éll'ltl;l’llili’l’llli‘m AN AAENN n{)lt
SR pRARANARY =

MUOEGYETEM 1782

ENTROPY-CONSTRAINED QUANTIZATION
AND RELATED PROBLEMS

Andras Gyorgy

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

Ph.D. Thesis Summary

Supervisors: Dr. Laszl6 Gyorfi
Dr. Tamas Linder

Budapest, Hungary
June, 2002



1 Introduction

Nowadays there is an increasing demand to transmit and store larger and larger amounts
of information. A possible solution to this is the continuous increase of the capacity of
communication and storage channels. Another, much cheaper solution is to utilize better
the existing capacities, and transform the data to some compact form which allows more
efficient transmission. The process of converting a stream of analog or very high-rate discrete
data into a data stream with lower rate (more) suitable for transmission or storage in digital
form is called data compression or source coding.

The theory of data compression analyzes an idealized model of communication systems,
where an information source must be encoded for transmission to a user over a digital com-
munication or storage channel. The user must be able to decode the transmitted information
into a form which is a good approximation of the original data, while using as little of the
resources (that is, the channel) as possible. Source coding theory has two main goals: one is
to characterize the optimal performance achievable by such a system, that is, to determine
the performance of an optimal code which achieves the best possible fidelity of reproduction
while satisfying certain given constraints on the channel use; the other is to determine coding
techniques which perform close to the optimum.

Data compression methods fall into two main types. The first category is lossless data
compression, where the reconstructed data has to match the original. This natural require-
ment is the most common, for example, in compressing originally digital data, such as text
or computer files. However, in many situations we only require the reconstructed data to
match the original data only within a certain fidelity. In this case we talk about lossy data
compression. The advantage of this method is that utilizing the allowed distortion in the
reconstructed data, one can obtain better compression than in the lossless case. Further-
more, in some cases, for example, if the source has a continuous output, it is not possible
to have perfectly matching reconstructed data. Therefore, lossy compression is natural, for
example, for voice and image coding, and in situations where only certain characteristics of
the original data have to be preserved.

Contrary to the lossless case, where optimal methods achieving the best possible com-
pression are known, no such optimal constructions exist in general in the lossy case. In this
thesis we are concerned with the latter, and study the lossy coding of real valued sources.

A very general and popular method for lossy data compression is called vector quantiza-
tion. When quantizing an information source X = { X3, X», ...}, we parse the input sequence
into nonoverlapping blocks of k successive source symbols {X ,?:ﬁ)k

X/ denotes X;, Xiy1, ..., X;) and encode each block X ,?::Li)k using the same time invariant

} (here for integers j > 1,

map.

Definition 3.1 A k-dimensional vector quantizer ) is a measurable mapping of a subset
S of the k-dimensional Euclidean space R into a finite or countably infinite set of distinct
k-dimensional real vectors {c;,i € I} C R called the codebook of Q, where I is a countable
index set. The elements of the codebook, c;, are called the code points of ), and the associated
sets S; = {x : Q(z) = ¢;}, i € Z, are called the quantization cells of Q.
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Throughout we will use the short notation Q = {(S;,¢;),7 € Z}, and Qy, will denote the set
of k-dimensional vector quantizers. If Z is a finite set with IV elements, then @) is called an
N-point (or N-level) quantizer. If Z is infinite, then @ is an infinite-point quantizer.

We assume that the source is k-stationary; then, since the quantizer performs the same
transformation on each block, it is enough to analyze its performance on one block. By
stationarity there is a generic R* valued random vector X having the same distribution p
as each block X,Sf,i?k, and we assume that X € § with probability 1. The distortion of @,
that is, the fidelity of reproduction in quantizing the random variable X is defined by the
expectation

D(Q) = E{d(X,Q(X))} = /Sd(w,Q(w))du(w)

where the distortion measure d : R¥ x R® — [0, 00) is a nonnegative measurable function of
two k-dimensional real vector variables.

The amount of channel use is measured by the rate of the quantizer. As it is common in
the literature, we assume the channel to be noiseless and, for simplicity, binary. Then the
output of ) must be encoded using a binary code in order that it can be transmitted over
the channel. If the output of the N-point quantizer () is encoded via a fixed-length lossless
code, then () is called a fized-rate quantizer, and its rate is measured by

Q=1

the average number of bits necessary to encode each output value. It is clear that fixed-rate
quantization does not make sense if () has infinitely many code points.
An N-point fixed-rate quantizer Q* is called optimal if

log N

D(Q*) =inf{D(Q) : Q € Qi is an N-point quantizer}.

Optimal fixed-rate quantizers have been studied extensively. Necessary conditions for the
optimality of fixed-rate quantizers, namely the nearest neighbor and the centroid conditions,
known as the Lloyd-Maz conditions, were given in [14, 15, 13]. An important consequence of
these conditions is that “good”, and hence also optimal fixed-rate quantizers can be assumed
to be regular for a wide class of nondecreasing difference distortion measures, that is, they
have convex cells containing the corresponding code points. Regular quantizers have a simple
parametric description (the cells of a finite-point regular quantizer are convex polytopes),
and they can be implemented efficiently using hyperplane decision functions.

Unexpected problems arise when one wants to generalize the concept of regularity to
infinite-point quantizers even in the scalar case, and the definition of such quantizers is not
unified in the literature. For example, a scalar quantizer with cells

(—00,0),[1,00),[0,1/2),[1/2,3/4),[3/4,7/8),...,[1 =27 1 —2-(~F1)

has convex cells and so can be thought to be regular with appropriate code points; however
there are infinitely many code points in any neighborhood of the point 1. To avoid such cases,
an additional condition is introduced to obtain a general definition of regularity, which is
automatically satisfied for all finite-point quantizers satisfying the original definition.



Definition 3.3 We call a quantizer () regular if it has convex cells, the code points lie
inside the corresponding cells, and the set of the quantization cells is locally finite, that is,
any bounded subset of RF intersects only finitely many cells of Q.

Fixed-rate quantizers represent all output points with codewords of the same length.
However, using variable-rate (block) encoding of the outputs, further compression can be
achieved, yielding a possibly much smaller average codeword length. If the expected code-
word length in coding the random output Q(X) is L, then it is reasonable to define the rate
as 7,(Q) = L, and call Q a variable-rate quantizer. It is known that if the variable-rate
code is chosen optimally, then 1 H(Q) < +L < 1 H(Q) + 1 [6], where

H(Q) = H(Q(X)) =—)_ P{X € Si}log P{X € 5;}

‘€T
is the entropy of the quantizer output. Thus, it is appropriate to redefine the rate as %H (Q).

Definition 3.5 A vector quantizer Q) € Q. whose rate is measured by %H (Q) is called an
entropy-constrained vector quantizer (ECVQ).

Since the entropy is an explicit function of the cell probabilities, ECVQs are much more
tractable than variable-rate quantizers. Furthermore, the entropy-constrained formulation
is also useful because it does not tie the quantizer design to a particular coding scheme (e.g.,
scalar entropy coding), providing a more universal measure of quantizer performance.

For any R > 0 let Dy(R) denote the lowest possible distortion of any vector quantizer
with output entropy not greater than R in quantizing the R* valued random variable X with
distribution p (the dimension of the quantizers is necessarily k). This function, called the
operational distortion-rate curve, is formally defined by

Dy(R) =inf{D(Q) : H(Q) < R,Q € 4}

where the infimum is taken over all finite- or infinite-point k-dimensional vector quantizers
whose entropy is less than or equal to R. An ECVQ is called optimal if it achieves Dy (R)
in the sense that H(Q) < R and D(Q) = Dp(R) (the optimality of variable-rate quantizers
is defined in a similar manner).

In contrast to fixed-rate quantization, there is little known about optimal entropy-
constrained vector quantization. It seems that in the literature efforts have focused on find-
ing necessary conditions for the optimality of a reqular entropy-constrained scalar quantizer
(ECSQ) with a fized number of output points N for the squared-error distortion [2, 8, 11].
These conditions give rise to practical algorithms for designing an ECS(Q) with a fixed number
of output points [2, 16, 8, 11, 5]. The algorithm of [5] can also be applied for locally optimal
vector quantizer design. However, the structure and existence of optimal entropy-constrained
quantizers is not known in general. Furthermore, there are no analytic expressions for Dy (R)
even for simple source distributions, except for the exponential source [2], and the general
properties of Dj(R) are also unknown. In this thesis we provide some answers to these
problems.



2 Results

2.1 Optimal entropy-constrained scalar quantization of a uniform
source

Finding optimal entropy-constrained quantizers and the corresponding operational distortion-
rate curve Dy (R) for a given source distribution analytically is a rather hard problem even
in the scalar case. Since the structure of “good” entropy-constrained scalar quantizers is not
known in general, the problem formulation itself is a hard task. Moreover, finding optimal
quantizers in the restricted class of regular quantizers is still not easy, since one must find
the optimum performance over N-point quantizers for all N. A notable exception is the
case of an exponentially distributed source and the mean squared distortion considered by
Berger [2]. He derived an analytic expression for Dy (R) based on the observation that for
the exponential distribution, the necessary conditions for optimality at any positive rate are
satisfied by an infinite-level uniform quantizer. To our knowledge, this is the only case where
a correct! analytic formula for Dj,(R) is known; the resulting quantizer is an infinite-point
uniform quantizer.

However, if the source is uniformly distributed over an interval, then it is not hard to
see that “good” quantizers are regular, and such quantizers can be described by their cell
probabilities (in this section we restrict ourselves to such quantizers only). This observation
leads to the following result, which is the first rigorously proved analytical result concerning
optimal ECSQs for a generally used source distribution.

Theorem 4.1 (Gyo6rgy and Linder [J2, C3]) Let the source X have uniform distribu-
tion over (0,1) and assume that d(x,y) = p(|z — y|), where p : [0,00) — [0,00) is a strictly
increasing continuous function such that p(e') is strictly convex. Then Q is an optimal ECSQ
for a rate constraint R > 0 if and only if Q has N = [ZRW cells; one cell of length ¢ and

N — 1 cells of length J{,’_Cl, where c is the unique solution of the equation

1 —
—clogc— (1 —c¢)log (N—cl> =R

in the interval (0, ].

The theorem remains valid (after rescaling) if X is uniformly distributed over an arbi-
trary interval (a,b). From this result a parametric expression for Dy(R) is determined in
Corollary 4.1. For the squared error distortion Dy (R) is shown in Figure 1. It can be seen
that Dp(R) is continuous and piecewise concave, and it is proved in Corollary 4.2 that these
properties also hold for more general distortion measures. This shows that Dj(R) may be
nonconvex even for “nice” source distributions.

! Although a complete proof that infinite-level uniform quantizers are indeed optimal is missing, the result
is widely believed to be correct.
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Figure 1: Dp(R) for the uniform source and the squared error distortion.

2.2 Lagrangian-optimal ECVQs

In this section we analyze a special class of optimal ECVQs, ECVQs achieving the lower
convex hull of Dy, (R). Although, as we have seen for the uniform distribution, such quantizers
may exist only at discrete rates, they are important both theoretically and practically [5,
18, 9]. Moreover, this class of optimal quantizers is much more tractable than the class
of optimal ECVQs, since they satisfy the generalized nearest neighbor condition [5, 4] (see
Lemma 5.1 in the thesis).

The Lagrangian formulation of entropy-constrained quantization of an R* valued random
variable X defines for each value of a parameter A\ > 0 the Lagrangian performance of a
quantizer @) by

J(\Q) = D(Q) + AH(Q).

The optimum Lagrangian performance is given by

J'A) = jof J(AQ)= inf {D(Q)+AH(Q)}
where the infimum is taken over all finite or infinite-point k-dimensional vector quantizers
@ € Qi. Any quantizer () that achieves the infimum above is called a Lagrangian-optimal
entropy-constrained quantizer. It is easy to see that () is Lagrangian-optimal for some A > 0
if and only if Q) achieves the lower convex hull of Dy (R) in the sense that (H(Q), D(Q)) is a
point on the lower convex hull (= is the slope of a line that supports the lower convex hull
and passes through this point). First we show that Lagrangian-optimal ECVQs exist under
general conditions on the distortion measure.



Theorem 5.1 (Gyorgy and Linder [C5]) Assume that for any x € RF the nonnegative
distortion measure d(z,y) is a lower semicontinuous function of y such that for any y' € R¥,
d(z,y") < liminf)y 0 d(x,y). Then for any X > 0 there is a Lagrangian-optimal quantizer,
that is, there exists () such that

D(Q) + AH(Q) = J*(A).

In [4] Chou and Betts proved that if the tail of the source distribution is sufficiently
light with respect to the distortion measure, then the Lagrangian-optimal quantizer has only
finitely many code points. A trivially generalized version of this result is given in Theorem 5.2
in the thesis. We also prove that if the tail of the source distribution is slightly heavier, then
the Lagrangian-optimal quantizer has infinitely many code points.

Theorem 5.3 Assume a difference distortion measure d(z,y) = p(||lz — y||), where p :
[0,00) — [0,00) is strictly increasing and convex. Suppose J*(A\) < oo for some A > 0
and let () be a Lagrangian-optimal quantizer. If for some 0 < e < 1

P{IX| >t}

5—p(a-an/m > Y

lim sup
t—o0

then Q) has infinitely many code points.

In particular, Theorems 5.2 and 5.3 hold for the squared error distortion measure. In this
case, we obtain that the Gaussian distribution is a breakpoint. For distributions with tails
lighter than the tail of a Gaussian distribution (including distributions with finite support),
the optimal entropy-constrained quantizer must have only a finite number of code points, and
for distributions with tails heavier than that of the Gaussian, the optimal entropy-constrained
quantizer has an infinite number of code points. The Gaussian case itself is of particular
interest. For a Gaussian source, the results show that there is a critical value A* > 0 (and
a corresponding critical rate R* > 0) such that the Lagrangian-optimal quantizer @ has a
finite number of code points if A > A\* (i.e., H(Q) < R*), and it has an infinite number of
code points if A < A\* (i.e., H(Q) > R*).

2.3 The structure and existence of optimal ECSQs for nonatomic
distributions

As we mentioned in the Introduction, the nearest neighbor condition implies that optimal
fixed-rate quantizers can be assumed to be regular for a wide class of difference distortion
measures. This fact reveals an important structural property of optimal fixed-rate quantizers
and it leads to efficient design and simple implementation procedures. Moreover, regularity
allows the use of efficient tools in proving the existence and exploring the properties of optimal
quantizers. Although the assumption of quantizer regularity seems to be ubiquitous in the
literature on entropy-constrained quantization, it is still a fundamental question whether it
is sufficient to consider only regular quantizers when searching for a (mean-square) optimal
entropy-constrained quantizer. The next example shows the negative answer to this question
for sources with discrete distributions.



Example 6.1 (Gyorgy and Linder [C4, J3]) Let d(z,y) = (z — y)?, and let X be a
discrete random variable taking values in {—1,0, 2} with the following distribution:

P{X=-1}=P{X=2}=2/5 and P{X =0}=1/5.

A quantizer @ for X is in effect defined by a partition of the set {—1,0, 2} (the definition of @)
for other values is immaterial) and by the corresponding code points (the optimal code points
for each partition can easily be found). Checking the five possible partitions, it turns out
that for all R such that hy(1/5) < R < hy(2/5), where hy(z) = —zlogz — (1 — z)log(1 — ),
an optimal ECSQ has two code points ¢; = 1/2 and ¢ = 0, and the corresponding cells must
satisfy

{-1,2} cS; and {0} C S,.

Thus if Sy is an interval, then S; is a union of two disjoint intervals, each with positive
probability. It follows that no regular quantizer can be optimal in this case.

In this section we show that such anomalous behavior is not possible for scalar sources
with nonatomic distributions. The next definition characterizes the “good” distortion mea-
sures which allow “regularizing” finite-point quantizers in the sense that any finite-point
quantizer can be replaced with a regular quantizer with the same cell probabilities and equal
or less distortion.

Definition 6.1 (Gyo6rgy and Linder [J3]|) Given a positive integer N we say that a dis-
tortion measure d : R x R — [0,00) s N-point regular if for any nonatomic distribution
u on R and any N-point quantizer () there is a regular N-point quantizer @ such that
D(@) < D(Q) and Q and Q have the same cell probabilities (i.e., there is a one-to-one
mapping 7 between the cells of Q and Q satisfying wu(S) = u(n(S)) for any cell S of Q).
Finally, d is called finitely regular if it is N-point regular for every positive integer N.

The next theorem shows that if d is two-point regular, then it is also finitely regular, and
a wide family of two-point regular distortion measures is also characterized.

Theorem 6.1 (Gyorgy and Linder [C4, J3]) Every two-point regular distortion mea-
sure s finitely reqular. That is, if the real random variable X has a nonatomic distribution
u, and d is two-point regular, then for any ﬁmte-pomt quantzzer Q with cells {S1,...,Sn}
there exists a regular quantizer Q with interval cells {Sl, S N} such that p(S;) = ,u(é’\i),
i=1,...,N, and D(Q) < D(Q). If d(z,y) = p(|z — y|) for some p : [0, 00) — [0, ), where
p is convexr and nondecreasing, then d is two-point reqular.

An immediate consequence of this result, stated in Corollary 6.2, is that if, in addition
to the conditions of the theorem, there is a ¢* € R such that E{d(X,c*)} < oo, then Dj(R)
can be arbitrarily well approximated by regular finite-point ECSQs.

Unexpected problems may arise if one wants to extend Theorem 6.1 to infinite-point
quantizers. It turns out that applying the regularization technique used in the proof of the
theorem to infinite-point quantizers may result in quantizers having interval cells {S;} such
that P{X € |J;S;} = 1, however, |J, S; # R. To deal with such cases, we introduce the
notion of almost regular quantizers.



Definition 6.2 (Gyo6rgy and Linder [C4, J3]) A k-dimensional vector quantizer QQ €
Qy. is called p-almost regular if there is a set S C S such that u(S) = 0, @ is defined on
S\ S, and Q has convez cells containing the corresponding code points.?

The next theorem shows that for two-point regular distortion measures, any infinite-point
quantizer can be replaced with an almost regular quantizer with the same entropy and equal
or less distortion.

Theorem 6.2 (Gyorgy and Linder [C4, J3]) Assume that the real random variable X
has a monatomic distribution u, and let d(z,y) be a two-point reqular distortion measure
such that d(z,y) is a lower semicontinuous function of y for all x € R, and for all y € R,
d(z,y') <lim inf|y|:>oo d(z,y). Then for any infinite-point quantizer Q there exists a p-almost

A~

reqular quantizer @ with the same cell probabilities such that D(Q) < D(Q).

The regularization result of Theorem 6.2 makes it possible to show the existence of an
optimal ECSQ for any source with a nonatomic distribution. Theorem 6.2 also implies that
such an optimal ECSQ can be assumed to be almost regular.

Theorem 6.3 (Gyorgy and Linder [C4, J3]) Let X have a nonatomic distribution u
and let d(z,y) be a two-point reqular distortion measure such that d(x,y) is a lower semi-
continuous function of y for all x € R, and for all y' € R, d(z,y') < liminf,, d(z,y).
Then for any R > 0 there exists a p-almost reqular quantizer Q such that H(Q) < R and
D(Q) = Du(R).

Similarly, it is shown in Theorem 6.4 that under the same conditions as in Theorem 6.3,
a regular optimal ECSQ exists in the class of quantizers with at most N code points. By
Theorem 6.1, Theorems 6.2 and 6.3 hold for any difference distortion measure d(z,y) =
p(|x — y|), where p is nondecreasing and convex.

In the special, but important case of the squared error distortion measure and sources
with piecewise monotone and piecewise continuous source densities, we are able to resolve
the problem of regularity.

Theorem 6.5 (Gyorgy and Linder [C4, J3]) Let X be a real random variable with a
density f which is piecewise monotone and piecewise continuous in the interval (o,7) (—oo <
o <7 < 00), and assume that d(z,y) = (z — y)*.

there is an optimal ECSQ) which is regular.

Then for any entropy constraint R > 0

2.4 The structure and existence of optimal ECVQs for continuous
distributions

In this section we extend the results of the previous section for vector quantizers. The
essential ideas of the proofs are similar, but the problems in the vector case are much harder

2Recall Definition 3.1.



and more technical. We investigate only the practically most important case of the squared
error distortion measure and sources with densities. Using a halfspace-based description of
regular vector quantizers, we manage to prove different regularity-type properties of “good”
finite point quantizers.

Theorem 7.1 Assume that X has a distribution p which is absolutely continuous with re-
spect to the Lebesque measure on R*, and let d(x,y) = ||z — y||*>. Then for any N -point
quantizer Q = {(S1,¢1), ..., (SN, cn)} there is an (N + 1)-point quantizer Q = {(5, cl)
(SN+1,CN+1)} for some cy1 € R¥ such that S is a convex polytope for 1 <i < N, SN+1 18
a union of finitely many convex polytopes,

pu(S;) = u(S;) for 1 <i < N, and p(Sy41) =0

and
D(Q) < D(Q).

More precisely, for every 1 < ¢ < j < N there is a hyperplane h;; perpendicular to ¢; — c;
with corresponding halfspaces (H;j, Hj;) such that S; = U, ,; Hij for all1 <i < N, and

§N+1 = R* \ Uzj\il ‘§z

By splitting §N+1 into finitely many convex polytopes, we obtain a finite-point regular
quantizer, which may have more than N code points (Corollary 7.1). In Corollary 7.2 we
show that if X has a positive density, then the resulting quantizer is regular. It also follows
from Theorem 7.1 that if the source has finite variance, then Dj(R) can be arbitrarily well
approximated by regular finite-point ECVQs (Corollary 7.3).

Regularizing infinite-point quantizers in the vector case is a technically significantly more
challenging problem than in the scalar case. The main ingredient of the proofs is Lemma 7.1,
which shows the convergence of certain quantizer sequences. By the lemma, the almost
regularity and the existence of optimal ECVQs is almost immediate.

Theorem 7.3 Assume that X has a distribution p which is absolutely continuous with re-
spect to the Lebesgue measure on RE, and let d(z,y) = ||z — y||*>. Then for any quan-
tizer QQ there is an almost reqular quantizer (Q having the same cell probabilities such that

D(Q) < D(Q).

Theorem 7.4 Assume that X has a distribution p which is absolutely continuous with re-
spect to the Lebesgue measure on R* | and let d(z,y) = ||z — y||>. Then for any R > 0 there
exists an almost reqular quantizer @ such that H(Q) < R and D(Q) = Dy(R).

According to the results concerning the structure of optimal entropy-constrained scalar
and vector quantizers, under various conditions on the distortion measure and the source
distribution, any quantizer ) can be replaced with a regular or almost regular quantizer @
such that D(Q) < D(Q), and Q and Q have the same cell probabilities. The latter implies
that if the outputs of () and @ are encoded using the same variable-length lossless code,



then the resulting average codeword length will be equal. Therefore, it is enough to restrict
the attention to almost regular quantizers when searching for an optimal variable-rate vector
quantizer. To complete the picture, we show the existence of optimal variable-rate quantizers
in Theorems 7.5 and 7.6, the variable-rate counterparts of the existence results Theorems 6.3
and 7.4 corresponding to the entropy-constrained case.

The results in this section and in the previous one basically settle the problem of existence
of optimal entropy-constrained quantizers in the most important cases, and the results con-
cerning the structure of ECVQs practically justify the implicit assumption in the literature
that optimal ECVQs are regular.

2.5 Asymptotic rate-distortion behavior of random vectors and
stationary sources with mixed distributions

In the last part of the thesis we determine the best compression asymptotically achievable
for sources with mixed distributions via ECVQs of increasing dimension. We consider real
valued stationary sources and the normalized squared error distortion.

The minimum rate necessary for compressing a random vector X" = Xi,..., X, with
fidelity D > 0 is given by the rate-distortion function [1]

1
Rxn(D) = inf —I(X"Yy"
xn(D) n—lEHXlnn—YnH?gD n (X ¥T)
where the infimum of the normalized mutual information 21(X™;Y™) is taken over all joint
distributions of X™ and Y™ = (Y3, ...,Y,) such that

1 0o 1 &
EEHX Y|P = ﬁZE{(Xi ~Y;)’} < D.
i=1

The rate-distortion function of a stationary source X = {X3, Xs,...} is given by

n—oo

where the limit is known to exist [1]. Ry (D) is the minimum rate necessary to transmit the
data of the stationary source X with fidelity D, and this rate is achievable using ECVQs of
increasing dimension [12, 7]. In general, it is very hard to determine the rate-distortion func-
tion analytically, and in most of the cases only bounds and asymptotic formulas are known.
Concerning sources with certain mixed distributions, Rosenthal and Binia [17] derived the
exact asymptotic behavior of the rate-distortion function in the limit of small distortions.
They considered the case when the distribution of X™ is a mixture of a discrete and a contin-
uous component. Their result can be very useful in modeling memoryless signals, however,
their model cannot be applied for stationary and ergodic sources with mixed distribution.
To overcome this problem, we propose a more general mixture model which can be used for
modeling such sources.

Let {X0U) = (Xl(j), e ,X,(lj)), j=1,..., N} be afinite collection of random n-vectors such
that for each j exactly d; coordinates of X () have a discrete distribution (the d;-dimensional

10



vector formed by these “discrete coordinates” is denoted by X () and the remaining ¢ =
n—d; coordinates have a joint density (the c;-dimensional vector formed by these “continuous
coordinates” is denoted by X)).

Let the source vector X™ have a distribution which is a mixture of the distributions
of the X with nonnegative weights as,...,an (Zjvzl a; = 1). That is, for some index
random variable V' taking values in {1,..., N}, which is independent of the X and has
the distribution P{V = j} =qa;, j=1..., N, X" is defined by

xn=xWv (1)

that is, if V = 7, then X™ = X. We can assume without loss of generality that X
and XU do not have all their discrete coordinates in the same positions if j # j'. We also
require that X" satisfy the following mild conditions.

(a) All XU) have finite second moments E||X)||? < 00, j =1,...,N.

(b) For each XU, j =1,..., N, the conditional differential entropy h(X®|X) and the
entropy of the discrete coordinates H (X)) are finite.

Then the asymptotic rate-distortion function of X™ in the limit of small distortions can
be determined.

Theorem 8.1 (Gyorgy, Linder, and Zeger [C1, C2, J1]|) Assume X" is of the miz-
ture form (1) such that each component XU) has d; coordinates with a discrete distribution
and ¢; = n — d; coordinates with a joint density. Suppose the XU) satisfy (a) and (b).
Then the asymptotic behavior of the rate-distortion function of X™ relative to the normalized
squared error distortion is given as D — 0 by

N N
Rxn(D) = ~H(V) + » a;H(XW) + - } a;h(XD|X0) — 5 log(2reD/A) + o(1)
j=1

j=1
where A = %Zjvzl ajc; and o(1) = 0 as D — 0.

An immediate consequence of this result is that the rate-distortion dimension [10] of X™ is
nA, the expected number of ” continuous” coordinates. In Corollary 8.1 the results are applied
to determine the exact asymptotic small distortion behavior of the rate-distortion function
of a special but interesting class of stationary sources (with mixed discrete-continuous one-
dimensional marginals), which can be used for modeling sparse sources [3].

3 Methodology

During this work we have used different technics from probability and measure theory, from
the theory of constrained optimization, and from information theory. The derivation of
optimal ECSQs for a uniform source relies heavily on the technics of Lagrange-multipliers,
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which is also in the background of the Lagrangian formulation of optimal entropy-constrained
quantization. The results concerning structural properties and existence of optimal entropy-
constrained quantizers are based on measure theoretic considerations, and the proofs exten-
sively use Fatou’s lemma and Cantor’s diagonal method. Finally, pure information theoretic
considerations lead to the asymptotic rate-distortion functions of sources with mixed distri-
butions.

4 Potential applications

The results in this thesis concern problems of optimal lossy data compression, and they
provide a step forward in finding general optimal code constructions. Although they are more
of theoretical nature, the problems are very much application-oriented, and the results can be
used in quantizer design. The results concerning the existence of optimal quantizers ensure
that searching for an optimal quantizer, which is the goal of most design algorithms, is not a
hopeless task. The optimal ECSQs for the uniform source can be applied whenever one has to
compress data from such a source, however, the theoretical implications of this result seem to
be more important. One of the best design algorithms for entropy-constrained and variable-
rate quantizers [5] uses the Lagrangian formulation of entropy-constrained quantization; the
results concerning the finiteness of Lagrangian-optimal ECVQs can be used to initialize this
algorithm. The regularity-type results for optimal ECVQs theoretically justify the implicit
assumption of regularity in the literature, and hence validate existing design algorithms.
Finally, the rate-distortion function determined in the last part of the thesis can form a
basis for performance evaluation in compressing sparse images which have a large number
of zero-valued pixels, since the construction used in Corollary 8.1 can be used to model
such images [3]. Moreover, the results suggest an asymptotically optimal coding method for
sources with mixed distributions.
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