximately 90% of people with PD exhibit some form of vocal impairment
[9], [16]. Vocal impairment may also be one of the earliest indicators for the
onset of the illness [8]”.

The dataset was created by Max Little of the University of Oxford, in collab-
oration with the National Center for Voice and Speech, Denver, Colorado,
who recorded the speech signals, and provided by UCI Machine Learning
Repository on the internet: http://archive.ics.uci.edu/ml/datasets/Parkin-
sons.

This dataset is composed of a range of biomedical voice measurements from
195 voice recording of 31 people, 23 with Parkinson’s disease (PD). The main
aim of the data is to discriminate healthy people from those with PD.

The 23 features were:

MDVP: Fo(Hz) - Average vocal fundamental frequency - X1

MDVP: Fhi(Hz) - Maximum vocal fundamental frequency - X2;

MDVP: Flo(Hz) - Minimum vocal fundamental frequency - X3;

MDVP: Jitter(%) - X4,

MDVP:Jitter(Abs)- X5,

MDVP:RAP - X6,

MDVP:PPQ - X7,

Jitter:DDP - Several measures of variation in fundamental frequency - X8

MDVP:Shimmer - X9,

MDVP: Shimmer(dB) - X10,

Shimmer:APQ3 - X11,

Shimmer:APQ5 - X12,

MDVP:APQ - X13,

Shimmer:DDA - Several measures of variation in amplitude- X14

NHR,HNR Two measures of ratio of noise to tonal components in the voice

status - X15, X16

Health status of the subject (one) - Parkinson’s, (zero) - healthy - X17 = Y

RPDE,D2 - Two nonlinear dynamical complexity measures - X18, X19

DFA - Signal fractal scaling exponent -X20

spread1,spread2,PPE - Three nonlinear measures of fundamental frequency
variation X21, X22, X23.

MDVP stands for denoting measures introduced in the Multi Dimensional
Voice Program by Kay Pentax, which became a standard in voice analysis.

We choose randomly from the data a test set which contains 10 recordings
of healthy people and 20 from ill ones. The rest of 165 vectors remained the
training data set. The 5-th order t-cherry junction tree has the following
clusters:
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(X1, X2, X3, X10, X16)
(X1, X3, X10, X16, X20)
(X1, X6, X10, X16, X20)
(X1, X10, X16, X19, X20)
(X1, X10, X17, X19, X20)
(X4, X6, X8, X15, X16)
(X4, X6, X10, X15, X16)
(X4, X7, X10, X13, X16)
(X4, X10, X13, X15, X16)
(X5, X16, X19, X21, X22)
(X6, X10, X15, X16, X23)
(X6, X10, X16, X20, X23)
(X9, X10, X11, X12, X13)
(X9, X10, X11, X13, X14)

(X10, X11, X12, X13, X16)
(X10, X12, X13, X15, X16)
(X10, X16, X19, X20, X21)
(X16, X19, X20, X21, X22)
(X18, X19, X20, X21, X22)

Only the 5-th cluster is informative (X1, X10, X17 = Y,X19, X20). The in-
formative features are: Fo, shimmer, DFA, spread1. Using the probability
distribution P (X1, X10, X19, X20, Y ), we obtained a 93% correct classifica-
tion performance for the classifier. The authors of paper [15] got 91.4 %
correct classification performance using 10 features and a Kernel support
vector machine.
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Villányi u. 11–13.
Budapest
Hungary
E-mail: kovacs.edith@avf.hu

Tamás Szántai
Institute of Mathematics
Budapest University of Technology and Economics
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