Elhasznált gépjárművek és mobil gépek újrahasznosítása
Koncepció, megvalósítás és gyakorlati kérdések

LUKÁCS Pál

Budapest, 2002. december
1. **BEVEZETÉS**... 1

2. **A MODERN GÉPJÁRMŰJELSEMÉNYEK ÖSSZEFOGLALÁSA** .. 31

3. **A GÉPJÁRMŰJELSEMÉNYEK VÉZETÉSBŐL SZÁRMAZÓ ALKATRÉSZEK, JAVÍTÁSI MOPPZÁTTSÁGA** 34

4. **ÖSSZEFoglaláS**.. 41

5. **GÉPJÁRMŰ-HASZNOSÍTÓ TÉLEK ÉS MOPPZÁTTSÁGAI** .. 42

6. **ÖSSZEFOGALMAK**... 54

7. **RÖVIDÍTÉSEK JEGYZÉKE** .. V

8. **TARTALOMJEGYZÉK**.. I

9. **MEGJEGYZÉS**... VIII

SZÓRÉS .. III

FELHASZNÁLT IDEGEN- ÉS MAGYAR SZAKKIFEJEZÉSEK JEGYZÉKE ... III

RÖVIDÍTÉSEK JEGYZÉKE .. V

1. BEVEZETÉS... 1

1.1 A GÉPJÁRMŰ-ÚJRAHASZNOSÍTÁS SZÜKSÉGESÉGE, GAZDASÁGI, TÁRSADALMI MEGALAPOZOTTUNKÁSÁGA.. 1

1.2 A JÁRMŰ-RECYCLING TÖRTÉNÉTI ATTEKINTÉSE .. 1

2. A GÉPJÁRMŰ-HASZNOSÍTÁS MENETELÉS .. 3

2.1 A GÉPJÁRMŰ-ÚJRAHASZNOSÍTÁS HAZAI ÉS NEMZETKÖZI JOGSZABÁLYI HÁTTERE 3

2.1.1 Az európai országok ELV-kezelési gyakorlata .. 3

2.1.1.1 A 2000/53/EK Irányelv megfogalmazásainak rövid kivonata .. 5

2.1.2.1 Az Európai Autógyártók Szövetsége (ACEA) állásfoglalása a 2000/53/EK direktiva végrehajtásával kapcsolatban .. 8

2.2.1.1 A bontótelepek engedélyezésének, létesítésének és építésének jogszabályai 16

2.2.2.2 A bontóüzemek működésének és ellenőrzésének jogszabályai és előírásai 17

2.2.3 A hazai járműállomány összetétele a típusok, az átlageletkor és a 2001 évi forgalomba helyezésének szempontjából .. 18

3. GÉPJÁRMŰVEK BONTÁSBÓL SZÁRMAZÓ ALKATRÉSZEK AZONOS RENDELKEDÉSI CÉLRA TÖRTÉNŐ TOVÁBBALKALMAZÁSA .. 42

3.1 JÁRMŰMOTOROK HÍVÖDÖJTÉTELEZÉSÉRE 42

3.2 ALKATRÉSZEK HÍVÖDÖJTÉTELEZÉSÉRE 43

3.2.1 Fémasszonyok javítástechnológiái ... 43

3.2.1.1 Hegesztés ... 46

3.2.1.2 Ragasztás ... 47

3.2.1.3 Fémszórás ... 48
SZÓJEGYZÉK

FELHASZNÁLT IDEGEN- ÉS MAGYAR SZAKKIFEJEZÉSEK JEGYZÉKE

AltautoVerordnung
Verordnung über die Entsorgung von Altautos und die Anpassung
straßenverkehrsrechtlicher Vorschriften, vom 04.07.1997 – Német
roncsautó-rendelet

Compound
Olyan műanyagkeverék, amelynek alkotórészei egymás funkcióit
giegészítik.

Dioxin
Gyűjtőneve a klórozott di-benzo-p-dioxidoknak, amelyekből mintegy
75 féle módosulat ismert. Néhányan közülük igen mérgézőek.
Keletkezésük a klórtartalmú szerves vegyületek ellenőrizetlen
égésékor zajlik le.

Duroplasztok
Hálósított erős műanyagok, amelyek nem olvaszthatók és hőre nem
alakíthatók. Az elmúlt időkig nem hasznosították újra, frissen
kifejlesztett eljárások azonban lehetővé teszik reciklálását.

Elasztomerek
Ipari anyagok különböző kémiai összetétellel a gumihoz hasonló
elasztikus tulajdonságokkal. Az anyagi hasznosítási eljárások jelenleg
is fejlesztés alatt állnak. Néhány már megvalósult módszer:
gumi hulladék felhasználása az aszfaltban („suhogó aszfaltok”),
zajvédő falak készítése, vízátérről vízátérrészei készítése mezőgazdasági
alkalmazással („izzadó csövek”)

Etilén-glikol
A hűtővízhez a fagyállóság elérése céljából kevert alkoholvegyület,
amely kémiai egyenértékű, újrahasznosítható.

EU roncsautókra vonatkozó javaslat a Bizottság 1997. 07.09.-i javaslat
a Tanács 1999. július 29.-ei, az Európa Parlament és Tanács
roncsautókra vonatkozó 1999/.../EU Irányelvi készítéséről
EU Egységes Állásfoglalása a roncsautókról
a Tanács 1999. július 29.-ei, az Európa Parlament és Tanács
roncsautókra vonatkozó 1999/.../EU Irányelvi kibocsátására tekintettel
meghozott 39/1999 számú Egységes Állásfoglalása
EU roncsautókra vonatkozó 2000/53/EK Direktíva
Az Európai Parlament és a Tanács 2000. szeptember 18-i roncsautókra
vonatkozó Irányelve

Fluor-klór-szénhidrogének (FCKW)
a klimaberendezések hűtőközegeként és más hűtőgépekhöz
(hűtőszerekények, mélyhűtőlándak) alkalmazzák. Az atmoszférába jutva
károsítja az ózonréteget, amely az ibolyántúli sugaraktól véd. Káros
tulajdonságai miatt rendeletekkel korlátozták használatát.

Glikoléter
Alapanyag, amelyből a fékfolyadékot előállítják. Extrém nyomás és
hőmérsékletálló, de higroszkópikus (vízmegkötő) tulajdonságai miatt
ciklikusan cserélni kell. Biztonsági okokból többet nem alkalmazzák
fékfolyadékként, hanem tisztítószereként vagy oldószerként
újrahasznosítják.

Granulátum
Apró darabokra (magokra) széttörőd műanyagrések. Frőccsöntés
alapanyagaként szolgál hőre lágyuló műanyagok esetén.

Hidrogénezés
Kémiai eljárás, hidrogénnel való katalitikus átalakítás nyomás alatt
(400 bar) és oxigénhozzávezetés mellett. A hosszú polimerláncokat
felnőttják és hidrogén hozzákötelezésével stabilizálják. A hidrogénezés
során gázformájú és alajszerű termékek keletkeznek, amelyek
petrokémiai nyersanyagként használhatók fel.

Hidrolízis
Kémiai eljárás, amelynél a poliuretánokat, a poliésztereket,
a poliamidokat valamint ezek fél nem bontható végetermékeit magas
nyomáson és hőmérsékleten vízgőz hatására újrahasznosítják.
Variációk: alkohol ill. glikol a vízgőz helyett. Az elérhető

iii
olajkihozatali arány 65%. A maradványok (kátány, koksz, szilárd anyag) részaránya 18%.

Magas hőmérsékletű elgazosítás

Shredder-könynyűfrakció égetésének ellenőrzött eljárása. Az elégési feltételek és a magas hőmérséklet (1600°C körül) megalakadályozzák a dioxinok keletkezését.

Metallurgiai hasznosítás

Termikus hasznosítási eljárás, melynél a részlegesen lebontott kocsiszoncsokat (vagy más használati eszközöket) - beleszámítva a különböző shredder-könynyűfrakcióként tárolókba kerülő és ezáltal az anyagkörnyezetből kieső szerves anyagokat (polimereket) - a magas hőmérsékletű eljárással kezelik. Az eljárás lényege, hogy a könynyűfrakció energiataralma révén elősegíti a fémek olvasztását, ezáltal kevesebb földgáz felhasználása szükséges.

Ózon

Háromatomos oxidénmolekula. Az ózonréteg 10-26 km magasságban véd a földet a középhullámhosszúságú ibolyántúli sugárzáktól. Ez az ózonréteg a sztatoszférába felszálló FCKW-k miatt károsodik (ózonlyuk), amely által a veszélyes ultraviola sugarak a föld felszínére juthatnak.

Önkéntes kötelezettségvállalás

A német autóipar önkéntes kötelezettségvállalása a roncsautók hasznosítására vonatkozóan – „Freiwillige Selbstverpflichtung der Deutschen Automobilindustrie”

Pirolízis

Magas hőmérsékletű eljárás (az oxigén kizárása mellett), amelynél a műanyagok olaj és gázformájú termékekre esnek szét, ezek később újra műanyagok alapanyagaként szolgálnak. Az olajkihozatal aránya 27%, a maradványok (kátány, koksz, szilárd anyag) részaránya 30%.

Pirotechnika

A pirotechnikai szilárd-anyagok elégésekor keletkezik az a gáz, amelyet a légzsák töltésére vagy az övfeszítő mechanikájának kioldásához használják.

Reciklátum

Nyersanyag, amely egy használt szerkezeti elem anyagi feldolgozása útján keletkezik.

Recycling

Újrahasznosítás – amely magában foglalhatja a tovább- vagy újraalkotmányozást – alkatrészként vagy más funkciói betöltve, valamint a tovább- vagy újrahasznosítást – szerkezeti anyagkként, vagy az anyagot visszaalakítva kiindulási állapotába – pl. műanyagok pirolízissel történő feldolgozása

Regenerátum

Nyersanyag, amit a használt műanyagok kémiai feldolgozása útján nyernek.

Regranulátum

Nyersanyag, amely a főképpen termoplaztikus szerkezeti elemei mechanikai aprításán keresztül keletkezik és újrafeldolgozásra kerül. Szívesen adagolják termelési hulladékokhoz azok feldolgozásánál.

Shredder

Aprító berendezés, amelyben a roncskoci aprításra kerül. Műanyagalkatrészek (pl. lókáhirítók) örlését is végzik a shredderekben. Az aprítás elve: az álló üllőfelett valamilyen behúzó-szerkezettel vagy gravitációsan keresztülhúzott tömörített kocsitestet a forgó szerszám elnyíróer segítségével letépi.

Shredder-frakciók

A shredderezésnél shredderhulladék keletkezik, amely a következő ún. frakciókból áll: kb. 55-60% vas és acél, 10-15% aluminium ill. könnyűfémes, 5% durvahulladék, 1% kézi változástudás fém és 25% könnyű hulladék (shredder-könynyűfrakció).

Termikus hasznosítás

Műanyagok égetése speciális berendezésben (ld. pirolízisnél). A hatásos eljárásvégzés és a füstgáztisztítás megkövetett.

Termoplaztok

Trockenlegung

„Szárazra fektetés” – gépjárművekben található üzemanyagok szakaszú eltávolítása
Szójegyzék

Üvegszálas-termoplasztok Nehezen hasznosítható, összetett műanyag, amely pl. a légerelőelemek (spoiler), merevítő belső építőelemek és motortér-tokozások alapanyaga.

Üzemanyagok Olyan anyagok, amelyek egy autó működéséhez elengedhetetlenek. Ide tartoznak a tüzelőanyagok, a motor- és hajtóműolajok, a hűtőfolyadékok, a hűtőközeg, a légzsák és az övfeszítő szilárd hordozóanyagai. Ezek az üzemanyagok nagy értékű alapanyagokból készülnek, amelyek összerú hasznosítási eljárásokkal visszanyerhetőek, újra feldolgozhatóak és újraalkalmazhatóak. A környezetbe kerülve arra fokozott károsító hatást fejthetnek ki, ezért ügyelni kell szelektív gyűjtésükre.

RÖVIDÍTÉSEK JEGYZÉKE

ACEA Assosiation des Constructeurs Européens d’Automobiles - Európai Autógyártók Szövetsége
ADRA Automotive Dismantlers and Recyclers of America – az Egyesült Államok jármű-vizsgálati és újrahasznosítóinek egyesülete
ARGE-Altauto Arbeitsgemeinschaft Altauto GmbH
AriV Automobilrecycling im Verbund
ASF Audi Space Frame – Az Audi gyár ún. „Tér-Keret”-tehnikája, amely lehetővé tette aluminiumanyagok nagymértékű felhasználását gépjármű karosszériákban
ASR Auto Shredder Residue – Shredderezés könnyűfrakció
BAYLOGI Bay Zoltán Alkalmazott Kutatási Alapítvány – Logisztikai és Gyártástechnikai Intézet
BDSV Bundesvereinigung Deutscher Stahlrecycling- und Entsorgungsunternehmen e.V.
BIR Bureau International de la Récuperation
BM Belügyminisztérium
BMGE Budapesti Műszaki és Gazdaságtudományi Egyetem
CLEPA European Association of Automotive
DAAD Deutscher Akademischer Austauschdienst
DB Deutsche Bundesbahn
ECRIS Environmental Car Recycling in Scandinavia
EGARA European Group of Automotive Recycling Associations
ELV End of Life Vehicle
EGA European Group of Automotive Recycling Associations
ELV End of Life Vehicle
EPA Environmental Protection Agency
EREKO Kelet-Európai Hulladékgazdálkodás és Környezetvédelmi Rt.
EU Európai Unió
EUCAR European Council for Automotive R&D
EURHARKAR Europäischer Herstellerkreis Altauautomobilrecycling
FAR Fachgruppe Autorückmontage
FSV Freiwillige Selbstverpflichtungsabkommen
BMGE-GJT Budapesti Műszaki és Gazdaságtudományi Egyetem Gépjárművek Tanszék
GM Gazdasági Minisztérium
GM-KÖM Gazdasági és Közlekedési Minisztérium
Gumill Rt. Dél-Dunántúli Gumihasznosító Rt.
HOE Hulladékgazdálkodás Országos Egyesülete
Holofon ’95 Holofon Alapanyaggyártó és Forgalmazó Kft.
IDIS International Dismantling Information System
IHU Innovatív Háznyilvánosság – Belso Nagynyomású Átalakító Eljárás – Profilos lemezdarabok kialakítási technológiája, amelynek
során a lemezt a szerszámban belülről teszik ki nagy folyadéknymósnak, amely a lemezt a szerszám falához „préseli”

IKA
Institut für Kraftfahrwesen in Aachen

IKIM
Ipari, Kereskedelmi és Idegenforgalmi Minisztérium

ISRI
Institute of Scrap Recycling Industries

JAMA
Japan Automobile Manufacturers Association, Inc.

KőHÉM
Közlekedési, Hírközlési és Építésügyi Minisztérium

KőM
Környezetvédelmi Miniszt

KOVIM
Közlekedési és Vízügyi Minisztérium

KVVM
Környezetvédelmi és Vízügyi Minisztérium

KTI
Közlekedéstudományi Intézet Rt.

KTM
Környezetvédelmi és Terrületfejlesztési Minisztérium

LAGA
Länderarbeitgemeinschaft Abfall

M.A.R.I.
Markenübergreifende Automobil-Recycling Initiative

MGE
Magyar Gépjárműimportórók Egyesülete

MGSZ
Magyar Gépjárműipari Szövetség

MüGu Kft.
Müller-Gutenbrunn Hulladékanyag Kereskedő és Feldolgozó Kft.

OECD
Organisation of Economic Cooperation and Development

OICA
Autógyártók Nemzetközi Szövetsége

OM
Oktatási Minisztérium

OMFB
Országos Műszaki Fejlesztési Bizottság

PRAVDA
Projektgruppe Automobilverwertung der deutschen Automobilindustrie

TÜV
Technischer Überwachungsverein

ULSAB
Ultralight Steel Auto-Body – Ultrakönnyű Acél Karosszéria

VDA
Verband der Automobilindustrie e.V.

WdK
Wirtschaftsverband der Kautschukindustrie e.V.

ZDK
Zentralverband des Kraftfahrzeuggewerbes e.V.
Amikor 1994-ben a BME Közlekedésmérnöki Kar ötödéves autógépész hallgatójaként diplomatervem témájaként a gépjárművek újrahasznosítását választottam, már tudtam ez a témakör számonma több, mint egyszerű (egyszeri) választás lesz.

Ennek egyenes következménye lett, hogy a BME Gépjárművek Tanszékén meghirdetett „Elhasznált gépjárművek és mobil gépek újrahasznosítása” Ph.D. témakörre azonnal jelentkeztem és 1994-1998 között a Tanszék doktorandusz hallgatójaként ezt a témakört kutattam.

A kutatási eredményeimet, amelyek tekintettel ennek a témakörnek rendkívül szerteágazó voltára a recikláláshelyes konstrukcióképzés, szerkezeti anyagok megválasztása és gépjárművekben történő alkalmazása, hulladékok szétválasztása, feldolgozása és újrahasznosítása témaköre mellett az újrahasznosítás logisztikájának, törvényi szabályozásának kérdésére is kiterjedtek, rendszeresen publikáltam a hazai és nemzetközi szakirodalomban.

Ennek a publikációs tevékenységnek a – számomra – legfontosabb eredményei egy, a gépjárművek vasalapú szerkezeti anyagait feldolgozó felsőoktatási tankönyv, több kutatási jelentés és számos jelentős nemzetközi konferencián megjelenített előadás vagy referált folyóiratban megjelent cikk.

1999-ben sikerült Budapesten, a BME-én megrendezni egy olyan gépjármű újrahasznosítással foglalkozó konferenciát, ahol a hazai illetékes minisztériumok és szakhatóságok mellett néhány nemzetközi főiskolai diplomata és kutató is részt vett.

Az elmúlt évek mérlegelményei jelentősége után úgy tűnik ez a témakör is kezdi végre a jelentőségének megfelelő figyelmet megkapni.

A Környezetvédelmi Minisztérium például már az ország EU integrációs folyamatának jegyében hozzákezdett a 2000/53/EK európai roncsautó direktívája megvalósításához. A belügyi szakértők és jogsértési szakemberek úgy vélik, hogy az újrahasznosítás logisztikájának, törvényi szabályozásának és más területen is befolyásolható.

Ennek a publikációs tevékenységnek a – számomra – legfontosabb eredményei egy, a gépjárművek vasalapú szerkezeti anyagait feldolgozó felsőoktatási tankönyv, több kutatási jelentés és számos jelenlegi publikálás.

Az elmúlt évek kormányzati szinten tapasztalható érdektelensége után úgy tűnik ez a témakör is kezdi végre a jelentőségének megfelelő figyelmet megkapni.

A Környezetvédelmi Minisztérium például már az ország EU integrációs folyamatának jegyében hozzákezdett a 2000/53/EK európai roncsautó direktíva megvalósításához. A belügyi szakértők és jogsértési szakemberek úgy vélik, hogy az újrahasznosítás logisztikájának, törvényi szabályozásának és más területen is befolyásolható.

Ennek a publikációs tevékenységnek a – számomra – legfontosabb eredményei egy, a gépjárművek vasalapú szerkezeti anyagait feldolgozó felsőoktatási tankönyv, több kutatási jelentés és számos jelenlegi publikálás.
számon tartott Németország roncsautó-hasznosítási gyakorlatával. Ezt az ösztöndíjat a DAAD-nek köszönhetően kaphattam meg.

Köszönet illeti Dr. Martin Schenk urat, az ARGE Altauto korábbi üzletágvezetőjét, akinek segítségével könnyebben eligazodhattam az európai jogalkotás és a német autóipar útvesztőiben, és akit az 1999-ben a BME-én megtartott roncsautó-konferencián vendégelőadóként is üdvözölhettünk.

Köszönetem fejezem ki Lepsényi István úrnak az MGSZ elnökének és Dr. Körmendy Ágoston úrnak az MGSZ titkárnak, amiért létrehozták és működtették az MGSZ-en belül a Recycling Munkabizottságot és amelynek 2001-ben megbízott elnökévé tölük annak vezetéséhez minden támogatást megkaptam és megkapok mai is. Mint a Munkabizottság elnöke folyamatában vehettem és vehetek részt a hazai jogalkotási alapjaiban megteremtő magyar rendelet megalkotásában. Ez a munka alapjait tekintve egy nemzetközi tapasztalatokon alapuló, magyar viszonyokhoz igazított, de az EU-Direktiva elvárásait teljes mértékben teljesítő magyar végrehajtási utasítás váza, amelyre építkezve eredményesen oldható meg ez a gazdasági szempontokból oly fontos problémák or.

Külön köszönettel tartozom Dr. Palkovics László professzor úrnak, volt tanszékvezetőmnek, az OMFB elnöke és egyben témavezetőmnek is, amiért mindig bizalmáról biztosított és támogatott kutatási munkám során ebben az igen szép, de egészen a legutóbbi időkig Magyarországon meglehetősen mostohán kezelt térkörben.

Támogatásuk nélkül ez a disszertáció nem jöhetett volna létre.

Budapest, 2002. december

Lukács Pál
1. BEVEZETÉS

1.1 A gépjármű-újrahasznosítás szükségessége, gazdasági, társadalmi megalapozottsága

A járművek elhasználódás utáni újrahasznosítása nem öncélú feladat, szükségességét alapvetően három teható indukálja:

- A föld nyersanyag- és ásványkincs készletei végek, kímélésük érdekében fokozottan szükség van a másodlagos anyagforrások kiaknázására, az anyag-környezetének zárására.
- A hulladékgyaroló helyek kapacitása korlátozott, lehetőség szerint minden újrahasznosítható hulladék reciklálásával csökkenteni kell a hulladéklerakók leterhelését.
- A szabadban, a közvetlen környezetünkben hagyott járműroncsok az esztétikai hatáson kívül a bennrejelt veszélyes hulladékok (olajok, hűtővizek és közégek, félkőtővédekok stb.) miatt a természetet fokozottan veszélyeztetik.

A fentiek alapján tehát elmondható, hogy az elhasznált járművek újrahasznosítása fontos ökológiai, társadalmi és nemzetgazdasági érdek.

1.2 A jármű-recycling történeti áttekintése

Az elhasznált gépjárművek újrahasznosításának problématikája gyakorlatilag egyidős a gépjárműgyártással. Az első gépkocsikat bognárok, kovácsok és lakatosok készítették kis sorozatban, manufaktúraszerű termelési rendszerben. A kezdeti gépkocsi karosszériákat három részre lehetett tagolni, az alvázszerkezetre, a faváz-szerkezetre és a lemezburkolatra. Az alvázkeretet kezdetben csőből, majd sajtolt profillemezből készítették, a teherautókon ma is ezt alkalmazzák. A sajtolt lemezeket az első időkben szegecselték, ez azonban az idő folyamán átalakult hegesztett kivitelű. A faváz elemeket csapolással, lapolással, vagyis a fa kötőelemivel erősítették össze, a kötéseket pedig fasccavarral rögzítették. Mivel sem a fasccavaro kötés, sem a külső burkolólemez nem volt képes elviselni a kocsiszínrezgés csavaró igénybevételét, ezért a faváz elemeit a találkozásainál vasalással erősítették meg.

Az első járművek anyagaikat tekintve tehát fából, bőrből, öntöttvasból és kovácsolt acélból készültek, nagy általánosságból nyitott konstrukcióban. Ezekből az anyagokból csak a vasalapú anyagok kínálták fel az újrahasznosítás lehetőségét, amellyel az általános hulladékhasznosítási keretek között többé-kevésbé élték is az acélművek. Különösen igaz volt ez az inséges, háborúdú időkben, amikor az alapanyaggyártás már nehézkessé vált a gyárak folyamatos bombázása miatt.

A személygépkocsik egészen az ötvenes éveig hosszútartós alvázra épültek, ám ezután megjelent az önálló karosszéria. Ez egy acélból sajolt, középen megerősített padlólemezt jelentett, amelyet a kocsiszínrehegyezettek. Ez az alváz könnyebbé vált, nehezen csavarodott el és csökkent a menetidő. Közben a vegyiparban tapasztalható robbanásszerű fejlődés hatására megjelentek a modern műanyagipari termékek is a járműgyártásban.

Tulajdonképpen egészen a hetvenes évek ismétlődő olajtartalom kibővülése oka a bevált jövőmotor útmutatás és a járműtőmeg nagysága, hiszen hatalmas mennyiségű és olcsó benzin állt rendelkezésre megvalósulukhoz.

Ez a mai szemlélet szerint anyag- és energiapazarló építésmod azonban gyökeresen megváltoztott a népesség számának és az ipari termelés mértékének rohamos növekedésével. A gépkocsi a jövő szimbóluma lett, birtoklása és használata a mindennapok részévé vált. Az utakon megőrizett a forgalom, és ez az ipari aktivitás növekedésével együtt fokozott légszennyezéshez vezetett. A növekvő mértékű városi szmogjelenség a szigorodó környezetvédelmi előírások meghozatalára kényszerítette a fejlett országok törvényhozásait. A kialakuló anyag-
Bevezetés

És energiatakarékosság szempontjából a kipufogógázok mennyiségét volt hivatott csökkenteni. Ennek legegyszerűbb módja, ha a gépjármű-motorokban kevesebb tüzelőanyagot égetne el. Kevesebb tüzelőanyagra van szükség, ha a jármű tömege csökken, vagy ha a járműmotorok termikus hatásfokát javítják. Az előbbi szempontban hat a komfortigény, hogy a járművekbe beépítődése, ill. az új biztonságtechnikai vívmányok alkalmazása, amely a beszereződő új aggregátokkal, szerelvényekkel növelni a jármű tömegét.

Az új igényekkel együtt átalakult a felhasznált szerkezeti anyagok palettája is, a vasalapú fémekeket kezdi visszaszorítani a könnyűfémek új generációja, valamint a korszerű műszaki műanyagok családja. Utóbbiak terjedésének pedig éppen ellenére hat rossz üzleti hatással. Mivel a személyautókba beépített fémanyagok (a technika jelen állapota szerint a járművek 70-75%-a) nagy részét mindolettik újrahasznosítani, ezért a gyártók figyelmeztetik a nagyobb értékű műszaki műanyagok újrahasznosítási lehetőségei felé fordult. Első alkalmazásokat a lőkhárítók és a műszerfalborítások reciklálásával kezdték és ez megfelelően reklámozva igyekeztek járműveiket megfelelő „ÖKO-színezetben” feltüntetni.

Mindeközben a modern tervezéselmélet is átalakult, mivel rájöttek, hogy az egyes alkatrészek, anyagfelesezégek roncsautókból történő kinyerése és újrahasznosítására alapvetően függ az eredetileg megválasztott szerkezeti anyagoktól, a konstrukciók építési módjától. Ennek hatására a mérnöki és gyártásfelevezetők új rendszeresítésekről számítanak kihívást, amelyeket a „reciklálást figyelembe vevő” új irányelveket összegyűjtötték. Ilyen volt pl. a VDI 2243-as irányelv, amely meghatározta a „már a tervezőasztalon megkezdődő újrahasznosítás” alapvető szempontjait (lásd még a „Recycling szempontjainak érvényesülése a modern termékteljesítésben” fejezetet).

Ezek a megoldások pedig kiegészülve a shredderezési könnyűfrakcióra vonatkozó kutatási eredményekkel és az alapvetően ennek mennyiségét csökkenteni hivatott egységes Európai Unió Irányelv megjelenésével immár konkrétan befolyásolják a személygépkocsik jövőbeli konstrukciók építését.

Az EU Irányelv konkrét évszámokhoz rendelt irányszámait (lásd még az EU 2000/53/EK Direktívája fejezetrészét) előírja, hogy a járművek közönség kezelése kínálja a járműkonstrukciók tömegarányra vonatkozóan mérsékelt, illetve nem ismételten a különböző konstrukciók építésére vonatkozó rossz követelményeket.

Ezek az irányszámok pedig komoly kihívást jelentenek az autóipar számára, olyan követelményeket, amelyek egyaránt érintik a konstrukciók építési fázisát, a felhasznált szerkezeti anyagokat és gyártástechnológiákat, valamint a gyártók beszállítóikkal kialakított viszonyát.
1. BEVEZETÉS

1.1 A gépjármű-újrahasznosítás szükségessége, gazdasági, társadalmi megalapozottsága

A járművek elhasználódás utáni újrahasznosítása nem öncélú feladat, szükségességét alapvetően három tényező indokolja:

- A föld nyersanyag- és ásványkincs készletei végsők, kímélésük érdekében fokozottan szükség van a másodlagos anyagforrások kiaknázására, az anyag-környezet megvalósítására.
- A hulladéktároló helyek kapacitása korlátozott, lehetőség szerint minden újrahasznosítható hulladék reciklálásával csökkenteni kell a hulladéklerakók leterhelését.
- A szabadban, a közvetlen környezetünkben hagyott járműróncsgátlók az esztétikai hatáson kívül bennrejlő veszélyes hulladékok (olajok, hűtővizek és közegék, félkővafelek és stb.) miatt a természetet fokozottan veszélyeztetik.

A fentiek alapján tehát elmondható, hogy az elhasznált járművek újrahasznosítása fontos ökológiai, társadalmi és nemzetgazdasági érdek.

1.2 A jármű-recycling történeti áttekintése

Az elhasznált gépjárművek újrahasznosításának problematikája gyakorlatilag egyidős a gépjármügyártással. Az első gépkocsikat bognárok, kovácsok és lakatosok készítették kis sorozatban, manufaktúraszerű termelési rendszerben. A kezdeti gépkocsi karosszériákat három részre lehetett tagolni, az alvázszerkezetre, a faváz-szerkezetre és a lemezburkolatra. Az alvázkeretet kezdetben csőből, majd sajtolt profílemből készítették, a teherautókon ma is ezt alkalmazták. A sajtolt lemezeket az első időkben szegecselték, ez azonban az idők folyamán átalakult hegesztett kivitelűre. A faváz elemeket csapolással, lapolással, vagyis a fa kötőelemeivel erősítették össze, a kötéseket pedig fúvóscarral rögzítették. Mivel sem a fúvóscarró kötés, sem a külső burkolólémez nem volt képes elveszíteni a kocsiszekrény csavaró igénybevételét, ezért a faváz elemeit a találkozásainál vasalással erősítették meg.

Az első járművek anyagaikat tekintve tehát fából, bőrből, öntöttvasból és kovácsolt acélból készültek, nagy általánosságban nyitott konstrukcióban. Ezekből az anyagokból csak a vasalapú anyagok kináltak fel az újrahasznosítás lehetőségét, amelytel az általános hulladékhelyesítési keretek között többé-kevésbé élték is az acélumak. Különösen igaz volt ez az inséges, háborúdú évtizedekben, amikor az alapanyaggyártás már nehézkessé vált a gyáarak folyamatos bombázása miatt.

A személygépkocsik egészen az ötvenes évekig hosszútartós alvázra épültek, ám ezután megjelent az önhibró karosszéria. Ez egy acélból sajtolt, közepen megerősített padlólemezt jelentett, amelyet a kocsiszekrényhez hozzáfűzt. Ez az alváz könnyebbé vált, nehéz csavarodott el és csökkent a menetidőja is. Közben a vegyiparban tapasztalható robbanásszünetek fejlődéséhez megjelentek a modern műanyagipari termékek is a jármügyártásban.

Tulajdonképpen egészen a hetvenes évek ismétlődő olajválságokkal bezárólag alig számított a járműmotor újratartalom és a járműtömeg nagysága, hiszen hatalmas mennyiségű és olcsó benzín állt rendelkezésre meg hajtásukhoz.

Ez a mai szemlélet szerint anyag- és energiapazarlati építési módon azonban gyökeresen megváltozott a népesség számának és az ipari termelés mértékének rohamos növekedésével. A gépkocsi a jövő szimbóluma lett, birtoklása és használata a mindennapok részvényé vált. Az utakon megőrzött a forgalom, és ez az ipari aktivitás növekedésével együtt fokozott légsszennyezéshoz vezetett. A növekvő mértékű városi szmogjelenesség a szigorúd környezetvédelmi előírások meghozatalára kényszerítette a fejlett országok törvényhozásait. A kialakuló anyag-
Bevezetés

és energiatakarékos szemlélet a kipufogógázok mennyiségét volt hivatott csökkenteni. Ennek legegyszerűbb módja, ha a gépjármű-motorokban kevesebb tüzelőanyagot égetnek el. Kevesebb tüzelőanyagra van szükség, ha a jármű tömege csökken, vagy ha a járműmotorok termikus hatásfokát javítják. Az előbbivel szemben hat a komfortigény növekedése, ill. az új biztonságtechnikai vívmányok alkalmazása, amely a beszerelelő új aggregátokkal, szerelvényekkel növeli a jármű tömegét.

Az új igényekkel együtt átalakult a felhasznált szerkezeti anyagok palettája is, a vasalapú fémeket kezdi visszaszorítani a könnyű fémek új generációja, valamint a korszerű műszaki műanyagok családja. Utóbbiak terjedésének pedig éppen ellenére hat rossz újrahasznosíthatósági tulajdonságuk, a könnyűlétemek teljes energiamérélege kedvezőtlen, valamint hulladékként kevert formában csak alacsonyabb értékű alkalmazásokban (pl. öntvénytömbökbén) használható, míg a műanyaghulladékok rendkívül elaprózva, elszörönt és kis tömegben kerülnek a járművekre beépíthetők, ahonnán a kibontásuk és szelektív gyűjtésük problematikus. Nem véletlen, hogy a nagy acélipari cégek a műszaki fejlődést zászlójukra tűzve, összefogásban próbálják meg elveszített autóipari piacaikat visszaszerezni (lásd még az ULSAB-koncepció tervét a „Vasalapú szerkezeti anyagok” fejezetben).

Divat lett az autóiparban a környezetvédelem, a gyárak megtanulták reklámcélokra kiaknázni az új „köznyezetbarátabb” megoldásokat.

Mivel a személyautókba beépített fémanyagok (a technika jelen állapota szerint a járműtömeg 70-75%-a) nagy részét mindeddig sikerült újrahasznosítani, ezért a gyártók figyelme a nagyobb értékű műszaki műanyagok újrahasznosítási lehetőségei felé fordult. Első alkalmazásként a lőkhárítók és a műszerfalborítások reciklálásával kezdtek és ezt megfelelően reklámozva igyekeztek járműveket megfelelő „ÖKO-színezetben” feltüntetni. Mindeközben a modern tervezéselmélet is átalakult, mivel rájöttek, hogy az egyes alkatrészek, anyagfelelősségük roncsautókból történő kinyerése és újrahasznosíthatósága alapvetően függ az eredetileg megválasztott szerkezeti anyagoktól, a konstrukciók építési módjától. Ennek hatására a mérnökök kezdték új belső szabványokat hoztak létre, amelyben a „reciklálást figyelembe vevő” új irányelveket összegyűjtötték. Ilyen volt pl. a VDI 2243-as irányelve, amely meghatározta a „már a tervezőasztalon megkezdődő újrahasznosítás” alapvető szempontjait (lásd még a „Recycling szempontjainak érvényesülése a modern terméktevézésben” fejezetet).

Ezek a kezdeményezések pedig kiegészülve a shređderezési könnyűfrakcióra vonatkozó kutatási eredményekkel és az alapvetően ennek mennyiségét csökkenteni hivatott egységes Európai Unió Irányelv megjelenésével immár konkrétan befolyásolják a személygépkocsi jövőbeli konstrukciók építéséül. Az EU Irányelv konkrét évszámokhoz rendelt irányzásai (lásd még az EU 2000/53/EK Direktívája fejezetrész) előírják, hogy a jövőben kialakított járműkonstrukciók tömegarányra vonatkozóan mekkora hányadát kell majdan újrahasznosítani, anyagában ill. energetikai módon.

Ezek az irányszámok pedig komoly kihívást jelentenek az autóipar számára, olyan követelményeket, amelyek egyaránt érintik a konstrukciók építéséül, a felhasznált szerkezeti anyagokat és gyártás-tehlapokat, valamint a gyártók beszállítóikkal kialakított viszonyát.
2. A MODERN GÉPJÁRMŰ-RECYCLING MENETE

2.1 A gépjármű újrahasznosítás hazai és nemzetközi jogszabályi háttere

2.1.1 Az európai országok ELV-kezelési gyakorlata

2.1.1.1 Az EU roncsautókra vonatkozó 53/2000/EK Direktívája

A direktíva kidolgozásával megbízott munkacsoport azon a véleményen volt, hogy a hulladék-megelőzés (új gépjárművek konstrukciós kialakítása), a roncsautók visszavétel, a kezelés, az ismétel felhasználás, fogyasztói érdekképviselő szervezetek, valamint a roncsautók hasznosítását végző begyűjtők, autóbontók, shredderüzemek és a keletkező anyagfrakciókat hasznosító, deponáló, vállalkozások – közötti tárgyalásos rendezésre van szükség.

A legtöbb az ilyen intézkedések közül EU-szintű harmonizációt igényelt, emiatt az illetékes Bizottság törvényalkotási javaslatába felvételre került.

Több okból kifolyólag a roncsautókra vonatkozó közösségi előírásokat irányelv formájában kellett összefoglalni. A gazdaságilag érdekelő résztvevők befektetéseik biztos megterületülésének garanciájaként hosszú távú, jogszabályi biztosítékokat igényelték. Csak irányelv formájában volt garantálható, hogy az autóipar valamennyi résztvevője (ügymint gyártók, alapanyag-forgalmazók, bontó-, shredder- és recycling-üzemek stb.) a szükséges felelősséget felvállalja a környezetvédelmi célkitűzések elérése érdekében és a döntéshozatali munkában tevékenyen részt vallaljon. Tekintettel a részt vevők nagy számára az önkéntes szándéknak megvalósítása érdekében nem tűnhet tárgyaláson.

Az Irányelv végi konkrét formájában a német autóipari lobbi heves ellenállása és a német roncsautó rendelet makacs védelmezése ellenére az Európai Parlament és a Tanács 2000/53/EK Direktívája (a továbbiakban Irányelv) formájában 2000. szeptember 18-án megszületett. Ez egyben a német elkötelezés – „utolsó üzemeltetést fizet a hasznosításért” – teljes elutasítását jelentette a holland termelőjelleg mintavá alakított szemben, mint a Haus der Technik – AutoRecycling in Europa, Chancen und Risiken, 2000. május. 3-4-én Rüsselsheimen megtartott rendezvénynél Marco Onida, az EU spanyol képviselőjével azzal megfogalmazásra került, itt politikai döntés született, amely a nagypárosok érdekeivel szemben előérbe helyezte a fogyasztótévedelem és az átlag EU polgár érdekeit.

Míg a Javaslat – a későbbi szabályozás megfelelő előkészítéseként – igyekszett összefoglalni az egyes tagállamokban már meglevő, vagy tervezett, a témára vonatkozó intézkedéseket kiemelve azok előnyös és hátrányos vonatkozásait, addig az Állásfoglalás már szigorúan a tagállamokon belüli egységes intézkedések meghozatalára koncentrál.

Az Állásfoglalás kimondta: a járművek, melyek elérték élettartamuk végét és azokat a forgalomból végőrvényesen ki kell vonni, nagy mennyiségű hulladéket jelentenek és a környezet közvetlenül szennyezik.
Az EU-n belül évente 8-9 millió járművet vonnak ki végérényesen a forgalomból, amely 8-9 millió tonna hulladéknak felel meg. Ez az érték a forgalomba helyezett járművek számának növekedésével csak tovább emelkedik. A járműtömeg 25%-a – az ún. shredder-maradék (shredder-környúfrakció) – veszélyes hulladék, amely jelenleg deponálásra kerül, és gyakran szennyezi a talajt és az élővizeket. Ez a rész, amely jelenleg évi 1,9 millió tonna hulladéket eredményez, az EU-n belül keletkező összes veszélyes hulladék mennyiségének mintegy 10%-át teszi ki.

Az Állásfoglalás, majd az azt hivatalossá tevő Irányelv a roncsautó keletkezésének pillanatától kezdve rögzítette a leadás, a bontás és újrahasznosítás valamennyi lépését, beleértve az ehhez szükséges adminisztratív tevékenységet is.

A Javaslat szerint meghatározott tagországokban a természetben hátrahagyott roncsautók mennyiségét az általános, majd a hivatalos roncsautóhelyekre szállítják, melyek az értékesíthető anyagokat és a társadalom számára teljes anyagi veszteséget jelentenek.

A bontási tevékenység maga is gyakran szennyezi a környezetet. Az összegyűjtött autóroncsokat a bontóhelyekre szállítják, melyek az értékesíthető alkatrészeket le(ki)bontják. Az autó hártramaradó részét aprító- és shredderüzemekbe viszik. A fém- és nemfém frakciókat elválasztják.

Az EK-szerzöneiktől, az értékesítésről és reciklálásról vonatkozó írások betartósága miatt többnyire a shredderezési eljárás nem alkalmazzák, ezek azonban jelenleg nem akadályozzák meg kellőképpen, hogy a veszélyes anyagok kijussanak a környezetbe.

A modern gépjárművek elbújására szolgáló szerszámítások a rendszereket és a társadalom számára megfelelő lehetőségeket nyújtanak az értékes és reciklálható anyagok megfelelő hasznosításához. Az autóárucikknek mintegy 75%-át veszélyes hulladékként került besorolásra. A rendszer exact, hogy a veszélyes anyagok 90%-át felszívó és feldolgozó rendszerbe kerülnek.
Az egyes tagállamoknak a gazdasáigilag érintett szereplők bevonásával meg kell teremteniük a roncesautók lecserélt és hasznosításának rendszerét. Az Állásfoglalás kimonja, hogy az utolsó üzemeltető és/vagy tulajdonos elhasználódott gépjárművént az arra engedélyezett rendelkező bontóüzemnek tért a felmerülő költségek teknősének és feltételek megfizetésének felkérésére. A tagállamok biztosítják, hogy a felmerülő költségek teljes vagy jelentős része a jármű gyártója viseli.

Az Állásfoglalás a majdani Irányelv értelmében kötelező érvényűnek tekinti a Tanács 1967. június 27.-i 67/548/EGK számú, a veszélyes anyagok osztályba sorolására, csomagolására és megjelölésére vonatkozó jogszabályok és közösségi előírások jogközelítéséről szóló Irányelvét, a Tanács 1970. február 6.-i 70/156/EGK számú, a gépjárművek és vontatmányok típusjóváhagyására vonatkozó, jogközelítéséről szóló Irányelvét és a Tanács 1975. július 15.-i 75/442/EGK számú, hulladékokra vonatkozó Irányelvét.

Az Állásfoglalás értelmében már a járművek konstrukcióképzése során törekedni kell arra, hogy a járművekben ne vagy csak megfelelően ellenőrzött módon használjanak fel veszélyes anyagokat és azok környezetbe jutását, deponálását akadályozzák meg. Különösen fontos az ólom, a higany, a kadmium és a hatvegyértékű króm alkalmazási tilalma.

A műanyagok roncsautókból történő hasznosítási arányát jelentősen javítani kell. A Bizottság jelenleg is vizsgálja a PVC környezetre gyakorolt hatásait, melynek az előkészítőkben komoly hatása lehet ennek az anyagnak a felhasználása tekintetében.

További fontos intézkedés a járművek reciklálás-számított konstrukcióképzése, amely az egyes alkatrészek ill. szerkezeti anyagok újrahasznosítását hivatott elősegíteni. Ez összességében javítja a jármű hasznosíthatóságát. A recikláált anyagok piacának kialakulását egyéb intézkedések is segítség elérőet.

Rendkívül fontos momentum az új hasznosítási igazolás bevezetése. Ezt az igazolást kapja az utolsó üzemeltető az arra engedélyezett rendelkező hasznosítótól a roncesautó leadásának időpontjában. A tagállamoknak meg kell teremteniük az ilyen igazolások kiadásának feltételrendszerét.

A járműgyártók konstrukcióképzésének javítása érdekében, a gépjárművek hasznosíthatósági mértékének növelésére a Bizottság támogatja az egységes európai szabványrendszer kialakítását ill. a típus-jóváhagyási eljárás magasabb érvényességének érintésével.

A tagállamoknak biztosítaniuk kell, hogy a bontást jelenleg végző kis- és közepes vállalkozásokkal szemben bizonyos tőkeerős (akár a járműgyártók által képviselt) csoportok ne kerüljék a monopolhelyzetbe ezen a piacra. A járműgyártó a korrekt bontási folyamat elősegítése érdekében bontási utmutatókat mellékel a gyártmányai mellé a bontást végzők részére.

Fontos szerep jut a szerkezeti anyagok beszállítóinak, különösen a műanyagipari termékek előírásai közötti megállapodások létrejöttét, ill. ellátják a törvényességi felügyelet a közösségi előírások betartatása tekintetében.

2.1.1.1.1 A 2000/53/EK Irányelv megfogalmazásainak rövid kivonata

Az irányelv megfogalmazásai, hatálya kiterjed a járművekre és ronces járművekre, ezek alkatrészeire és anyagaira, továbbá tartalék- és cserealkatrészeire, a biztonsági előírások, valamint a lég- és zajszennyezés csökkentésére szorosan összekapcsolott járművek hasznosíthatóságának javítását érvelő intézkedéseket előír. A rendelet értelmében a tagállamoknak gondoskodniuk kell arról, hogy a 2003. július 1-je után piacra kerülő járműveik már ne
A modern gépjármű-recycling menete

A rendeletet kidolgozó Bizottság vizsgálja a műanyagok felhasználását, azon belül különösen a PVC környezeti hatásait. Szükség esetén javaslatot fogunk tenni a további alkalmazással kapcsolatban.

Lényeges momentum az ún. „bontási igazolás” bevezetése, amely a jármű forgalomból történő kivonásának alapvető eszköze lehet. Az utolsó üzemeltető ennek megfelelően adig fizeti az adót és a biztosítást járművére, amíg fel nem tudja mutatni az állam vagy független szakértő által licencselt autóbontótól származó, roncsautó leadását igazoló okiratot. A Bizottságnak legkésőbb 2001. október 21-ig kellett volna kidolgozni a bontási igazolásokra vonatkozó minimális követelményeket, ez azonban egyenlőre nem született meg.

A rendelet a gazdasági szereplők számára számszerűsített újrafelhasználási, újrafeldolgozási és újrahasznosítási célokat ír el. Ezek:

- legkésőbb 2006. január 1-ig minden roncs járműre az újrafelhasználást és újrahasznosítást a járművek átlagos súlya vonatkozásában és évente legalább 85%-ra kell emelni. Ugyanakkor az időpontig az újrafelhasználást és újrafeldolgozást a járművek átlagos súlya vonatkozásában és évente legalább 80%-ra kell emelni.
- az 1980. január 1-je előtt gyártott járművekre ezek a célterek 75%, ill. 70%.
- legkésőbb 2015. január 1-ig azok a célterek 95%-ra ill. 90%-ra kell, hogy növekedjenek. Legkésőbb 2005. december 31-ig az Európai Parlament és a Tanács a Bizottság idevonatkozó jelentése alapján felülvizsgálja a 2015-re vonatkozó irányszámok betarthatóságát.

A Direktíva alapján szabályozni szükséges a roncsautók exportját, importját. Ezt az intézkedést a Bizottság legkésőbb 2002. október 21-ig meghozza.

Az irányszámok betarthatóvá tétele érdekében a Bizottság előmozdíthatta a járművek bonthatóságára, újrahasznosíthatóságára és újrafeldolgozhatóságára vonatkozó európai szabványok kidolgozását. A szabványok elfogadását követően, de legkésőbb 2001. Végig az Európai Parlament és a Tanács a Bizottság javaslata alapján módosítja a 70/156/EGK irányelvét, amely a járművek tipusjóvalhagyására vonatkozik.

A rendelet legkésőbb 2001. október 21-ig előírta az anyag- és alkatrészgyártókkal egyetértésben kidolgozandó alkatrész- és anyagkódolási szabványok kidolgozását, amely elősegíti az újrafelhasználható és újrahasznosítható alkatrészek és anyagok azonosítását. Eddig az ACEA 4 ilyen szabványt nevezett meg:

ISO 11469 Műanyagok – Azonosítás és a műanyag termékek jelölése
ISO 1629 Gumitermékek – Hivatkozások

Ezekhez a szabványokhoz az alábbi megjegyzéseket tették: Az 50g-nél kisebb tömegű alkatrészeket nem kell megjelölni, valamint a kihirdetést ől számított egy éven belül a gyakorlati tapasztalatok alapján további szabványok kihirdetése válik szükségessé, különösen tekintettel a fémötvözetekre és a textíliákra.

A gépjárműgyártók számára a rendelet előírja az ún. „bontási információk” kézikönyvek vagy elektronikus hordozók formájában a bontóüzemek részére történő rendelkezésre bocsátását a majdnem minden tökéletes, részletesebb, hatékonyabb bontás elősegítése érdekében.

Az első jelentés a 2002. április 21-ével kezdődött – ekkor kellett volna a tagállamoknak a rendelet betartásához szükséges törvényi, rendeleti és közigazgatási rendelkezéseket meghozniuk – hároméves időszakot fedi le.

A rendelet első melléklete definiálja a roncsok tárolására, valamint a bontóüzemek területi kialakítására vonatkozó minimális műszaki követelményeket, a roncs járművek szennyezés-mentesítésére szolgáló kezelési műveleteket és az újrafeldolgozást elősegítő kezelési műveleteket.

A kettes melléklet sorolja fel a veszélyes anyagok listájára vonatkozó mentességet elvégző anyagok és alkatrészek jegyzékét.
2.1.1.1.1 táblázat Az 53/2000/EK Direktíva II. számú melléklete

<table>
<thead>
<tr>
<th>Sor sz.</th>
<th>Anyagok és alkatrészek</th>
<th>A mentesség lejártának határideje</th>
<th>A bontás során a kiselejtezett járműből eltávolítandó és szelektíven gyűjtendő hulladékok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Anyagok és alkatrészek</td>
<td>A mentesség lejártának határideje</td>
<td>A bontás során a kiselejtezett járműből eltávolítandó és szelektíven gyűjtendő hulladékok</td>
</tr>
<tr>
<td></td>
<td>Olom, mint ötvöző elem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Maximum 0,35 tömeg% ólmot tartalmazó galvanizált acél</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>a) Maximum 2 tömeg% ólmot tartalmazó aluminium általános gépészeti célokra</td>
<td>2005. július 1. (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Maximum 1 tömeg% ólmot tartalmazó aluminium általános gépészeti célokra</td>
<td>2008. július 1. (2)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Maximum 4 tömeg% ólmot tartalmazó rézötvözet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Olom-bronz csapágycsészék és perselyek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Olom és ólomvegyületek alkatrészekben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Akkumulátorok</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Lengéscsillapítók</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Az elektromos áramköri kártyákban és más alkatrészek előállítása során alkalmazott forrasztóanyag</td>
<td>X(5)</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Fekbetétek hordozóanyagainak 0,5 tömeg%-nál nagyobb mennyiségű ólomot tartalmazó rézanyagai</td>
<td>A 2003. július 1-je előtt tipusjóváhagyásra került járművek és 2004. július 1-jéig az ezek javításához felhasznált alkatrészek esetén</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Olyan elektromos alkatrészek, amelyek üveg- vagy kerámia mátrixban tartalmaznak ólomot, kivéve az izzólámpák üvegeit, valamint a gyújtógyertyák kerámia-testjeit</td>
<td>X(6) a belsőégsű motorok piezó-elektromos érzékelői kivételével</td>
<td></td>
</tr>
</tbody>
</table>
Hat-vegyértékű króm
18. Abszorpciós hűtőberendezésekben X

Higany
19. A műsfertőzés légző és kijelzők X

Kadmium
21. Elektromos járművek akkumulátorai 2005. december 31.-e után a NiCd akkumulátorok csak pótalkatrészhez kerülhetnek piaci forgalomba az azt megelőzően forgalomba helyezett járművekben X

(1) 2005. január 1-jével a Bizottság felülvizsgálta ezt az irányelvet annak figyelembevételével, hogy az ólom kiválhatósága műszakig megvalósítható.
(2) Lásd 1. Megjegyzés.
(3) 2005. január 1-jével a Bizottság felülvizsgálta ezt az irányelvet a közlekedésbiztonság szempontjainak figyelembevételével.
(4) Lásd 1. megjegyzés.
(5) Kibontandó, amennyiben a 14. sorszámú tétellel összefüggésben a járművékenkénti mérték meghaladja a 60 g értéket. Ezzel kapcsolatban csak azokat az elektromos berendezéseket kell figyelembe venni, amelyeket a jármű összeszerelése során a futószalagon szerelvek a járműbe.
(6) Kibontandó, amennyiben a 11. sorszámú tétellel összefüggésben a járművékenkénti mérték meghaladja a 60 g értéket. Ezzel kapcsolatban csak azokat az elektromos berendezéseket kell figyelembe venni, amelyeket a jármű összeszerelése során a futószalagon szerelvek a járműbe.

Megjegyzések:
Homogén anyagot feltételezve az ólom, higany és a hatvegyértékű króm esetén 0,1%, illetve kadmium esetén 0,01 tömeg% maximális koncentráció engedélyezett, amennyiben ezeket nem szándékosan használták fel az akkúdrár gyártása során (1).
0,4 tömeg% maximális ólomkoncentráció megengedhető az alumíniumban, amennyiben azt nem szándékosan ötvözték be az akkúdrár gyártása során (2).
2007. július 1-jéig 0,4 tömeg% maximális ólomkoncentráció megengedhető a főkibetrózóanyagok réz súrlódóösszefogattól számítottan a járművékenkénti mérték meghaladásának (3). Az olyan járműalkatrészek újrahasznosítása, amelyek a mentesség határidejének lejárata pillanatában már forgalomba helyezett járművekből származnak korlátozás nélkül megengedett, amennyiben azokat a Direktíva 4(2)(a) szakaszá nem említik.
2007. július 1-jéig az olyan új pótalkatrészek, amelyeket a Direktíva 4(2)(a) szakaszá által kivételként felsorolt járműalkatrészek (4) pótlására használhatnak fel, hasonlóan korlátozás nélkül felhasználhatók.

2.1.1.2 Az Európai Autógyártók Szövetsége (ACEA) állásfoglalása a 2000/53/EK direktíva végrehajtásával kapcsolatban

Az ACEA illetékes szakbizottságában (WG-RG – Working Group Recycyli ng = Újrahasznosítási Munkacsoport) folyamatosan figyelmelemmel kísérte az Európai Úniós direktíva kidolgozási menetét, és annak minden fázisában igyekeztek építeni legénő közösséget és észrevételeket azt előmozdítani.
Természetesen nem szabad elfelejteni, hogy az ACEA profitorientált autógyártó cégek által létrehozott szervezet, így az egyes lényegi kérdéseket általában inkább a költségvetési és érzelmi alapokon közélteti meg.
Az ACEA üdvözölte a 2000/53/EK Direktíva hatályba lépését, azzal kapcsolatban azonban az alábbi jelentős észrevételeket tette:

1. A Direktíva által megfogalmazott költségvállalási elvárásokkal kapcsolatban (mely szerint a gyártók ill. importörök viselik a költségek jelentős részét) az ACEA a gyártók maximum 50%-nyi költségvállalást említő elfogadható mértékként. A fennmaradó hányadot állami szerepkörrel, a hulladékhasznosító ipar részvállalásával esetleg az utolsó üzemeltető részesedésével képzel. Ez utóbbi az EU Direktíva érvrendszert figyelembe véve az ingyenes leadás intézményét az utolsó üzemeltető részére mindenkor
A modern gépjármű-recycling menete

biztosítani kell, amennyiben az a roncs járművét nem bontotta meg otthon előzetesen ill. nem helyezett el benne járulékos szennyeződéseket) megelégsen aggályosnak tűnik. Az 50% egyébként abból származik, hogy a gyártók bekalculálták a termelés átalakításából adódó költségeiket (tiltótálista került anyagok kiváltása, anyagmegválasztási szempontok hasznosítási irányszámokhoz igazítása, gyártósortok átalakítása, esetlegesen új beszállítók kiválasztása stb.) Ezen felül jelentős adatszolgáltatási kötelezettség is terhelni fogja az újonnan kihozandó modellleket, úgyminth a vevő újrahasznosítással kapcsolatos tájékoztatása, a bontóüzemek bontási inforációval történő ellátása, valamint az egyes országokban a három évente esedékes országjelentések összeállításában szükséges részvétel.

2. Az ACEA a folyamatok jobb követethetősége érdekében kétképcsős hasznosítási igazolásrendszer bevezetését javasolja, az első ilyen CoD, a Certificate of Disposal (= Leadzási Igazolás), amely a roncs jármű megfelelő engedélyekkel rendelkező átvevőhelyen ill. bontóüzemben való leállásakor kerülne kiállításra és annak egy példányaival tudná az utolsó üzemeltető járművét a forgalomból kivinni, ezáltal az adó- és biztosításiifizetési kötelezettségét megőrizni. A másik CoD, a Certificate of Destruction (= Megsemmisítési Igazolás), amely a hasznosítói oldalon – elsősorban a shredderüzemben – kerülne kiállításra abban az esetben, amikor a karosszéria aprítását és az anyagfrakciók osztályozását elvégezték. Ez lenne a garancia arra, hogy ez a karosszéria nem jelenik meg többet a közúti forgalomban valamilyen összeépítésű művelet eredményeként.

4. Annak elkerülése érdekében, hogy az állam a szabad piaci feltételeket terítse az újrahasznosítási rendszerek működtetésébe beleszóló az ACEA javasolja az egyes tagországokban új „National Advisory Board” szervezetek (= Nemzeti Tanácsadó Testületek) felállítását. Ezek feladata a szakmai koordináció és munkavégzés, az egyes országok felelős kormányzatainak nyújtadó segítségnyújtás a háromévente elkészítendő országieljelentésekkel kapcsolatban. Az ACEA szeretne elkerülni az olyan termékJelkonzpekció rendszerek bevezetését, amelyben az állam termékJelkonzpekciót utóbbi hét évben zajló története, amely során a magyar állam például 2001 évben csaknem 25 milliárd forint bevételre tett szert termékJelkonzpekció gyártmányok után járó befizetésekkel, de ebből csak elenyésző töredéket (kb. 1,5 milliárd forintot) forgattott vissza a konkrét termékek újrahasznosításának előmozdítására. Ilyen az ACEA számára „elrettentő” rendszert vezettek be például Szlovákiaiban is 2001-ben.

Egy az ACEA által ideálisnak mondott rendszer (Nemzeti Tanácsadó Testület felállításával feltételezett) blokkvázlatát szemlélteti a következő ábra. Az ACEA ingyenes visszavétel megvalósíthatóságával kapcsolatos elképzelését foglalja össze a mellékletben bemutatásra kerülő M.1. ábra.
2.1.1.3 Németország roncsautó-kezelési gyakorlata

Az EU álláspont alapvetően a holland mintán alapuló rendszer követi, (ami az ingyenes roncsviszszavétel intézményét illeti), a finanszírozás tekintetében pedig támogatja a termékdíjas formák alkalmazását, melynek kapcsán pl. Hollandiában új autó vásárlása esetén a vásárló korábban 250 NLG, ma a működő rendszernek köszönhetően már csak 45€ költséget fizet egy államilag elkülönített alapba, melyből később a gazdaságilag érdekeltek felek (bontóüzemek, shredderüzemek, szekunderanyag hasznosítók) tevékenységét finanszírozzák, elsősorban a veszteségesen végezhető munkafolyamatok tekintetében. Ezek pl. a veszélyes hulladékot számlító üzemanyagok eltávolítása és kezelése, a szennyezett shredderezési könnyűfrakció kezelése, gumi-, akkumulátor és elbontott műanyag hulladékok hasznosítása.

Ez a német roncsautó-hasznosítási rendszer súlyos működési zavarot eredményezett, mivel erre szakosodott cégek – az állam hallgatólagos belegyezésével – a leadásért fizetni nem hajlandók autóikat és azt külföldre „importálnak”. Így az éves szinten Németországban képződött mintegy 3 millió roncsautó több mint a felül külföldre került, ahol vagy továbbhasználták járműket, vagy ott kerültek hasznosításra.

Az AltautoVerordnung-ban megfogalmazásra került az autóipar követelményrendszere (elvárásai) azzal kapcsolatban, hogy milyen állapotban levő járművet volt hajlandó tulajdonosoktól átvenni. Ezek:
- a rendelet hatályba lépésének napjától számítva 12 évnél nem idősebb (ez azt jelenti, hogy csak az 1998. április 1.-je után gyártott autókról vonatkozott),
- önmagában gördülésével (tehát alkatrészeit nem megfűzték, nem előbontottak),
- nem tartalmazható különleges bevitt szennyező-anyagokat, hulladékokat (tehát nem töltötték fel egyéb hulladékokkal, mint pl. az ilyen autók külföldre szállításakor a csomagokat még megtöltik gumiabroncs-hulladékkal, fáradt olajos tartályokkal, akkumulárokkel stb.),
- alkatrészeit nem módosították még a működtetés során más, a gyártó által nem jóváhagyott darabokkal,
- nem lehetett jelentős sérülése (tehát a balesetes autókat eleve száműzte hatályában).

Mint látható az ezt a feltételezészet teljesítő „roncsautó” a mai viszonyok között még komoly értéket képviselt volna, főként egy gazdaságilag elmaradott országban, tehát azt üzemembartója nem ingyen kívánta volna leadni,
ha azt pénzért is megteheti. Ezért a német rendszer önmagában a roncsautók külföldre történő kiszállítását meggátoló intézkedések nélkül – amelyet viszont az áruücknek tekintett roncsautók esetében az EU alapszerződése tilt – nem működhet.

2.1.1.3.1 ábra A német újrahasznosítási rendszer szemléltetése a VW újrahasznosítási koncepcióján keresztül

Ez az EU Irányelvhez képest jelentős eltérés már eddig is komoly vitákat eredményezett Brüsszelben Németország és Hollandia, valamint az ingyenes visszavétel és a gyártó termékfelelősségét hirdető országok között és valószínűleg ez az érdektüköztetés még elír egy darabig.

A német autóipar mindenesetre – számítva arra, hogy nem sokára Németország is kénytelen lesz elfogadni az ingyenes visszavétel intézményét – monopolizációs terveket igyekszik a kis- és közép-vállalkozásokat „kiütni” a nyeregből és a roncsautó-hasznosítási rendszert saját részére kisajátítani. Mint az EU-állásfoglalásából kitűnik ez a törekvés is ellentétes az egyenlőerték megteremtésére irányuló EU célkitűzésekkel, ráadásul még Németországban betűl is komoly érdekköztetéseket okozhat. Ezt a monopolizációs törekvést egyébként ellenzi a középrétegek támogatására hivatott tartományi minisztériumok is (Ministerium für Wirtschaft und Mittelstand).

Ez az egységes feltételrendszer különösen az alábbi műszaki- és szervezési kérdéseket szentelt nagy figyelmet:
A modern gépjármű-recycling menete

• az üzem létesítéséhez és működtetéséhez szükséges engedélyek.
• a vonatkozó előírások betartatása különösen a hulladékkezelés, emisszió-, munkavédelmi, tűzvédelmi- és élővíz-védelmi rendszerbajók vonatkozásában.
• az ún. „LAGA” füzetek által előírt „Az autóróncsok tárolására és kezelésére szolgáló üzemek és berendezések létesítési feltételei”-nek betartatása.
• a munkafolyamat megfelelő lépéshéz igazodva a talaj védelme.
• az üzemeltetési követelmények
• a munkafolyamat megfelelő lépéshéz igazodva a talaj védelme.

A roncsautók hasznosítását végző üzemek ellenőrzését csaknem kizárólag előzetes bejelentés nélkül végzik, ez a megoldás hiteles képet nyújt a telephely valóságos tevékenységéről. Az ilyen ellenőrzéseken az üzemek megfelelően nagy együttműködést tanúsítanak – ennek magyarázata a sikeres auditálás esetén kecsegítő üzlet lehetősége.

Az üzem területének bejárása után az üzemvezetővel egyeztetik a további szükséges lépéseket. A bejárat a technikai megoldások és a folyamat egészének alapos tanulmányozása jellemzi.

Az ellenőrzés szerves részét képezi a folyamat dokumentáltságának ellenőrzése. Ennek során az üzemi könyv alapján plauzibilitási vizsgálatnak vetik alá az üzem által felállított ún. anyagmérlet – a be- és kiáramló anyagmennyiségek egyensúlyát, felhasználását. Az igazolásokat tartalmazó könyvet tartalmazó tömb megállapítható, hogy a hasznosító üzem a bontás folyamat során keletkező hulladékaival hogyan gazdálkodik, azt kinek és milyen módon adja át a későbbi hasznosításra. A szakértők a megállapított tények, kisebb- nagyobb rendellenességek alapján háromféle módon értékelhetik a bontóüzem tevékenységét.

| A | Megfelelő | Valamennyi rendelkezésnek megfelelő
| B | Korlátozottan megfelelő | Kisebb rendellenességek tapasztalhatók
| C | Nem megfelelő | Az elvárásokhoz képest jelentős eltérések tapasztalhatók

Mindenképpen tanulságos áttekinteni a TÜV Rheinland által 56 üzemben elvégzett vizsgálatok tapasztalatait, a feltart hiányosságok jegyzékét [kre, 99]:

<table>
<thead>
<tr>
<th>Szervezési hiányosságok</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az üzem összképe (raktározás stb.)</td>
<td>Munkavégzés/ üzem folyamat</td>
<td>A hulladékok szakszerű kezelése</td>
<td>A felül-vízszintetizálás igénylő hulladékok nyilvántartása</td>
<td>A hulladékok kezelésével megbízott személyzet szakképessége</td>
</tr>
<tr>
<td>kb. 45%</td>
<td>kb. 80%</td>
<td>kb. 65%</td>
<td>kb. 50%</td>
<td>kb. 55%</td>
</tr>
</tbody>
</table>

Műszaki hiányosságok

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A beszállítási és a munkafolyamatok közötti tárolás</td>
<td>Előkezelési tartomány</td>
<td>Az üzemanyagok eltávolításához alkalmazott technológia</td>
<td>Bontási terület</td>
</tr>
<tr>
<td>kb. 65%</td>
<td>kb. 35%</td>
<td>kb. 65%</td>
<td>kb. 25%</td>
</tr>
</tbody>
</table>

| 2.1.1.3.1. táblázat Bontóüzemekben feltart hiányosságok |

A legjellemzőbb hiányosságok közé tartozik az üzemkönyv nem megfelelő vezetése és az alkalmazott ún. „szárazra fektetési technológiák” (az üzemanyagok eltávolítására szolgáló technológiák) elégtelensége.

1998. április 1-ével hatályba lépett új „Auto-Verordnung” – rokonautó-rendelet – az alábbi kötelezettségeket fogalmazta meg az autóbontás folyamatában résztvevő üzemek számára:

A rendelet megkülönbözteti a rokonautók leadási helyétől szolgáló ün. „Annahmestelle” – „átvétel hely” – és a gyakorlati bontási tevékenység lefolytatását végző ün. „Verwertungsbetrieb” – bontóüzem – fogalmát. Az átvételi helyek rendszerének ill. hálózatának kiérkezésével elősegítő fontosabbabb célból, hogy az utolsó üzemeltető járművet a lakóhelyéhez lehetőség szerint legközelebb le tudja adni. A hasznosítók szervezett és ellenőrzött körülmények között szállítják azután az ezeken a helyeken összegyűjtött járműveket a bontókba.

12
Az átvételi helyek működtetésével kapcsolatos feladatok: vonatkozásában a roncsautó-rendelet a következőképpen rendelkezik:
- a roncsautók megfelelő átvétele és azok előkészítése a bontókba történő továbbállításhoz
- az ün. „Überlassungspflichten” – azaz a hasznosítás következő lépését végző üzem számára történő továbbadási kötelezettség.
- a roncsautó-rendelet mellékletében megfogalmazottaknak megfelelően a tevékenység évenkénti ellenőrzése
- a rendelet megkülönbözteti a járműjavítási tevékenységet is folytató átvételi helyeket, melyeket az illetékes ipar-testület ellenőrzi, míg a csak átvételi helyként szolgáló telepeket a roncsautó-rendelet 5 §-a szerint szakértők végeznek.

A bontóüzemek vonatkozásában a rendelet kiterjed:
- a roncsautók tárolására, kezelésére és hasznosítására.
- az ün. „Überlassungspflichten”-re – azaz a hasznosítás következő lépését végző üzem számára történő továbbadási kötelezettségére.
- a bontóüzemek roncsautó-rendelet mellékletének 5 §-a szerinti, szakértők által végzett évenkénti felülvizsgálatára.

A további anyaghasznosítást végző ün. „shredderüzemek” vonatkozásában a rendelet érinti:
- az előkezd karoszeriamaradványok hasznosítását
- a shredderüzemek a roncsautó-rendelet mellékletének 5 §-a szerinti, szakértők által végzett évenkénti felülvizsgálatát.

A bontóüzemek számára a felépítés, kialakítás és felszerelés vonatkozásában minimálisan teljesítendő követelményeket előírja:
- a bontási terület és annak felosztásának a bontott járművek mennyiségéhez történő igazítását (feltételezve azt az alapigazságot, hogy nagyobb mennyiségű autóroncs bontásához, szakszerű tárolásához, bontott anyagainak elköltözött kezeléséhez, tárolásához nagyobbb területre van szükség)
- a bontóüzem a bontás folyamatának megfelelő módon önálló területéről kell tagolni (pl. beérkezés, szemrevételezés, előzetes tárolás, üzemanyagok eltávolítása, alkatrészek bontása, tárolása, nyers karoszeriára tömörítése, másodnyersanyag-reaktívak kialakított helyszínei) – a környezetre veszélyt jelentő anyagok talajba, elővízbe jutását a munkavégzés helyszínen a talajon megfelelő védőréteg kialakításával ellенőrizhető, és a szennyeződések leválasztására, összegyűjtésére alkalmas védmű létrehozásával meg kell akadályozni.
- a szennyvízek kezelését végző berendezések színvonalára vonatkozó közvetlen korrelációt követően megfelelő, még racionálisan üzemeltethető eszközökét.

Az üzem mindennapi működésével, működtethetőségével kapcsolatban előírja:
- a Szövetsési Emisszióvédelmi Törvények betartására vonatkozó engedélyek meglétét
- az üzemeltetési kézikönyv elkészítését és szükség szerinti bővítését (amely leírja a telepen végzett tevékenységet, annak jellegét, munkafolyamatát, az egyes munkaszakaszokat, a telep területi tagozódását stb.)
- a szemrevételezés, előzetes tárolás, üzemanyagok eltávolítása, alkatrészek bontása, tárolása, nyers karoszeriára tömörítése, másodnyersanyag-reaktívak kialakított helyszínei
- a környezetre veszélyt jelentő anyagok talajba, elővízbe jutását a munkavégzés helyszínen a talajon megfelelő védőréteg kialakítását ill. a szennyeződések leválasztására, összegyűjtésére alkalmas védmű létrehozásával meg kell akadályozni.
- a szennyvízek kezelését végző berendezések színvonalára vonatkozó közvetlen korrelációt követően megfelelő, még racionálisan üzemeltethető eszközökét.

Az üzem mindennapi működésével, működtethetőségével kapcsolatban előírja:
- a Szövetsési Emisszióvédelmi Törvények betartására vonatkozó engedélyek meglétét
- az üzemeltetési kézikönyv elkészítését és szükség szerinti bővítését (amely leírja a telepen végzett tevékenységet, annak jellegét, munkafolyamatait, az egyes munkaszakaszokat, a telep területi tagozódását stb.)
- a szemrevételezés, előzetes tárolás, üzemanyagok eltávolítása, alkatrészek bontása, tárolása, nyers karoszeriára tömörítése, másodnyersanyag-reaktívak kialakított helyszínei
- a környezetre veszélyt jelentő anyagok talajba, elővízbe jutását a munkavégzés helyszínen a talajon megfelelő védőréteg kialakítását ill. a szennyeződések leválasztására, összegyűjtésére alkalmas védmű létrehozásával meg kell akadályozni.
- a szennyvízek kezelését végző berendezések színvonalára vonatkozó közvetlen korrelációt követően megfelelő, még racionálisan üzemeltethető eszközökét.

Az autóipar saját feltételezéséről megfogalmazásakor jól felfogott gazdasági érdekőből cselekedett, ugyanis tudta, hogy:
- az állam előbb-utóbb velük is érvényesítteti a „hatást keltő fizet” elvét (jelen esetben a keletkező roncs visszavételének és mind tökéletesebb hasznosításának igényét),
- ez a termékfelelősség csak fokozott fejlesztésekkel (hasznosítás-helyes konstrukciók létrehozása, csak hasznosítható anyagok alkalmazása, szereléstechnológia egyszerűsítése a könnyebb bontáshoz, anyag-kompozitok (összetett anyagok) alkalmazásának mellőzése stb.), vagyis a konstrukcióképzés szabályainak gyökeres átalakításával, a már a „tervezősztalon megkezdett újrahasznosítás” szemléletének térhódításával valósítható meg, amely regetez pénzt és sok időt igényel. Elegendő csak arra gondolni, mennyi idő szükséges egy szériában éppen gyártani kezdett járműtípus költségeinek megtérüléséhez – ez több évre tehető – és az autógyáruk általánosan már évekkel előre meghatározzák a továbblépés irányát, a bevezetni kívánt új modellek skáláját. Így talán könnyebben megérteni milyen nehéz a bevált sláبونktól elszakadni – és mennyire szükséges ehhez a politikai és gazdasági osztönzés.

- Az autógyáruk saját feltételrendszerekkel komoly alkupozícióba kerültek a végrehajtó hatalommal szemben, elég csak arra gondolni, hogy a Német Szövetségi Állam már hatodik éve igyekszik – eredménytelenül – rákényszeríteni akaratát – a ronscautók ingyenesen kötelező átvételének intézményét – a gyártókat képviselő lobbira.

A könnyen megfogható egyéni érdekek mellett mindenesetre szükség van az egyéni kezdeményezésekre, sokszor ezek jelentik bizonyos problémák tekintetében a megoldást. Így például a gyártók részéről tett ígéret, mely szerint 2002-re járműveket úgy készítik el, hogy azok majdán ronscáként anyagaikat tekintve 85%-ig, míg 2015-ben 95%-ban újrahasznosíthatók lesznek előrelépést jelent a mai általános 70-75%-os újrahasznosítási rátához képest. Hogy ebből azután mennyi volt a „jó szándék” és mennyi az állami kényszerítő eszközök hatása tehát megelőzik.

Az autógyáruk által Németországban megfogalmazott önkéntes vállalások és a ronscautó rendelet értelmében az alábbi jellemzők elsődleges kérdékre utalnak:

- A ronscautó-rendelet hatálya bővebb, kiterjed a ronscautók átvételére szolgáló helyekre és a shredderüzemekre is.
- A ronscautó-rendelet értelmében a bontóüzemek kötelesek: a ronscautó átvételét egy hivatalos okirattal igazolni, a telep egészére vonatkozó üzemeltetési kézikönyvet készíteni és a napi üzemeltetés viszonyainak ellenőrzésére szolgáló üzemkönyvet vezetni.
- A ronscautó-rendelet használja a „technika jelen állásának megfelelő” kifejezést (ez különösen fontos az üzemanyagok eltávolításánál, a shredderezési könnyítőkompozitok kezelésénél stb.)
- A szakértők tevékenységét szakképesítéshez köti zóványágyási eljárás)

Ezeket az eltéréseket az autógyáruk a felmerülő többletköltségek elkerülése (kettős auditálás szükségtelensége) érdekében a ronscautó-rendelethez igazodva csaknem teljesítében felszámolták, különbségek mára csak a hulla dékkezelési díj újrahasznosítás (disposal fee) szolgáltatja, amelyet új gépjármű vásárlása során fizetnek be egy elkülönített és az ARN által felügyelt felhasználású alapba. A hulla dékkezelési díj ugyancsak megfizetendő a magánimport keretében az
A modern gépjármű-recycling menete

ország területére hozott és ott forgalomba helyezett járművek után is. Az egyes járművek után befizetett díjak napi következtetését kitűnő nyilvántartási rendszer biztosítja. A díj mértékét az új autók eladási előrejelzései és a hasznosítási aktuális költségeinek figyelembe vételével az Igazgatótanács 3 évenként állapítja meg. A díjak mértékének edigi alakulását szemlélteti az alábbi táblázat.

<table>
<thead>
<tr>
<th>Az elszámolási időszak</th>
<th>A díj mértéke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-1997</td>
<td>82€ (= 250 NLG)</td>
</tr>
<tr>
<td>1998-2000</td>
<td>68€</td>
</tr>
<tr>
<td>2001-2003</td>
<td>45€</td>
</tr>
</tbody>
</table>

2.1.1.4.1. táblázat Az ARN Igazgatótanácsa által az eddigi működés során háromévente megállapított hulladékhhasznosítási díj eddigi alakulása

A 2000. év végére alapban felhalmozott pénzösszeg mértéke elérte a 161 millió Eurót, melynek oka egyrészt a várt, nagyobb mértékű új autó eladással, másrészt kisebb hasznosítási költségekkel magyarázható. Ez tette lehetővé a díjtételek csökkentését.

Az ARN működése során a vele szerződött autóbontóknak, szállítmányozó- és hulladékhhasznosítóknak prémiumot fizet, amelynek mértékét elszámolási egységhez köti (kg, liter vagy darabszám egység alapján). Az elszámolás alapját a minden egyes ELV-hez külön vezetett és nyilvántartott anyagmérleg képezi, amely lehetőséget nyújt a hasznosítóknak ténylegesen átadott hulladékok nyomon követésére, ill. a prémium pontos meghatározására. Az alkatrészsként újrahasználatra kerülő darabok esetén nem jár prémium, a többi költségkategóriáakra az alábbi maximális prémium fizethető ki:

<table>
<thead>
<tr>
<th>Költségkategória</th>
<th>A prémium költségkategóriára vonatkozó maximális mértéke</th>
</tr>
</thead>
<tbody>
<tr>
<td>A kinyert anyagokra, kg, liter vagy darab elszámolási egységenként</td>
<td>82€ / ELV</td>
</tr>
<tr>
<td>Szállításra</td>
<td>12€ / ELV</td>
</tr>
<tr>
<td>Adminisztrációs költségre</td>
<td>3€ / ELV</td>
</tr>
</tbody>
</table>

2.1.1.4.2. táblázat Az ARN által az egyes költségtípusokra kifizethető prémiumok ELV-re vonatkozottat maximális mértéke

Az ARN rendszer szerződött partnerei az autóbontók, akik területfedő rendszerű alkotnák és átlagosan évi 1100 ELV-et bontanak szét az ARN által jóváhagyott bontási technológia alkalmazásával, a szállítóautomatikus, akik a bontóüzemek és a hulladék-feldolgozók között végzik az egyes frakciók szállítását, az egyes anyagfrakciók hasznosítói, akik szerződésben garantált minőségű és mennyiségi hulladékot kapnak az ARN-bontókból, valamint a shredderüzemek, akik az ARN-bontókból megfelelően előbontott karosszériához jutnak, egyúttal ellenőrizik az előbontás bontóüzem által végrehajtott megfelelőségét.

Az ELV-ékből származó, prémiummal támogatott anyagféleségek átlagos mennyiségét szemlélteti a melléklet M.1. táblázata.

2.1.1.5 Az EU országainak ELV-kezelési gyakorlata

Az európai országok ELV kezelési gyakorlatának az ACEA által készített legutóbbi helyzetértékelése alapján elkészített összefoglalója a mellékletben található.

2.1.2 A roncsautó-kezelés hazai szabályai

A jármű újrahasznosítás hazai helyzetének áttekintése során elsősorban a járműbontási tevékenységehez kapcsolódó, elsősorban környezetvédelmi vonatkozású jogszabályokkal és előírásokkal kerülnek áttekintésre.
Tekintettel arra, hogy a gépjárművek bontása során számos veszélyes hulladék keletkezik, így a bontótelep létesítésére, működtetésére elsősorban a veszélyes anyagokkal kapcsolatos rendelkezések vonatkoznak, illetve azok az általános rendelkezések, amelyek a veszélyes anyagokra külön előírásokat tartalmaznak.

A bontásból származó alkatrészek forgalmazásáról a GM-KöM rendelkezik, de a bontóüzem működését és gazdaságos üzemeltetését még számos egyéb rendelkezés is érinti. Az érintett jogszabályok jegyzéke a mellékletben található.

2.1.2.1. A bontótelepek engedélyezésének, létesítésének és építésének jogszabályai

A Rendelet (VI.11.) A bontóüzemként szolgáló telephely kiválasztásának szempontjait ma Magyarországon a 80/1999 Korm. Rendelet (VI.11.) „Rendelet a telepengedély alapján gyakorolható ipari és szolgáltató tevékenységekről, valamint a telepengedélyezés rendjéről” tartalmazza.

A Kormány a telepengedély alapján gyakorolható ipari és szolgáltató tevékenységekről, valamint a telepengedélyezés jogáértéke, a mellékletében foglalt olyan ipari, szolgáltató, raktározási tevékenységet folytató jogi személyek, jogi személyiségekkel nem rendelkező gazdasági társaságok, természetes személyek (egyéni vállalkozók, bedolgozók, bérkúria) számára a felhasznált és a technológia során keletkezett anyagok, illetve azok az általános rendelkezések, amelyek a veszélyes anyagokkal kapcsolatos rendelkezések vonatkoznak, illetve a különböző rendszereken vagy helyeken keletkezett anyagok, illetőleg üzemeltetett berendezések miatt a végzett munkafolyamatok következményeként egészségügyi, tisztasági és környezetvédelmi jogigazságai, illetve azok az általános rendelkezések, amelyek a veszélyes anyagokkal kapcsolatos rendelkezések vonatkoznak, illetve azok a rendszeres, alkalmi és nem kihívású járásból, nem kihívású járásba, vagy kihívású járásra, vagy a havi vagy éves garázshelybérleti szolgáltatás, a használatba vetett gépjárművek kisereplését, javítását, a közúti gépjárművek javítását a helyi hatóságokkal. A telepengedély jogosultja köteles a telepengedélyt a telephelyen tartani, és azt az ellenőrzésre és a telepengedély nélkül a tevékenységet nem engedélyezni. A rendelet értelmében, annak mellékletében meghatározott tevékenységeket telepen vagy építőiparban csak telepengedély alapján lehet megkezdeni, vagy folytatni.

A telepengedélyt az ipari, szolgáltató tevékenység végzéséhez, valamint a környezetet nem veszélyezteti. A telepengedély jogosultja köteles a telepengedélyt az államlapítéssel rendelkező rendeltetési egységbe sem beleegyezni, illetve megváltoztatni vagy módosítani esetén az új telepengedélyt. A telepengedély jogosultja köteles a telepengedélyt az államlapítéssel rendelkező rendeltetési egységbe sem beleegyezni, illetve megváltoztatni vagy módosítani esetén az új telepengedélyt nem lehet.

A telepengedély jogosultja köteles a telepengedélyt a folyamatos rendelkezések vonatkoznak, illetve a tevékenység a telephelyen kialakított telepengedély alapján lehet megkezdeni, vagy folytatni. A telepengedély jogosultja köteles a telepengedélyt a telephelyen tartani, és azt az ellenőrzésre és a telepengedély nélkül a tevékenységet nem engedélyezni. A telepengedély jogosultja köteles a telepengedélyt a telephelyen tartani, és azt az ellenőrzésre és a telepengedély nélkül a tevékenységet nem engedélyezni.
A modern gépjármű-recycling menete

A bontótelepek létesítéséhez szükséges építési engedély engedélyeztetési eljárásának követelményeiről „Az épített környezet alakításáról és védelméről” szóló 1997. évi LXXVIII. Törvény 34-37.§, ill. 52-53.§-ai rendelkeznek.

Építésügyi hatósági engedély a jogszabályok keretei között akkor adható, ha:

a) a tervezett építés a megfelelő §-okban, illetve a külön jogszabályok szerinti követelményeknek megfelel,
b) a tervezett építés az egyes építőművek és területek védettségét elrendelő vagy azokra különleges feltételeket megállapító jogszabályokon, az előzetes hatósági eljárásokban tisztázódott szakhatósági követelményeknek és az érdekelő szakhatóságok hozzájárulásában foglalt eseti előírásoknak megfelel,
c) az építmény megépítése, tervezett használata, fenntartása nem okoz a környezetében olyan káros hatást, amely a terület rendeltetésének megfelelő mértékét meghaladná, az állékonyságot, az életet és egészséget, a köz- és vagyonbiztonságot veszélyeztetne, vagy a közérdekét egyéb módon sértene,
d) az építmény rendeltetésszerű használhatóságához szükséges járulékos építmények, illetőleg jogszabályban meghatározott esetekben és módon a közlekedési hálózathoz való csatlakozás, valamint a közmű- és energiaellátás megvalósítása biztosított,
e) a tervezőként megjelölt szerv, illetőleg személy jogosult volt az építészeti-műszaki tervezésre,
f) az építtető építési jogosultságát hitelt érdemelt.

Az építésügyi hatóság engedélye egyben - az engedélybe foglalt szakhatósági előírások vonatkozásában - szakhatósági engedély is, amely azonban nem menti el az épített építőrendezéstetőt a külön jogszabályok szerinti szükséges más hatósági engedélyek megszerezésének kötelezettsége alól.

Az építésügyi jogköröktől első fokon ellátó személy, a települési önkormányzat jogja.

Az építési engedélyeztetési tervdokumentáció tartalmazza az üzemelés-technológiai tervet a környezet-, természeti-, tüz- és egészségvédelmi követelmények szempontjából meghatározó, valamint az előzetes egyeztetése során az érintett szakhatóságok által - a vonatkozó szakmai jogszabályok alapján - jeltett esetekben és részletezettséggel.

2.1.2.2. A bontóüzemek működésének és ellenőrzésének jogszabályai és előírásai

Meghatározza a veszélyes hulladékok környezetszennyező és károsító hatásának megelőzésére szolgáló intézkedéseket, megszabja a visszaélések esetén kiszabható bírság mértékét.

A rendelet mellékletei és azok függelékei részletesen szabályozzák a veszélyes hulladékokkal kapcsolatos tudnivalókat.

A bontótelep létesítése és üzemeltetése szempontjából kiemelten fontos a Rendelet 3. sz. mellékletének („Szabályzat a veszélyes hulladékok gyűjtéséről és tárolásáról”), amely tartalmazza a veszélyes hulladékok gyűjtéséről, tárolásáról és lerakással történő ártalmatlanításáról szóló előírásokat.

A Rendelet 3. sz. mellékletének legfontosabb tudnivalói a mellékletben kerültek összefoglalásra.

Az autóbontást végző telephelyek elvében az alábbi veszélyes hulladékokkal kapcsolatos üzemeltetési és adminisztratív tevékenységet folytatják:

- veszélyes hulladék gyűjtőhely kialakítása
- a keletkező veszélyes hulladékok rendszeres telephelyi gyűjtése
- a veszélyes hulladékok ártalmatlanítása (vagy hasznosításra) történő átadása
- anyag-felhasználási napló vezetése
- anyagmérleg készítése
- veszélyes hulladék-napló vezetése
- statisztikai adatbevallás készítése és a területileg illetékes környezetvédelmi felügyelőszövetségben folytatott főfelügyelet telefizetése
- hulladékgazdálkodási terv készítése

A bontás során potenciálisan keletkező veszélyes hulladékok jegyzéke a Hulladékgazdálkodási Törvény 1. számú mellékletében hivatkozott EWC (European Waste Catalogue – Európai Hulladékleírás) hulladéklisztából kiválasztva és összefoglalva a mellékletben található meg.

A bontásból kinyert gépjárműalkatrészek ismételt felhasználását az 5/1990.(IV.12.) KöHÉM rendelet (a közúti járművek műszaki megvizsgálásáról) szabályozza. E szerint a bontásból kinyert alkatrész csak minőség-ellenőrzés után építhető be gépjárműbe és pótkocsijába. A műbíróság hatósági ellenőrzése, amely a bontó telephelyén is megtörténhet, a területi közlekedési felügyelet hatásköré.

2.1.2.3 A hazai járműállomány összetétele a típusok, az átlagéletkor és a 2001 évi forgalomba helyezésének szempontjából

Ennek a folyamatnak a veszélye kettős, egyrészt a fejlett nyugat, ahol az összegyűjtött és elkezdett megújulást hozó új gépjárművek, másrészt a használt gépjárművek életkor-korlátozásának megszüntetése az autók átlagéletkorának növelését eredményezi. Az 2002-ben megjelent alapadatok alapján az összes járműéletkor 11,8 év volt, ami alapvetően alakítja az országos autók átlagéletkorát. Az autók hasznosítása és újrainstalálása általánosan növekedő tendencia a gyártás-kibocsátás ellenére a gyártók számára gyakran elégségesnek számít a gépjárműalkatrészek újrainstalálásának kellős igénye, amelyet az autógyártók is fontolják a termelési költségek csökkentésére. A használt gépjárművek újrainstalálása az autók átlagéletkorának növelését eredményezi, ami a társadalom szempontjából fontos tényező.

Hosszútávúra azonban mindeneképpen a márkákként értékelhető járműek átlagéletkorának csökkentése állandósul, és egyre kevesebb alkatrész szükséges a modern járműgyártásra, ahol ezenkívül még a gyártó is hatékonyan hasznosítja az alkatrészeket.
Sajnos ezekre az időközben az országba behozott járművekre még nem képezték hasznosítási alapot – a magyar ronscautó rendelet tervezetben már betervezték az erre vonatkozó kb. 30.000 Ft mértékű illetéket – így ezek hasznosítása egyéb megoldás hiányában a hazai gyártói- értékesítői hálózatot terheli majd.

A magyar járműállomány átlagéletkorának alakulása kettős tendenciát mutat, ez a tendencia összefügg az új eladások alakulásával, illetve a már említett használt autó behozatalával.

Míg az utóbbi 3 évében az erősen terjeszkedő és sikeresszívelpolitikát folytató francia típusokat forgalmazó kereskedők típusainál a korábbiak során ill, jelenleg is behozott használt autók magasabb átlagéletkorra ellentétesen is évek óta csökken az átlagéletkor (Citroën, Peugeot, Renault), addig a „divatautoiknál” (Audi, BMW, Mercedes) folyamatos növekedés tapasztalható. Az Opel és a VW elsősorban cégautóként, munkába járó típusként jellemző, életkorul ennyhe emelkedés mellett stagnál. Az Opel esetében korábban jótékonny hatást gyakorolt a szentgotthárdi gyártás és az ebből származó emelt szintű hazai értékesítést, ez azonban az összesszerelő mú Lengyelországba történő áttelepítésével megszűnt.

A Suzuki a folyamatos hazai gyártás és értékesítés hatására tartja „fiatalos” formáját, az 1992 óta tartó folyamatos gyártás ellenére is csak 4, 1 éves átlagéletkort mutat fel, piacvezető értékesítőként némileg kompenzálva a korábbi szocialista típusok igen erős átlagrontó teljesítményét.

Az olyan 100.000-es darabszámban a hazai közúton futó gyártmányoknál, mint a Fiat, vagy a Ford az utóbbi két év használtautó behozatala rontotta ismét a korábban pozitívvá váló tendenciát.

Külön kasztot képeznek a ma már nem forgalmazott típusok a magyar járműállományban. Ezek közül a kétüteműek (Trabant, Wartburg) még mindig együttesen mintegy 330.000 darabot adnak a magyar járműállományból, a hazai személyautópark mintegy 13,5%-át! Átlagéletkorukra nézve (16,3 ill. 16,4 év) könnyen érhetővé válik hogyan állhat ma az átlag magyar személygépkocsi park átlagéletkora 11,8 évenl.

A Lada típusai a kétütemű formáját, ellenére azonban inkább a mi Lengyelországra történő áttelepítéshez volt szintén a motiváló tényező, az esetek többségében a korábban nem melegen bevezetett használtautó rendeletben jelentős szerepet játszott. Így az ottani értékesítésre más rendelet által is intézhető azon térítés, amely az esetek többségében a járműveknek követhető meg, hogy az ottani értékesítésre a használtautó behozatalát nyugodtan ismételheti.

A ma már a VW konszernhez tartozó Skoda típusoknál a korábban növekvő tendencia mára stagnált, a stabil 160.000-es darabszámban felfutó jelleggel bír, miközben átlagéletkoruk az egyre növekvő értékesítést kompenzálva a korábbi szocialista típusok igen erős átlagrontó teljesítményét.

A Dacia az 1990-es 200.000-es darabszámban a hazai közúton fûtő gyártmányoknál, mint a Fiat, vagy a Ford az utóbbi két év használtautó behozatala rontotta ismét a korábban pozitívvá váló tendenciát.

Válaszszintén kíván a Lada lesz az első értékesítő Magyarországon, amelyik – ha bevezetik a gyártó- ill. importőre kötelező termékfelelősségét, ill. térítésmentes ELV visszavetelé kötelezettségét – kivonul a magyar piacról.

A ma már a VW konszernhez tartozó Skoda típusoknál a korábban növekvő tendencia mára stagnált, a stabil 160.000-es darabszámban felfutó jelleggel bír, miközben átlagéletkoruk az egyre növekvő eladásoknak köszönhetően csökkenni fog.

A Dacia az 1990-es 200.000-es darabszámról mai 30.000-es flottájával szinte „kiveszettnek” tekinthető a magyar piacról. Köszönhető volt ez annak, hogy Romániába a Renault mellett csak a romániai gyártmányok voltak városon belüli forgalomban, így az ottani érdeklődők még a legtovábbi magyar falvakba is eljutottak az ottani darabokat felvásárolandó. Minden valószínűség szerint ilyen „logisztikai ösztönzést” nehezen lehet bármilyen ma működő gazdasági szabályozó eszközzel reprodukálni…

2.1.2.4 A hazai járműállomány értékelése az ELV-kérdéskör szempontjából

A magyar járműállomány kor összetétele nem felel meg a fejlett európai országok normáinak. A járművek átlagéletkora több mint 10 év, töltünk nyugatra a már hasznosítást elősegítő módon tervezett gépkocsikat ekkora összlettermára szánják. Az okok összetettek, nem megfelelő gazdasági és társadalmi háttére utalnak. A járművek közül igen sok az 1989 előtt készült darab, a keleti típusoknál több mint 50%, míg a nyugatianál valamelyest kedvezőbb a kép, ítt kb. 40%.

A használt autók behozatalának ismételt engedélyezése önmagában nem jelentene problémát, ha a vonatkozó zaj- és károsanyag-kibocsátási előírásokat betartata(nak). Így azonban egyenlőre a nyugaton mindenféle szempontból (emissziós normák, életkor, közelgő zaj- és károsanyag-kibocsátás) tehertételel váló járművek hozzájuk történő beáramlása figyelhető meg, ami éveken belül a hazai gyártó- értékesítői hálózatot fogja fokozottan megtérhelni. Megoldást jelenthet majd a behozott járművekre a hazai ronscautó rendelettel bevezetni kívánt hasznosítási díj kb. 30.000 Ft-nyi mértéke, amennyiben azt a majdani hasznosításra használják fel.

Bár az emissziós normák váltható szigorodása alapvetően ezt nem determinálja, mégis már csak a természetes öregedés folytán is 3 de legkésőbb 5 éven belül mintegy 500000-600000 már most korszerűítenek mondható Trabant, Wartburg, Skoda, Polski Fiat és Lada kerül forgalomból kivonásra és ezek környezetbarát kezeléséről mindenképpen gondoskodni kell. A legnagyobb problémát talán a Trabantok feldolgozása fogja okozni –
műanyag karosszériaíró problémás hasznosíthatósága és költségigénye miatt -, tehát átmeneti megoldásként az országban több kétütemű feldolgozót kell létesíteni a probléma megoldására. (Németországban a Trabant tervezőmérnökei is bevonták az újrahasznosítási koncepció megalkotásába, korábban több, mint 100 helyen működött kifejezetten Trabantok feldolgozásra specializáltodott üzem, a legnagyobb problémát okozó műanyag karosszériaiból ragasztók készítettek.)

A nyugati járműveknél kevesebb a már igen régi jármű, ráadásul ezek jobb konstrukciójuk révén pár évevel később jelentkeznek majd - és akkor sem akkora mennyiségben -, mint a keleti gyártmányok. Ennek ellenére a használható import itt is tagartott veszélyeket, főként a kiemelten problémás típusok hazai dömpingjével. A szándék nyilvánvaló, a nyugatiak szívesen adják olcsón használt járműveiket, ezáltal hozzánk kerülnek a még nem hasznosítást figyelembe véve tervezett autóik, amelyekből igen sok rész nem, vagy csak igen nehezen hasznosítható. Amit nyerünk a behozott autók egy-két éves üzemeltetése révén, azt sokszorosan elveszítjük környezetteljes és tárolókapacitás-veszteségi okokból, nekünk kell gondoskodni a többsnyire veszélyes hulladékok kezeléséről stb.

2.1.2.5 A hazai forma összehasonlítása a korszerű nemzetközi gyakorlattal, hiányosságok feltárása

Ma Magyarországon a roncsokcik-újrahasznosításának a következő formái működnek. A roncsok a tulajdonostól bizonyos kialakult ár fejében a bontókba kerülnek, akik kiszerelelik a még eladható részleteket pl. motor, váltómotor, hajtóművek stb. és elvileg leereszik az üzemi folyadékotokat. Ez nem minden esetben valósul azonban meg, gyakran hagyják benne főképpen a többiehez képest kis mennyiségi fékfolyadékotokat, de a hűtővizeset nem néhányan gond nélkül öntik a csatornába. A fáradt olajba más a helyzet ezt összegyűjtve el tudják adni, ezt azonban főképpen az ellenőrzetlen kisteljesítményű tüzelőberendezéseket - szabálytalanul - üzemeltetőknek adják el, mert ezek környezetteljes és veszélyes hulladékok hiánynak magasabb árat fizetnek érte, mint a MOL Rt.

A már semmit sem "nyújtó" roncsok eddig az újrafizetettatlan abroncsokkal és a benne levő műanyag alkatrészekre együtt eddig a bontók hátsó udvarába pihentek több (tízéves) álmukat. Ezeket főképpen azért nem hasznosítottak a vas- és acélművek, mert még mindig elég szennygődést tartalmaztak ahhoz, hogy ne lehessen belőlük csak igen költséges - esetleg rokonkorszakos - bontással jó minőségű acélgyártási adaléket elérni. A ráadásul a karosszérik néhányhúsz évileg lassan és meglehetősen jól megfelelő rendelkezésekként kezelhetők, főképpen a tárolókapacitás vesztesége miatt. A karosszériák tömörítés, préselés nélkül igazán nagy térfogat/tömeg aránnyal rendelkeznek nehézzé és kevésbé megtisztelethetők a tóthoz- és tárolóhelyhez társuló magas árfolyamok miatt, minthogy a jól kifejezve azonban a számlálás az újrafizetésig nem kötelező.

Ráadásul a karosszériák tömörítés, préselés nélkül igazán nagy térfogat/tömeg aránnyal rendelkeznek nehézzé és kevésbé megtisztelethetők a tóthoz- és tárolóhelyhez társuló magas árfolyamok miatt, minthogy a jól kifejezve azonban a számlálás az újrafizetésig nem kötelező.

A modern gépjárműformákban azonban a kis és kis-nyugati járművek azonosítását nem a jelenlegi szabályok segítségével lehet elérni, mert a készülék általánosan ismerősnek tűnik a gazdaságban. A modern gépjárműféldekat a karosszériából ragasztott műanyagot nem hasznosították a vas- és acélművek, mert még mindig elég szennygődést tartalmaztak ahhoz, hogy ne lehessen belőlük csak igen költséges - esetleg rokonkorszakos - bontással jó minőségű acélgyártási adaléket elérni. A ráadásul a karosszérik néhányhúsz évileg lassan és meglehetősen jól megfelelő rendelkezésekként kezelhetők, főképpen a tárolókapacitás vesztesége miatt. A karosszériák tömörítés, préselés nélkül igazán nagy térfogat/tömeg aránnyal rendelkeznek nehézzé és kevésbé megtisztelethetők a tóthoz- és tárolóhelyhez társuló magas árfolyamok miatt, minthogy a jól kifejezve azonban a számlálás az újrafizetésig nem kötelező.
Kohászati Művekbe szállítanak a kohászatban való hasznosításra. A nem mágneszhető szférát, amely gumit, üveget, kárpitot, színesfémetek, aluminiumot stb. tartalmaz Amstettenbe szállítják feldolgozásra. Itt rostálás után fajsúlyelméleten alapuló úsztatással (Schwimm-Sinkanlage = úsztató-lesüllyesztő) szétválasztják egymástól a különböző frakciókat és elvégzik az újrahasznosításukat.

Az ERECO szakosodott a járműruconcsok feldolgozására, telephelyén egy Lindemann shredder és egy ugyancsak Lindemann típusú, nagyteljesítményű hidraulikus daraboló olló szolgálja a roncsfeldolgozás megfelelő elvégzését.

A hazai gyakorlat elemzését a hiányosságok összefoglalása zárja.

2.1.2.5.1 A hazai rendszer hiányosságai

A legnagyobb hiányosságok az alábbi tíz pontban foglalhatóak össze.

1. A hulladékgazdálkodásról szóló 2000. évi XLIII törvény által előírt, a roncsautók témakörét szabályozó végrehajtási utasítás egyenlőre még várat magára (a KVVM jelenlegi álláspontja szerint a törvény elfogadásának végző határideje 2002 év vége), így jelenleg nincs tisztázza a jármű újrahasznosításban résztvevők (utolsó üzemembertartó, bontók, hasznosítók) joga és kötelezettsége.

2. A környezettévedelmi hatóságok a megfelelő jogi és szankcionális háttér hiányában, valamint a hatósági szakemberek tehetsége miatt nem tudnak munkakörülményeket (egzisztenciális, szükséges eszközök rendelkezésre nem állása, a munka veszélyessége stb.) miatt egyszerűen képtelenek gátat szabni az illegális hulladékkerszecdelemeinek, a környezet-szennyezésnek, az engedély nélküli hulladék-feldolgozó tevékenységnek (váci illegális akkumulátor-feldolgozó, bükki ölomöntés, gumiautók illegális kisartár-menti forgalma, külföldről az országból áramló használhatatlannak autók dömpingje stb.).

3. A rendszerváltás során több, korábban jelentős munkabérek, kihaltak, nem tudnak mit tenni az olyan áltevékenységet folytató cégek (MÉH, Metalloglobus) gyakorlati munkáját befejezve, nagy ürt hagyott maga mögött a hazai piacon. Az újonnan szerveződő (ill. a régebbi feldolgozók bizonyos tevékenységét továbbfolytató) vállalatok nem tekintik elsődlegesen a nyereséget nem hozó (de a környezetet fokozottan veszélyeztető) járműrézek kezelését. Ez bizonyos szempontból érthető, hiszen mindenki a piacról él, viszont a környezettévedelmi szükségek szempontjából elfogadhatatlan.

4. A bontókban (kevés kivétel) elkezdtek a gyakorlati gyűjtést nem végzik el az üzemli folyadékok selektíve gyűjtést. A szervizekben a helyzet lényegesen jobb, hiszen a manapság olyan divatos szervizminőség megszerezéséhez ennek a tevékenységnek a felvállalása is hozzájáruló.

5. A hatóságok gyakorlatilag nem tudnak mit tenni az olyan áltevékenységet folytató „vállalkozókkal”, akik nyugatról alkatrész minősítéssel gyakorlatilag használhatatlannak találnak, elbírálásuk és feldolgozásuk hiányát az illegális hulladék-feldolgozók szerepe jelentős. A szervizekben a helyzet lényegesen különlegesebb, hiszen a manapság olyan divatos szervizminőség megszerezéséhez ennek a tevékenységnek a felvállalása is hozzájáruló.

6. Különösen veszélyes a külföldön nem hasznosított (ott nem hasznosítható) hulladéknak az országbba történő beáramlása. Ilyenek pl. a gumiautók hulladékon (ennek kikötöttségi forgalma valóságos iparággá változott), valamint a bontásból származó műanyag hulladékok. A külföldön hasznosított, a hatóságok a helyzet lényegesen különösebb, hiszen mindenki a piacról él, viszont a környezettévedelmi szükségek szempontjából elfogadhatatlan.

Így azután a KöM elutasító határozata a lehető legjobb döntésnek bizonyult.
7. Sajnos a lakosság környezetvédelmi szemlélete nem eléggé fejlett a környezetszennyező hatások megítélésében, hosszútávon mindenképpen szükséges már gyermekkorban elkezdeni a felvilágosító tevékenységet.

8. Nincs kialakult hulladékgyűjtési kultúra (szelektív gyűjtés), így szinte mindenki természetes jelenségként fogja fel a közterületeken felejtett akkumulátort, olajos flakon stb. látványát.

9. A roncsautók esetében nincs meg a hulladékfeldolgozást finanszírozó anyagi aspektusok rendszere, bár a készülő rendelet tervezete már tartalmaz – igaz egyenlőre csak a magánimport keretében az országba behozott járművekre – hasznosítási díjat. Az új járművek vonatkozásában valószínűnek látszik, hogy a termékfelelősnek kikiáltott gyártói- importőri kör a csomagolóeszközök területén tapasztalt módon önállóan veszi kézbe a probléma megoldását és egy közhasznű társaság (KHT) létrehozásával oldja meg a felmerülő szakmai és pénzügyi problémákat.

10. Átfogó válságkezelő programokra van szükség az olyan, hatalmas mennyiségben felhalmozódott hulladékok kezelésére, mint pl. a gumiabroncs (több százezer tonnás készlet), valamint a 2000. év óta újra engedélyezett 4 évnél idősebb autók behozatalának esetében be kell tartatni a már meglevő szabályozást.

A hiányosságok kezelésére vonatkozó javaslatokat a 6. fejezet tartalmazta.
2.2 Roncsautó-hasznosító telepek működése

2.2.1 Roncsáz vált autók begyűjtése

Az elhasználódás révén, az aktuális műszaki állapot alapján vagy csak egyszerűen az utolsó üzemeltető által rocsnak titulált járművek begyűjtése azok logisztikai hátterének felépítése szükségessége miatt jelentik ma a költségek legnagyobb hányadát.

Az EU-Direktíva megfogalmazása szerint a termékelelős köteles területfedő hálózatot kialakítani, ahol az utolsó üzemeltető értékesmentesen leadhatja a megfelelő feltételeknek eleget tevő rocsautóját. Megfelelő feltétel alatt itt azt értik, hogy a rocsot nem bontották elő otthon – eladva belőle a még értékesíthető alkatrészeket – illetve nem töltötték tele a karosszériát – és tartályait – járulékos szennyeződésekkel, ami azután a bontóüzem költségeit növelné, vagy az általa kibontható és alkatrészként értékesíthető anyaghányadot csökkenthetné.

2.2.1.1. kép Roncsautók közúti szállítása

A német rendszerben ez a területfedő hálózat körülbelül 50 km-es lefedettséget ért el, ennek megfelelően az utolsó üzemeltetőknek ennyire kell a rocs járművét leadáshoz eljuttatnia.

A jelenlegi megoldásokat tekintve a rocsautók leadása történhet átvevőhelyeken (pl. márkakereskedőknél, hulladékudvarokban, arra megfelelően kialakított helyeken), vagy közvetlenül a bontóüzemeknél, ebben az esetben azt nem terheli további szállítási költség.

Az egyik legrégebben működő európai rocs-hasznosító rendszerben, az ARN keretein belül az átvevőhelyekről a bontóüzemekbe történő átszállítás fejében az ARN gépjárművenként 12€ támogatást nyújt.

Az átvevőhelyekről a bontóüzemekbe történő szállítás leggyakrabban fehérgep járművekkel kivitelezett szállítással valósul meg, létezik azonban erre vasúti gyűjtőfúvar képzési megoldás is. A német államvasutak (DB) által a rocsautók szállítására kifejlesztett speciális szállítóállványt, valamint a már berakodott szállítmányt szemléltetik a következő képek.
A modern gépjármű-recycling menete

2.2.1.2. kép Ronskocsik szállítására kifejlesztett speciális szállítóállvány

2.2.1.3. kép Szállítóállványok vasúti szállítása

A magyar roncsautó-rendelet megalkotásánál alapvető fontosságú kérdés, hogy az átvevőhelyeken leadott roncsautó milyen hulladék-kategória besorolásra kerül. Amennyiben a környezetvédelmi hatóság ragaszkodik a veszélyes hulladékok közé történő besoroláshoz, úgy a termékfelelősök csak a bontóüzem területén hajlandóak átvenni a roncsautókat, mivel – érhető módon - nem hajlandóak a folyamatot drágítani az ADR előírásainak megfelelő veszélyes-hulladék szállítással. Ebben az esetben viszont nem valósulhat meg a területfedő átvevőrendszer kiépítése.

Úgy tűnik a problémát időközben megértette a KVVM is, mivel a legutóbbi rendelettervezetben már eltekintett a veszélyes hulladék, mint szállítandó termék besorolástól, és a roncsautókat a szállítás szempontjából a normál hulladékok közé sorolta.

2.2.1 A gépjármű-hasznosító telepek felépítése, működése

A bontóüzem működtetőjének rendelkeznie kell a szükséges és előírt környezetvédelmi előírások betartását igazoló okiratokkal.

Az üzemet úgy kell kialakítani, működtetni és karbantartani, hogy a hulladékok hasznosítása ill. megfelelő ártalmatlansítása mindenkor megtapadjon. Ezt az üzemben belüli szállítások során is be kell tartani.

Az autóroncsokat előkezelésüket megelőzően nem lehet az oldalukon, vagy a tetejükre fordítva tárolni, mivel ez az üzemanyagok kifolyásával járhat együtt. Az egymás felett történő elhelyezés csak akkor megengedett, ha az üzemanyagot tartalmazó alkatrészek, úgy mint főkészletek, olajteknők vagy kibontható alkatrészek (pl. szélvédő üvegek) deformációja vagy károsodása nem következhet be.

2.2.2.1. kép Bontott roncskarosszériák egymáson történő tárolása

2.2.2.2. kép Roncsautók tárolására kidolgozott állványrendszer

A bontóüzemekkel kapcsolatos minimális műszaki követelményrendszert az 53/2000/EK Direktíva 1. számú melléklete fogalmazza meg. Ennek megfelelően:

a) a roncs járműveket a további kezelés előtt szét kell vágni vagy egyéb, ezzel egyenértékű műveletet kell végezni annak érdekében, hogy csökkentjenek a környezetre gyakorolt esetleges káros hatások. A jelöléssel megfelelően ellátott vagy más módon azonosítható alkatrészeket vagy anyagokat a további kezelés előtt el kell távolítani (ki kell vágni);

A bontóüzemekkel kapcsolatos minimális műszaki követelményrendszert az 53/2000/EK Direktíva 1. számú melléklete fogalmazza meg. Ennek megfelelően:

a) a roncs járműveket a további kezelés előtt szét kell vágni vagy egyéb, ezzel egyenértékű műveletet kell végezni annak érdekében, hogy csökkentjenek a környezetre gyakorolt esetleges káros hatások. A jelöléssel megfelelően ellátott vagy más módon azonosítható alkatrészeket vagy anyagokat a további kezelés előtt el kell távolítani (ki kell vágni);
b) a veszélyes anyagokat vagy alkatrészeket a további kezelés előtt el kell távolítani és szelektív módon el kell választani, hogy ne szennyezhessék be a ronces járműből ezután keletkező zúzási hulladékokat („szárazra fektetés”), azaz az üzemanyagok szelektív eltávolítása a shredderezési könnyűfrakció szennyezésének újrafeldolgozhatóságát

További alapvető követelmények:
- a bontott tartalék-alkatrészek megfelelő tárolása, ezen belül az olajjal szennyezett tartalék-alkatrészek vízhatlan tárolása,
- az akkumulátorok (helyszíni vagy máshol történő elektrolit semlegesítéssel), szürök és PCB/PCT-tartalmú kondenzátorok tárolására szolgáló megfelelő konténerek,
- megfelelő tárolótartályok a ronces járművekből származó és különválogatott folyadékokhoz: üzemanyagokhoz,
- a befogadásra kerülő bontott tartalékok, morotorlajhoz, sebességváltómű olajhoz, hidraulika olajhoz, hűtőfolyadékhöz,
- a folyadékhöz, akkumulátorokhoz, klimaberendezés folyadékhához, és minden egyéb, a ronces járműben található folyadékhöz,
- a használt gumibroncsok megfelelő tárolása, ezen belül a tűzvédelem biztosítása és a túlzott felhalmozás megelőzése,
- az előkezelt, egymás felett elhelyezett járművek esetén úgy kell a rakodás biztonságára. Külön biztosítás nélkül maximum 3 autóroncs helyezhető el egymás felett,
- a bontóüzem üzemeltetőjének az üzem napi tevékenységét regisztráló üzemkönyvet kell vezetnie és az üzem tevékenységét leíró üntutatot kell készítenie, amely tartalmazza a teljes munkafolyamathelyet;

A bontóüzemek kialakítása során elkülöníteni szükséges üzemi területeket szemlélteti a 2.2.2.1. ábra.

Ennek megfelelően a tervezett darabszám függvényében meghatározható területet tartalmaznak az alábbi felsorolt üzemi területeket:
- a beszállítás területe (bejövő tároló), ahol megtörténik a bontásra kerülő jármű vagy egyes részeinek átvétele és a későbbi hasznosítás szempontjából történő előzetes áttekintése (a későbbi bontás fő irányvonalata alkatrészek vagy szerkezeti anyagok koncentrált,
- az előzetes kezelésre nem szoruló járművek tárolóhelye (szgk. átmeneti tároló),
- az előkezelés üzemi területe (elsősorban a „szárazra fektetés” = üzemanyagok eltávolítására,
- tárolóhely az előkezelt járművek számára (szgk. átmeneti tároló),
- bontási üzemi terület;
- a használható (eladható) alkatrészek tárolóhelye (raktára),
- hasznosításra vagy ártalmatlanításra váró szilárd hulladékok tárolóhelye,
- hasznosításra vagy ártalmatlanításra váró folyékony hulladékok tárolóhelye,
- a maradvány karosszéria tárolóhelye készíti (bontott karosszériák),
- karosszéria-tömörítés (karosszériaprés) helye. (a gazdaságos szállításhoz célszerű (elmaradhat)).
Üzemterület megnevezése | Üzemterület nagysága bontó kapacitás szerint (roncsautó/év/nap)
---|---
| 7.500/30 | 5.000/20 | 2.500/10 | 1.000/4 vagy ennél kevesebb
Tárolótér (jármű átvétel) | 4.000 | 2.600 | 1.200 | 420
Üzemanyag eltávolító hely (előbontó) | 600 | 450 | 300 | 100
Bontó (épület) | 2.000 | 1.400 | 500 | 140
Raktárok-tárolóhelyek | 6.500 | 4.500 | 1.450 | 120
Kereskedelmi (raktár, eladótér) | 1.400 | 1.150 | 500 | 40
Egyéb (szociális helyiségek, iroda, stb.) | 500 | 350 | 150 | 80
Összesen | 15.000 | 10.450 | 4.100 | min.900

2.2.2.1. táblázat Tapasztalati értékek a bontóüzemek kialakításának helyigényéhez [tüv, 01]

2.2.3 Hasznosításra átvett gépjárművek szárazra fektetése, üzem folyadékok eltávolítása

A járműroncs szárazra fektetése során abból az akkumulátorért és a rejtett hőcserélőket ki kell szerelni. A pirotechnikai eszközöket (légszákok és övfeszítők) arra kiképzett személyzet által, a gyártó útmutatása alapján haladéktalanul el kell távolítani, és megfelelő berendezésben ártalmatlanítani, vagy a járműben beépített állapotában működésbe hozni, ezáltal használhatatlanná tenni.

![2.2.3.1. kép Gépjárművek szárazra fektetésére szolgáló berendezés](image)

Ezt követően el kell távolítani, és elkülönítve gyűjteni az alábbi üzemanyagokat (2.2.3.1. kép)

- motorolajok;
- olajszűrők;
- hajtóműolajok, differenciálmű olaj;
- hidraulikaolajok (pl. szervőkormánymű);
- tüzelőanyagok;
- hűtőfolyadék;
- fékfolyadék;
- lengéscsillapító olaj (vagy a lengécsillapító járulékos kiszerelése);
- a klimaberendezések hűtőközegei (fluórrozott szénhidrogének);
A modern gépjármű-recycling menete

27 ablakmosó folyadék.

Azok az alkatrészek vagy anyagok melyek a talaj- vagy a felszíni vizek károsítását eredményezhetik az erre a helyre előkészített, védőburkolattal ellátott és befedett területen kerüljenek tárolásra.

Az üzemanyagok eltávolításának módja és technológiája mindenkor feleljen meg a műszaki fejlődés aktuális helyzetének, a mindenkori cél az egyes aggregátok cseppmentességének biztosítása.

Az üzemanyagok (veszélyes anyagok) tárolását sorolják fel a gázoló tartályok feleljenek meg az anyagra érvényes jogszabályban megfogalmazott előírásoknak, a tartályokat cél szerűen időszakosan ellenőrizendő védőárállal ellátni.

A roncs járművek szennyezés-mentesítésére szolgáló kezelési műveletek: összefoglalóan:
- az akkumulátorok és a folyadék állapot tároló tartályok eltávolítása,
- a potenciálisan robbanásveszélyes anyagok (pl. légzsák) eltávolítása vagy semlegesítése,
- az üzemanyag, motorolaj, sebességváltó olaj, a hidraulikaolaj, a hűtőfolyadékok, a fogyállók, a fékfolyadékok, a klimaberendezés folyadékok, és minden egyéb, a roncs járumban található folyadék eltávolítása, elhelyezése és tárolása, kivéve, ha arra az érintett alkatrészre újrafelhasználáshoz szükség van,
- a higanytartalmú alkatrészek lehető legkörültekintőbb módon történő eltávolítása [tüv, 01].

2.2.4 Járműroncsok bontása

A járműroncsok bontásának folyamatát, a kibontandó alkatrészek körét, a bontás mélységét alapvetően a gazdaságossági szempontok határozzák meg. Amennyiben az autóroncokból kibontott alkatrészekre a piaci tapasztalatok alapján vásárlói igény feltételezhető, úgy az alkatrészek kinyerésére koncentrált, saját szigetszerű bontási technológiát alkalmazzák, míg a várhatóan alacsony igény feltételezhető esetekben inkább a futószalag technológiáját használhatják.

A mai bontóüzemek többek között a két technológia eltérő arányú kombinációját alkalmazzák, a járműmotorok és főegységek esetében ismétlődik, míg a különböző autók esetében a futószalagszerű megoldást előtérbe helyezve.

Mindkét bontástípusra jellemző, hogy az alábbi anyagokat, alkatrészeket károsanyag-tartalmú vagy veszélyt okozó hatásuk miatt a járműből eltávolítják és azokat elkülönítetett tárolják:
- lengéscsillapító, amennyiben üzemanyagát nem távolították el;
- azbeszttartalmú anyagok;
- járműidegen anyagok, valamint az olyan anyagok és alkatrészek, melyek jelentős mértékben káros anyagokkal szennyezettek.

Ezekben felülről a nyersanyag- és ásványi kincs készletek védelme érdekében az alábbi anyagok, és alkatrészek kiépítése és elkülönített tárolása célszerű:
- nagyobb műanyagalkatrészek (pl. lökhárítók, kerék-disztcícsák, műszerfalak, tüzelőanyag-tartályok)
- kerekek
- szélvedő- oldalsó és hátsó üvegezések
- minden réztartalmú alkatrész, úgymint az elektronika darabjai, kábelkötegek, elektromotorok

2.2.4.1 Szigetszerű járműbontási technológia

2.2.4.2 Futószalagon végzett járműbontási technológia

A futószalagon végzett bontási technológia elsősorban a szerkezeti anyagok hasznosítására specializálódott bontóüzemek sajátossága.

Vannak ennek ellentmondó példák is, amikor a csereszabatos motorfelújítás keretében ugyanazon a futószalagon újítják fel a motorokat, amelyeken azokat eredetileg gyártották, ehhez azonban egyrészt megfelelő mennyiségű, azonos típusú, felújítható motort kellene visszagyújtani és az eredeti állapotú utószalagnak is rendelkezésre kell állnia. Ezt eddig csak igen nagy darabszámban gyártott kishaszongépjármű-motorok esetén tudták megoldani. Általában a futószalagon végzett bontás jellemzője a roncsolásos technológiák használata és az egyes anyagfrakciók gyűjtésére szolgáló – a kis szakértellemmel bíró bontási személyzet miatt általában színkóddal ellátott – konténerrendszer alkalmazása. Nem igényel komolyabb raktárkapacitást – a jól körülhatárolható frakciók száma néhány tíz – és bonyolult raktárváltóprogramot sem. Mivel itt általában elmarad az alkatrészbontásból származó bevétel, így csak megfelelően nagy bontott darabszámok mellett válik ez a tevékenység kifizetődővé.

2.2.5 Előbontott járműroncsok előkezelési technológiái

Az előbontott karosszériát a gazdaságos szállítás megvalósíthatósága érdekében megfelelő módon tömöríteni lehet (tömbösitethetik, préselhetik), amennyiben már további alkatrészek arról gazdaságosan nem távolíthatók el. A tömörítést csak arra kijelölt helyen és eszközökkel lehet elvégezni (pl. autóprések, nagyteljesítményű vágószerszámok).
Az 53/2000/EK Direktíva szerint az újrafeldolgozást elősegítő kezelési műveletek:
- a katalizátorok eltávolítása, (a katalizátor nem (!) veszélyes hulladék).
- a rezet, alumíniumot és magnéziumot tartalmazó fém-alkatrészek eltávolítása, ha ezeket a fémeket a zúzási (shredderezési) eljárás során nem választják külön,
- a gumiabroncsok és a nagyobb méretű műanyag alkatrészek (lökhárítók, műszerfal, folyadéktartályok stb.) eltávolítása, ha ezeket az anyagokat a zúzási (shredderezési) eljárás során nem választják külön, mégpedig úgy, hogy azokat anyagként hatékonyan újra fel lehet dolgozni.
- az üvegek eltávolítása.

2.2.5.3. kép A karosszériáról lebontott lökhárítók
2.2.5.4. Színezés szerint szétválogatott járműüvegezések
2.3 A shredderezési technológia

2.3.1 Shredderek általános felépítése és működési analízise

A shredderezés során elsősorban karosszéria és lemezhulladéket dolgoznak fel a technológiától és a rostélybeállítástól függően kb. 80 mm-es darabokra. A shredderezés elvi menetét a jelenleg Magyarországon a Kelet-Európai Környezetvédelmi Kft. (ERECO Kft.) jóvoltából felépített berendezésen kerül bemutatásra [erec, 94].

2.3.1.1. kép Shredderüzem látképe

A berendezés felépítését a mellékletben levő ábra tartalmazza, a 2.3.1.1.1. ábrán látható egy forgó kalapácsos shredder elvi vázlata. A mellékletben található még az itt ismertetésre kerülő Lindemann® shredder több típusának műszaki paraméterei, valamint a cég fémossztályozó berendezései.

A berendezés különösen alkalmas:
- gépkocsiszekrények,
 - a, elősajtoló gépkocsiszekrények,
 - b, vágott gépkocsiszekrények,
- összesajtoló ház 0,8-1,3 t/m³ tömörítésig és egy max. 800 mm belépési magassággal terjedően,
- kőnyű gyűjtött és vegyes fémhulladék max. 6 mm lemezvastagságig, egyes esetekben lemezcsíkok és max. 12 mm méretig előkészítésére.

Egy adagoló/feladó szalag nehéz kivitelben, acélcsuklós szállítószalagból kivitelezve a shredderbe adagoláshoz. A szalag hossza megfelel a mindenkori felállítási helyzetnek a shredder berendezést illetően. A szállítószalag felülete továbbítókkal van ellátva és az aprítandó anyagot a shredder rávezető csuszdájára sajtolja. A szállítószalag magában foglalja a támasztó-szerkezetet is. A shredder egyébként a következő szerkezeti csoportokból áll:
- Rávezető csuszda az anyag betáplálásához:
 - összhossza kb: 7000 mm,
 - belső betöltési szélessége kb: 2500 mm.
- A shredderhez vezető anyagbetöltő csuszda előtt részében van elhelyezve a henyó láncos behúzó berendezés. Ez az egység teljesen önműködően működik, hidraulikus meghajtású és vezérlésű, a betöltött anyagot kb. max. 1500 mm-re tömöríti a shredder bemenetéhez mindenkor az optimális magasságra. A tömörítés egy önműködő-hidraulikus vezérlésen át következik be és mindenkor a megfelelő anyaghoz alkalmazkodik. Ez a behúzó-berendezés egyik részről az anyag beviteli berendezéseként, másik részről a kis-darabos anyag összedolgozójaként, a bálazott, valamint vágott gépocsiszerekbenyel anyagfekező berendezésként működik az aprító túladagolásának elkerülése céljából.
Az aprító egy optimális adagoláshoz az impulzusokat a fő meghajtó motor áramfelvételéről egy jelfogón át adják. Megfelelő vezérlő impulzusnál, amely a főmeghajtó motor maximális terhelését jelzi, a rávezető berendezés áramellátását több másodperces időtartamra megszakítják és így a további anyagrázvetést megállítják. A továbbítást ismét akkor engedélyezik, amint az aprító további anyag felvételére lesz képes. A vezérlési folyamatot bármikor az automata üzemmódról kézi vezérlésűre lehet átállítani, amennyiben ez szükségessé válna.

A behúzó-lánc ellenirányú üzemmódra is átkapcsolható. A hidraulikus vezérlés és a hidraulikus meghajtás útján egy finomérzékelésű vezérlésű rugalmas meghajtást érnek el, amelyel a túlterhelésből származó károsodásokat megállítják. A továbbítást ismét akkor engedélyezik a további anyagfelvételre."}

2.3.1.1 Az aprító felépítése

Háza stabil hegesztett szerkezettel készült, működési körzetében csavarkötésekkel kicserélhető. A kalapácsok (verőszerszámok) ütközőkörzetében a koptatólemezek és a rostélyok mangáncélból öntvényből készültek.

Az anyag lecsapása az adagolásnál a forgó verőszerszámok útján a koptatólemezek és a rostélyok mangáncélból jutik. Az üllőhöz csatlakozóan az alsó térségben nehéz és tömörrészek, amelyeket az előbbiekben leírt darabolási eljárással felaprítani nem lehet, önműködően a lengő kivételére történt felütődés útján a rotor működési körzetéből eltávolításra, majd az elszállításra. Ezzel elérhető, hogy felesleges kopásos elhasználódás és esetleges nagyobb károsodások a rotoron, ennek verőszerszámain és az aprító működési körzetében elkerülhetőek legyenek.

A rotor a bevált keresztrotor-kivitelben készül. A rotor keretek különső felületei kiscserélhető mangánnemesacél védősapkákkal vannak a kopás ellen védeve. A fém hulladék optimális aprítását és megtisztító hatását elérendő, a rotor harang alakú verőszerszámokkal és verőgyürrükkel is fel van szerelve. A keresztrotor típusa révén azt is elérhető, hogy a teljes munkaszélesség (belépési szélesség) a shredderben a verőszerszámokkal és verőgyürrükkel el van érve.

A rotor a bevált keresztrotor-kivitelben készül. A rotor keretek különső felületei kiscserélhető mangánnemesacél védősapkákkal vannak a kopás ellen védeve. A fém hulladék optimális aprítását és megtisztító hatását elérendő, a rotor harang alakú verőszerszámokkal és verőgyürrükkel is fel van szerelve. A keresztrotor típusa révén azt is elérhető, hogy a teljes munkaszélesség (belépési szélesség) a shredderben a verőszerszámokkal és verőgyürrükkel el van érve.

A rotor meghajtását egy elektromotor végzi 6 vagy 10 kV feszültséggel. Az erőátvitel egy kardáncsőnyílású kábel- és aggregáltos apparatustól olajtöltött kábelházban jár a rotor meghajtásának kapcsolatára. Az erőátvétel egy kardáncsőnyílású kábel- és aggregáltos apparatustól olajtöltött kábelházban jár a rotor meghajtásának kapcsolatára.

A rendszerben a rostélyok a koptatólemezek és a rostélyok mangáncélból készültek. A rostélyok terjedelmükben egy 120°-os teret fognak át. A rotor felett egy különleges sugáralakú burkolatépítmény van a koptatólemezek és a rostélyok mangáncélból készült.

A rendszerben a rostélyok a koptatólemezek és a rostélyok mangáncélból készültek. A rostélyok terjedelmükben egy 120°-os teret fognak át. A rotor felett egy különleges sugáralakú burkolatépítmény van a kondenzátorok és a rostélyok mangáncélból készült.
A felaprított fémhulladéket és a kidobott tömör részeket/darabokat az aprító alatt található vibrációs szállítóvályú gyűjtő össze és azokat erről egy gumihederes szállítószalag továbbítja.

<table>
<thead>
<tr>
<th>Roncskocsi (100%)</th>
<th>Shredder</th>
<th>Elszívás ciklon</th>
<th>Mágneses leválasztó</th>
<th>Acélipar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könnyűfraktció (kb. 25%)</td>
<td>Shredder-ócskavas (kb. 70%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldolgozás elkülönített berendezésben</td>
<td>Nehézhulladék (5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hulladék</td>
<td>A nem-vas fémek feldolgozása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nem-vas fémek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.1.1.2. ábra Shredderek fő anyagáramlási jellemzői

Az aprító gép hulladéka a nem-vas és a szennyzet műanyag-frakciókkal keverve egy törtvonalú zeggugor csatornába jut és itt az ún. légcsatorna alatt megtisztításra kerül a lebegő/repülő anyagokat elszívó ciklonban, amely egy ciklonba kerülnek, ahonnan egy rotorzsilipen át egy tartályba, vagy egy alatta elhelyezett szállítószalagra kerülnek és egy konténerbe hordják ki azokat a továbbításához.

A könnyű és finomszemcsés porok, amelyeket a ciklon leválasztani nem képes, egy nedves szűrőre jutnak, ahol vizel történő örvényeltetés és telítés útján felfogják azokat és izapokkal egy tartályba szállítják. A hulladéklevég egy kürtön keresztül a légkörbe távozik.

A kevert apríték hulladékot a légtechnikai tisztítás után az ejtócsatornában egy vibrációs vályúon át a mágnesdobos leválasztóhoz továbbítják és ott szeparálják mégpedig a vas és a nem vas frakciókra (a nem vas termékek nehéz nemfémes anyagok maradékszecsővével vannak keveredve). A vas frakciók egy gumihededer válogatószagtra jutnak. Ezen a szalagon kézi erővel azokat a vasdarabokat válogatják ki, amelyek rézzel, vagy egyéb nem-vas vegyületekkel, vagy nem-mágneses anyagokkal vannak összekötésben. Itt főként olyan kerékbeli darabokról van szó, amelyek acélhuzal-betétesek, áramfejlesztők forgórészéi és vasfrakciók becsípett vörösvéshuzalokkal.

2.3.1.2. kép Órlőt fémfrakció manuális átválogatása a vashulladékban levő rézdarabok eltávolítása eredékében

2.3.2.1. kép Órlőt hulladék-darabok mozgási energiáját a szétválogatáshoz felhasználó futószalag
A válogatószalag után beköteve található egy osztályozódob, amelynek elől részében a 0-10 mm szennagyságú maradékszenny kerül leszűrésre. Az így megtisztított shredder-vashulladékot egy elfordítható gumiheveder szállítószalagon vagy a hányódó réz-hányszalagon, vagy teherkocsikra, vagy tehergépkocsikra továbbítják. Ez a vas-shredder hulladék nagy értékű betétanyagként valamennyi olvasztási eljáráshoz, különösen azonban a konverterekben is felhasználható. Ennek a hulladékknak a vastartalma legkevesebb 95%-ot tesz ki.

A válogatószalag után bekötve található egy osztályozódob, amelynek elülső részében a 0-10 mm szemnagyságú maradékszenny kerül leszűrésre. Az így megtisztított shredder-vashulladékot egy elfordítható gumiheveder szállítószalagon vagy a hányódó réz-hányszalagon, vagy teherkocsikra, vagy tehergépkocsikra továbbítják. Ez a vas-shredder hulladék nagy értékű betétanyagként valamennyi olvasztási eljáráshoz, különösen azonban a konverterekben is felhasználható. Ennek a hulladékknak a vastartalma legkevesebb 95%-ot tesz ki.

A válogatószalag után bekötve található egy osztályozódob, amelynek elülső részében a 0-10 mm szemnagyságú maradékszenny kerül leszűrésre. Az így megtisztított shredder-vashulladékot egy elfordítható gumiheveder szállítószalagon vagy a hányódó réz-hányszalagon, vagy teherkocsikra, vagy tehergépkocsikra továbbítják. Ez a vas-shredder hulladék nagy értékű betétanyagként valamennyi olvasztási eljáráshoz, különösen azonban a konverterekben is felhasználható. Ennek a hulladékknak a vastartalma legkevesebb 95%-ot tesz ki.

2.3.2 Shredderezett anyagfrakciók szétválasztása

A shredderezés során a mágneses forgódob által leválasztott különböző fémek szétválasztása azok súrúsége alapján lehetséges.

Elképzelhető már a shredderezés folyamatból beépített futószalag, amelyen haladva a szalag végének elérése során a rajta utazó fém mozgási energiája hajítássá alakul, a landolás helye a szalag végétől számítva egyértelműen a súrúség függvénye. Ebben az esetben nincs más tennivaló, mint a szalagsebesség függvényében, attól megfelelő távolságokra elhelyezett tartályokban felfogni a leeső darabokat.

2.3.2.1 ábra Sűrűségkülönbségen alapuló szétválasztó berendezés elvi vázlata

Ez a megoldás nem mindig célravezető (egyes érdesebb felületű darabkák jobban odatapadnak a szalag felületéhez, egyes darabok esetleg összetapadhatnak stb.). Az eltérő sűrűségű fémek (és egyéb anyagok) szétválasztására elterjedten alkalmazzák az ún. „száraz és nedves” szeparátorokat.
A nedves szeparátorok (ismert német elnevezésük Schwimm-Sinkanlage = úsztató-lesüllyesztő berendezés) működtetése során egy előzetes rostálás után fajszulyelméleten alapuló üsztatással választják szét egymástól a különböző frakciókat. Az úsztató berendezést leginkább a nagy fajszúlykülönbségű nem-vasfémek egymástól való elválasztására alkalmazzák, pl. így választják el egymástól az alumíniumot (fajszúly 2500 kg/m³ körüli) és a rézfélésegeket (fajszúlyuk 8700 kg/m³ körüli).

A shredderezési maradványból a fémem kinyerése a már említett nedves szeparátorokon kívül ún. száraz szeparátorokban is lehetséges. A nedves szeparátorok vízzel + sűrűségővel felhasznált ferro-szilícium porral működnek, a keletkező szennyvizek szükséges kezelése miatt költségesek, ráadásul bonyolult működésűek.

A költségek csökkentése és az egyszerűbb működtetés elérésére az angol Notts Co. a Department of Trade and Industry nevű céggel közösen kifejlesztette a fluidágyas ún. Sandflo-szeparátort.

2.3.3 Shredderezési könnyűfrakció definíciója, összetétele, hasznosítási lehetőségei

A gépjárművek shredderezése során keletkező könnyűfrakció mennyiségét az utóbbi pár évben sikerült relatívan (a teljes járműtömeghez viszonyítva) csökkenteni, köszönhetően az egyre gondosabb aprítás előtti előbontással. Mindazonáltal az új ún. „könyűépítési elv”-nek köszönhetően (a járműtömeget csökkenteni kell, ezáltal csökken a felhasznált anyagmennyiség valamint a kisebb tűzelőanyag-fogyasztás eredményeként mérsékliődik a levegőszennyezés) a járművekben felhasznált szerkezeti anyagok százalékos egymáshoz viszonyított arányában eltolódás lép fel az alumínium és a műanyagok növekedésénél ellenőrzése (2.3.3.1. ábra).

![2.3.3.1. kép Shredderezési könnyűfrakció](image)

Ennek, valamint az üzemben tartott járművek számának növekedésének hatására (így a forgalomból kivont, feldolgozásra váró járműmennyiség is növekedik) a könnyűfrakció összes tömege növekedési tendenciát mutat.

A könnyűfrakció redukálhatóságát elemző kutatások a következő feldolgozási célokat tűtők ki:
- lehetőség szerint az újrahasznosítható anyagok nagyarányú kiválasztása,
- energetikailag hasznosítható termékek létrehozása (hamu-, klór- és nehézfém-szegény) a cementművek, erőművek, kohók számára,
- termikusan értékesíthető frakció létrehozása (lehetőleg harmuszegény) a veszélyes hulladék égetőművek számára,
- a depóniákba kerülő anyag szerves tartalmát 10% alá kell csökkenteni.

A shredderekben és a zerdiratorokban keletkező könnyűfrakció összetételéről (a járműveken nem végeztek előzetes bontást) a Thyssen Sonneberg és a Volkswagen AG kutatási eredményei alapján a következők mondhatók el:

A könnyűfrakció részecskeméretei tömegszázalékos előfordulási gyakorisággal a 2.3.3.1. táblázatban láthatók.
2.3.3.1. ábra A legfontosabb járműszerkezeti anyagok felhasználásának alakulása 1965-1995 között
2.3.3.1. táblázat Részecskespektrum a shredder-könnyűfrakcióban

<table>
<thead>
<tr>
<th>Részecskefrakció (mm)</th>
<th>Intervallum (tömeg%)</th>
<th>Részarány a frakcióban</th>
<th>Középérték (tömeg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>80</td>
<td>3-15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>40-80</td>
<td>5-34</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>10-30</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>9-14</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>4-12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>5-12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>8-14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>10-40</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

A 2.3.3.2. táblázatban a shredder-könnyűfrakció anyagi felépítése látható.

<table>
<thead>
<tr>
<th>Anyagcsoport</th>
<th>Közepes részarány (tömeg%) 100%-ra normálva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klórmentes műanyagok</td>
<td>13</td>
</tr>
<tr>
<td>Főképpen PP, PS, ABS, PE, PA</td>
<td></td>
</tr>
<tr>
<td>PVC (fölák, műbőrök, kábelborítások stb.)</td>
<td>6</td>
</tr>
<tr>
<td>PUR (habanyagok)</td>
<td>7</td>
</tr>
<tr>
<td>Más termo- és duroplasztok</td>
<td>3</td>
</tr>
<tr>
<td>Elasztomerek (gumiabroncsok, tömítések, belső sárvédő gumik stb.)</td>
<td>23</td>
</tr>
<tr>
<td>Fa/cellulózanyagok (fa, papír, kartonpapír stb.)</td>
<td>4</td>
</tr>
<tr>
<td>Egyéb szálas- és töltőanyag (textilszál, üvegszál, bőr)</td>
<td>6</td>
</tr>
<tr>
<td>Festékek, lakkok</td>
<td>3</td>
</tr>
<tr>
<td>Üveg és kerámia</td>
<td>13</td>
</tr>
<tr>
<td>Vas</td>
<td>13</td>
</tr>
<tr>
<td>Réz</td>
<td>1</td>
</tr>
<tr>
<td>Alumínium</td>
<td>3</td>
</tr>
<tr>
<td>Egyéb alkatrészdarabok és idegen anyagok (homok, por, ólom, cink stb.)</td>
<td>5</td>
</tr>
</tbody>
</table>

2.3.3.2. táblázat A shredder-könnyűfrakció anyagi összetétele

<table>
<thead>
<tr>
<th>Részecskefrakció (mm)</th>
<th>Tömeg-arány (tömeg%)</th>
<th>Tartalom (tömeg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hamu</td>
<td>Cl</td>
</tr>
<tr>
<td>>80</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>40-80</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>20-40</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>10-20</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>5-10</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>2-5</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>1-2</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td><1</td>
<td>34</td>
<td>81</td>
</tr>
<tr>
<td>Összesen</td>
<td>100</td>
<td>60</td>
</tr>
</tbody>
</table>

2.3.3.3. táblázat Rostált shredder-könnyűfrakció minta anyagi összetétele

Az 2.3.3.1.-2.3.3.3. táblázatok adatai alapján a könnyűfrakció feldolgozására az előzetes célkitűzések figyelembe vételével a következő követelmények állíthatók fel:
Lehetőség szerint törekedni kell a teljes részecskespektrum feldolgozására. Mint az a 2.3.3.3. táblázatból látható, csak rostálással nem különíthetőek el a célkitűzéseken megfogalmazott frakciók, melyek anyagként vagy energiahordozóként megfelelőek lennének vagy a deponáláshoz vonatkozó követelményeknek eleget tennének.

Mindenképpen szükség van a shredderezést megelőző előbontásra, már csak a problémás anyagok miatt is.

Az energetikailag hasznosítható frakciók létrehozására felhasználhatók a PUR, a klórmentes műanyagok, elasztomerek, a fa és cellulózanyagok (a PVC és a réz távoltartása mellett).

A Meteoritailag hasznosítható Fe-koncentráció mindenféleképpen leválasztandó. A visszanyerés mellett a problémás anyagok mennyiségi redukciója is fontos.

Metallurgiailag hasznosítható NE-koncentrációt (nem-vas fémek) kell létrehozni. Ez a lépés elsődlegesen az anyagvisszanyerést szolgálja, azonban magában hordozza a visszamaradó energetikailag hasznosítható frakció réztartalmának csökkentésének szükségességét.

A depóniába szánt frakció szervesanyag-tartalmát minimálra kell csökkenteni.

A fennmaradó (éghető) lehető leg hamuszegény frakciókat egy csoportba kell összefoglalni és termikus kezelésre a veszélyes hulladék-égetővekben hasznosítani.

A felsorolt követelményeket megvalósító mechanikai feldolgozási eljárást fejlesztett ki a német Preussag AG. Az eljárásának lényege a többfokozatú osztályozás, a szelektív rögzítés és a különböző szortírozó-technológiák kombinált alkalmazása. Az eljárás alapján a shredder-könnyűfrakció örlésével a következő 8 termék állítható elő:

- Tüzelőanyag Ia: közel tiszta PUR-habanyag, alacsony textilszál és vékony fóliatartalommal,
- Tüzelőanyag Ib: ezt a frakciót a gumi és az alakos formadarabok (lókháritók, beltéri darabok, fütőrendszer-, hűtés-, szellőzés-, hajtómű- és elektromos berendezés elemei) uralják, főképpen PP, PS, ABS és PA,
- Tüzelőanyag Ic: fa, karton, papír és textilszálak,
- Tüzelőanyag II: PVC és PVC-tartalmú komponensek (főliák, műbőr, kábelborítás) valamint bőr, textilszálak, klórmentes termoplászt-, duroplászt-maradékok, elasztomerek és szervetlen maradékok,
- Fe-koncentrációt I: finomszemcsés vaskoncentratum magas oxidtartalommal (rozsda),
- Fe-koncentrációt II: közepes szemcseméretű vaskoncentratum, túlnyomórészt fémek,
- NE-koncentrációt (nem-vas): nem-vasfémek, túlnyomóan réz és alumínium,
- Maradékanyag: finom- és igen finom szemcseméretű (100%<1 mm) anyag, alkotóelemei üveg, kerámia, üvegszál, homok, lakkrészecskék, roksda, por valamint különféle más anyagok.

Az eljárással előállítható feldolgozott termék összetételéről a 2.3.3.4. táblázat nyújt tájékoztatást, az eljárás blokkvázlata a 2.3.3.2. ábrán látható.

<table>
<thead>
<tr>
<th>Termék</th>
<th>Hamu (tömeg %)</th>
<th>Cl</th>
<th>Fe (tömeg %)</th>
<th>Al</th>
<th>Cu</th>
<th>Fűtőérték (MJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tüz.any.Ia</td>
<td>10</td>
<td><0,2</td>
<td>n.a.</td>
<td>n.a.</td>
<td><0,05</td>
<td>15-20</td>
</tr>
<tr>
<td>Tüz.any.Ib</td>
<td>10</td>
<td><0,5</td>
<td>n.a.</td>
<td>n.a.</td>
<td><0,05</td>
<td>30-40</td>
</tr>
<tr>
<td>Tüz.any.Ic</td>
<td>15</td>
<td><1,0</td>
<td>n.a.</td>
<td>n.a.</td>
<td><0,1</td>
<td>10-15</td>
</tr>
<tr>
<td>Tüz.any.III</td>
<td>35</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>15-20</td>
</tr>
<tr>
<td>Fe-konc.I</td>
<td>n.a.</td>
<td>n.a.</td>
<td>>60</td>
<td>n.a.</td>
<td><0,2</td>
<td>-</td>
</tr>
<tr>
<td>Fe-konc.II</td>
<td>n.a.</td>
<td>n.a.</td>
<td>>90</td>
<td>n.a.</td>
<td><0,2</td>
<td>-</td>
</tr>
<tr>
<td>NE-konc.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>50</td>
<td>20</td>
<td>n.a.</td>
<td>-</td>
</tr>
<tr>
<td>Mar.anyag</td>
<td>85</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>-</td>
</tr>
</tbody>
</table>

Magyarázat: a fűtőérték az egyes komponensek fűtőértékei alapján becült
n.a.: nem analizált

2.3.3.4. táblázat A mechanikai feldolgozással elérhető termék összetétele
A modern gépjármű-recycling menete

![Diagram](image-url)

2.3.3.2. ábra A shredder-könnyűfrakció mechanikai feldolgozásának egyik megoldása

A könnyűfrakció feldolgozását célozta a német Mercedes Benz AG és az osztrák Voest-Alpine közös kutatásainak eredményeként kidolgozott ún. pirometallurgiai eljárás.
A pirometallurgiai újrafeldolgozás elvi menetét mutatja a következő 2.3.3.3. ábra

![Diagram](image-url)

2.3.3.3. ábra A metallurgiai újrafeldolgozás elvi menete
A modern gépjármű-recycling menete

Az olvasztó rektor egyszerűsített sémája látható a következő 2.3.3.4. ábrán.

2.3.3.4. ábra Az olvasztó rektor elvi vázlata

A rendszer működése a következő: A megfelelően szétbontott rounks előkezeléséhez a járulékos kábelkötegek eltávolítása után a karosszériákat tömöbítik és egy rooncesapító ollóhoz viszik. Ezután egy szállítószalagban viszik az anyagot más ócskavasakkal együtt az olvasztókemencébe. Itt egy állandó beadagolásra van szó, a betonozott anakemence végében egy földgázgővel felolvasztják az ócskavasat. A fém felolvasztásánál a még bennlevő hőtartalom a rouncsfróból felhasználódnak (a még bennlevő éghető könnyűfrakció) és ezáltal helyettesíti az egyébként megkivánt primer energiát (nem kell annyi földgáz). Együtt az elektromos energiáról való lemondás nélkül az ócskavasat a szén-dioxid emisszió is jelentősen csökkenthető. A keletkező gázokat összegyűjtésük után egy optimált, a legújabb kifejlesztett gáztisztítóban kezelik. Itt a még bennlevő szerves rezgések egy magas hőmérsékletű égetőben elégnek.

A probléma akkor kezdődött a shedderekkel, amikor az EU országok környezetvédelmi hatóságainak aggódalma megerősítését nyelt: a shredderezési könnyűfrakció nagymértékben az ócskavasokkal szennyeződött. Ez a szennyezett könnyűfrakció elégetése során a környezetet igen megerősíti: a poliklorbifenill- és furán emisszióval károsítja, tehát csak veszélyes hulladék-égésen hasznosítható energetikailag.

2.3.4 Shredderek környezetvédelmi aspektusai

A shedderek a rooncesapító karosszériákat elhelyezkedésben bevált módon alkalmazott feldolgozó eszközei. Az aprítás, légszélhullámítás (porfrakció elszívatás és összegyűjtés), a mágneses frakciók, majd a nehézfémek és az aluminíum szétválasztására alkalmazott kapcsolt szétválasztó eszközök, az utólagos manufaktúra szeparáció és az. ún. shredderezési könnyűfrakció egymástól való szétválasztása a karosszéria újrafeldolgozó-ipar által igényelt szerkezeti anyagait megfelelően visszavezette az anyag-környezetbe.

A probléma akkor kezdődött a shedderekkel, amikor az EU országok környezetvédelmi hatóságainak aggodalma megerősítést nyert: a shedderezési könnyűfrakció nagy mennyiségű üzemanyag-hulladékkal szennyezett. Ez a szennyezett könnyűfrakció elégetése során a környezetet igen megerősíti: a poliklorbifenill- és furán emisszióval károsítja, tehát csak veszélyes hulladék-égésen hasznosítható energetikailag.
Egyáltalán miért szennyezett a karosszéria örlemény üzemanyagokkal? A választ a bontás gazdaságossága és a bontási mélység közötti összefüggésben kell keresni. A bontóüzemek, akiktől a shredderek a karosszériát megkapják, csak olyan mértékű előbontást végeznek, amely számukra a bontási tevékenységet még megfelelően gazdaságosan teszi. Ráadásul a technika jelen állása szerint a gépjárművek több mellék- vagy akár fő aggregátjából is az üzemanyagok csak igen nagy élömunka- és költség-rőfárítással távolíthatók el (lásd még az „Üzemanyagok reciklálása” fejezetéért). Így hát külön gazdasági ösztönző nélkül a veszteségesen leeresztett és elszeparálása után kis haszonnal kecsegtegtő üzemanyag-hulladékok karosszériákból történő teljes eltávolítása egyrészt nem várható el, részben pedig műszakilag nem valósítható meg tüköteten.

Természetesen megvonva a veszélyeztetési potenciál aktuális mértékét és azt összevetve a mindenkori műszaki lehetőségekkel megadható az előbontás mértékének azon foka, amely a fém aprítékot a legkisebb mértékben szennyezi és a potenciálisan szennyezett maradékkfraktíók mennyiségét csökkenti.

2.3.4.1 kép Hányóra kihordott shredderezett örlemény

A könnyűfrakció szennyezettségének ilyetén felismerésétől egyenes út vezetett a könnyűfrakció maradékok veszélyes hulladék-kategóriába történő át sorolásáig. Ez a korábban háztartási hulladéktárolókban lerakható könnyűfrakció deponálását már csak veszélyes hulladékok tárolására szolgáló létesítményekben engedélyezte. Ez a német shredderipar válságátől vezetett, az első időkben az EU-n belül volt megfigyelhető a korábban Németországban működő shredderek leszerelése és áttelepítése. Az eredmény: a korábban Németországban működő 51 shredderüzemnek mára már csak egy része működik és azok jelentős házyadat sem minősítettek még a német roncsautó-rendelet által előírt módon. A célállomások elsősorban Hollandia és Franciaország voltak, a motivációs tényező pedig az olcsóbb munkabérek és az alacsonyabb szintű környezetvédelmi elvárások.

Az EU-n belüli környezetvédelmi jogharmonizáció azonban gátat vetett ennek a folyamatnak, most egy nyugat keleti irántú „kiáramlás” figyelhető meg a shredderüzemek tekintetében. Ebben most „szerencsére” nem Magyarország a célállomás - mivel a hazai környezetvédelmi hatóságok már készülve az EU-integrációra folyamatosan szigorújak a keletkező hulladékfrakciók lerakásának feltételeit - hanem a töltünk keletre fekvő országok, a majdani EU-csatlakozás várhatóan második-harmadik körébe sorolt jelöltek. A hazai feltételrendszer szigorítása egyrészt dicséretes, azonban nem kielégítő, hogy a hatóságok csak a meglevő két shredderüzemet ellenőrizik, miközben a gyakran halvány változó telephellyel bejegyzett „öcskavasbárók” tevékenysége környezetvédelmi szempontból több mint kétséges. A tendencia jelenlegi folytatódásával a feltételrendszer legalább betartani igyekvő, rögzített telephelyű – tehát könnyen ellenőrizhető és megbírságolható – vállalkozások tökmennek, miközben a maffia kezén levő kiskereskedeleme – amelynek eredményeként a még működő acélművek mintegy 10-15% hulladékot magában foglaló bárányos fémhulladéket vásárolnak fel a shredderüzemek által már szortírozott fémhulladékkal egyező áron - továbbra is virágzik. Természetesen az acélhulladékok ipakán tapasztalható árzuhanás és a kereslet nagymértékű megcsappanása is.

A shredderüzemek vonatkozásában megoldás lehet a bontóüzemekben végzett minél teljesebb mértékű karosszéria előbontás, az ott eltávolított anyagfrakciók számára újabb piaci teremtése, amely állami
beavatkozás (ösztönző rendszer és támogatás) nélkül ma nehezen elképzelhető. Sokat segíthet a piaci feltételrendszerek egységesítése is, egyszerűen jogi úton be kell zárni a meglevő kiskapukat a nyíltan visszaélőket pedig ki kell szoritani ebből a piaci szegmensből.

2.4 Összefoglalás

Ebben a fejezetben a modern gépjármű-recycling menete, a nemzetközi és hazai helyzet összehasonlítása, a hazai rendszer hiányosságainak feltárása került ismertetésre. Bemutatásra kerültek az elhasznált gépjárművek újrahasznosítási folyamatában alapvető jelentőséget betöltő bontóüzemek és az előbontott karosszériák feldolgozását végző shredder-üzemek működési aspektusai, elkülöníthető munkafázisai.

Az egyes országokban az autós érdekszféra befolyásának függvényében és az adott társadalom környezetvédelmi kultúrája adottságainak megfelelően eltérő gazdasági megoldások születtek a begyűjtés, bontás, újrahasznosítás finanszírozására, egységes azonban az igen szigorú, bontó- és shredderüzemekre vonatkozó műszaki feltételrendszer következetes betartatása. Az egyes részrerendszerekre vonatkozó minimális műszaki feltételek rendszerért egyébként előíraj a Direktíva I. sz. melléklete is.

Az európai jogharmonizáció végrehajtása során az egyes országokban az autós érdekszféra befolyásának függvényében és az adott társadalom környezetvédelmi kultúrája adottságainak megfelelően eltérő gazdasági megoldások születtek a begyűjtés, bontás, újrahasznosítás finanszírozására, egységes azonban az igen szigorú, bontó- és shredderüzemekre vonatkozó műszaki feltételrendszerek következetes betartatása. Az egyes részrendszerekre vonatkozó minimális műszaki feltételek rendszerért egyébként előíraj a Direktíva I. sz. melléklete is.

A Direktíva hazai jogharmonizációja nem hajtható végre a hazai helyzetet alaposan kiértekelő, annak sajátosságait figyelembe vevő roonszajú-képzési koncepció megalkotása nélkül. Kulcsfontosságú kérdések a hiányzó infrastruktúra pótlása, a fellelhető gyártó, importőr nélküli járművek további sorsa és a magánimport keretében az országba került járművek hasznosításának rendezése.

Az EU-Direktíva magyar jogrendbe történő átültetése igen jelentős társadalmi-gazdasági érdekegyzetetést igénylő, több lépcsőben bevezethető, rendkívüli összetettségű feladat.
3. Gépjárművek bontásából származó alkatrészek azonos rendeltetési célra történő továbbalkalmazása

3.1 Járműmotorok felújítása

A gépjárművek bontásából származó alkatrészek közül – a karosszérián található esetleg meghibásodó, tökremenő műanyag alkatrészek, illetve kiegészítő aggregátok mellett leginkább a járműmotorokból származó alkatrészek, illetve maguk a komplett felújított motorok a legkeresettebbek.

3.1.1. kép Egyedi motorfelújítási technológia

A járműmotorok futószalagon végzett nagyszériás felújítása a német Diesel-Feuer – ez az elsősorban Mercedes motorokra szakosodott - vállalati technológiája keresztül kerül bemutatásra.
A motorok „újjászületése” a szemrevételezéssel veszi kezdetét, ilyenkor a szemmel látható repedések keresése a cél. Az optikai „igen” után a motort több száz alkotóelemére bontják. Egy túlméretezett tisztítógépben valamennyi alkatrészről eltávolítják a rátapadó szennyeződéseket. A gyors kopásnak kitett alkatrészeket általában újakkal cserélük ki, a régiek hulladék fémként kerülnek hasznosításra. Az új darabokhoz a gyári beszállítók révén jutnak hozzá, így ezek teljes értékű „eredeti” alkatrészek. Ezek a beszállítók, pl. a Bosch (befecskendezők), Kolbenschmidt és Mahle (dugattyúk és gyűrűk), LuK (kuplungok) vagy a Reinz (tömítések). Innentől kezdve valamennyi darab végigjárja saját útját, míg újra a motor összeszerelésre kerül.

Gondos ellenőrzés után a forgattyús tengelyek, forgattyúházak és a hengerfejei megfelelő felújított műhelyekbe kerülnek. A hengertömböket felfújik, a hónoló berendezéssel végezhető felülvizsgálat segítségével felvisszaállítja a megfelelően koncentrikus, hengeres furatfelület. Ez a művelet adja a motor későbbi megfelelő tömítettségét (nagyobb kompresszió, kis olajfogyasztás és károsanyag-kibocsátás, jobb hatásfokú, kisebb füstöléssel járó égés, egyenletes kenés stb.).

A hengerfejet finomköszörülik. Az új szelepeket becsiszolják, az új szelepvezetéket, -rugókat és ülékeket utómarják. Szükség esetén a himbát is felülvizsgálják.

A forgattyús tengely, amely a mechanikailag leginkább igénybe vett motoralkatrésznek számít, különleges ellenőrzést igényel. Valamennyi darabot útetsre, keménységre és UV-lámpás elektromágneses vizsgálat alatt ellenőrizik. Az UV-lámpa segítségével a legeldugottabb hajszálrepedések is fellelhetőek. Ha nem találnak repedést (és a mechanikus vizsgálatok sem utalnak hibára) a forgattyús tengelyet felköszörülik.

Természetesen a motor valamennyi periférius alkatrészét ellenőrzik, a befecskendező-, víz- és olajszivattyúk, karburátorok, turbóöblözők vagy szakműhelyekben, vagy a cég saját speciális vizsgálóberendezésein kerülnek felülvizsgálatra.

A megmunkált darabok ismételt tisztítása után megkezdődhet a típusonkénti összeszerelés, amelyet a próbapadon történő teljesítménymérés zár. Ilyenkor figyelik a maximális teljesítmény, nyomaték, olajnyomás és a kipufogóázer újítását. Amennyiben valamennyi motorikus mérés és ellenőrzés sikerrrel zárul, úgy a motor – ennél a cégnél – megkapja a minősítő piros jelzést, csak ekkor kerülhet az eladási termékraktárba. Ilyen költséges és részletes felújítás esetén persze felvetődhet a kérdés, mindezt anyagilag kifizetődő? Cégadatok szerint az új motorokhoz képest kb. 25% költségmegtakarítás érhető el, a motor be- és kiépítést egy napon belül képesek megoldani ráadásul a várható költségeket előre közli ügyfelekkel. Mind benzines, mind dizelmotorok esetén két év garanciát képesek munkájukra vállalni.

A folyamatot a következő képekkel illusztrált magyarázatok szemléltetik.
1. Bontás és tisztítás

2. Hengertömb
A hengerfuratok üzem közben a milliméter törtrészének meg-felelő mértékben kopnak. A furatokat precíziós szerszámokkal a gyár által megadott túlméretre fúrják fel. A hónolás (harántcsiszolás) eredménye a motor optimális, nagy teljesítményt és kis olajfogyasztást eredményező járása.

3. Hengerfej
A speciális eszközökkel végzett vizsgálatok eredményeként a legfinomabb hajszalrepedést tartalmazó hengerfej is kiszűrhető, felújításra csak a hibátlan darabok kerülhetnek. Valamennyi darabnál – mint a hengertömbökében is – alapvető fontosságú a zárófelület pontos megmunkálása. Valamennyi szelepvezeték, -ülék és szelep felújításra (vagy cserére) kerül. Mielőtt a hengerfej újra összeszerelésre kerülne megvizsgálják, megmunkálják, szükség esetén cserélík a himbákat, himbatengelyeket, csapágyperesélyeket, szeleprugókat és a szelepelemeket.

4. Forgattyús tengely
A forgattyús tengely igénybevételére igen nagy, emiatt alaposan (és költségesen) megtisztítják, majd elektromágneses repedésvizsgálatnak vetik alá. Az UV-fény segítségével a legfinomabb repedések is jól láthatóvá válhatnak. Ezen felül minden tengelyt keménységre és ütésre is ellenőrizzék. A szak-értő minőségellenőrző eldönti szükséges-e a tengely edzeni.

Mérík a forgattyús tengely csapágyainak alapfurat-méretét és szükség esetén utánmunkálják.

Vákuumos célszerszámmal ellenőrzik a szelepek tömítettségét. Ez garantálja a szelepek és szelepuhének megbízható, tartós üzemét.

A gyártó paraméterei alapján (amelyek a lekerekítésekre, tűresekre, javítási lépcsőkre és a felület minőségére vonatkoznak) a forgattyúsapokat finomkőszorúík és polírozzák. Az egyenletes motorjárást a tengely precíziós kiegyensúlyozása garantálja.
Gépjárművek bontásából származó alkatrészek azonos rendeltetési célra történő továbbalkalmazása

5. Hajtórúd
A hajtórúd különösen gondos ellenőrzést igényel. Csaknem teljesen újrakészülık, az alapfuratokat hőnolják, a perselyeket felújítják, a rúd tömegét mérítek és kiegyensúlyozzák. A csapágy és a hajtórúdcsavarokat cseréljük.

6. Vezérműtengely
Mivel a szelepevezérlés szempontjából jelentősége döntő, ezért alapos vizsgálatnak vetik alá. A bütyökprofilok és a csapágyhelyek megmunkálása és ellenőrzése után a vezérműtengely újra beépíthető.

7. Kiegészítő aggregátok
Ide sorolhatók a turbótöltő, a befecskendező-, víz-, üzemanyagellátó-, olaj- és hidraulikus szivattyúk, hűtőventillátorok és olajhűtők, benzinkomponáknál a porlasztó és az elosztó. Ezen alkatrészeket tisztítsuk felülvizsgáljuk, javítsuk vagy cseréljük. A bonyolult és érzékeny darabokat speciális próbanadokon vizsgáljuk.

8. Összeszerelés
Az összeszerelés előtt gondosan eltávolítsuk az összes szennyzödést ill. a megmunkálási maradványokat. Az összeszerelés a gyáróknál meg-szokott minőségbiztosítási elvek szerint zajlik.

9. Minőség- és teljesítményvizsgálat
Az összeszerelt motor valamennyi funkcióját vizsgáljuk.

10. Minőségi tanúsítvány
A sikeres próbapadi vizsgálat után a motor élniért a minősített termékkel. A generálozott motor cseremotorként értékesíthető vagy a helyszínen beszerelésre kerül. Ezután megkezdődhet a motor második élete.

Ugyanaz a minőségi tanúsítványt viselik a nagyjavításra átesett motoralkatrészek, fődarabok és aggregátok is.

A felújítás eredménye a felújító által akár a gyári motorokkal megegyező mértékű garanciával kitűnt motoromb.
3.2 Alkatrészek felújítása, javítása

3.2.1 Fémanyagok javítástechnológiái

3.2.1.1 Hegesztés

A fémanyagok általánosan alkalmazott javítási módba a
hegesztés. A hegesztéssel kapcsolatban fontos
mejegyezni, hogy a folyamatot a hegesztés hőhatásövezetében mindig kíséri anyagzerkezeti változás, amely
újabb korroziós károsodási folyamat kiindulási alapját jelenti. Általános alapelv, hogy ahol a javítás a
hegesztéssel egyenértékű más kötéstípusokkal elvégezhető (pl. a kevésbé magas hőmérsékletekkel dolgozó
forrasztás vagy a leginkább ajánlható ragasztás) ott azt lehetőség szerint inkább azzal kell kivitelezni. Így
elkerülhetővé válik a későbbi hiba gyakorlatilag biztos bekövetkezése.

A már említett hegesztéssel járó problémák mellett nem kis fejtőrész okozhat a nyolcvanas évek közepé - tehát a kőnyszerkezetes építési módban alkalmazott új „növelt szilárdságú acélk” javítása. Ez az elnevezés egy gyűjthetősű acélra, amelynek folyásielméletét valamilyen módon (pl. mikro-ötvözéssel, foszforkezeléssel stb.) lényegesen a hagyományos acéllemezek fölé növelték. Az ezekkel az acélokkal végzett javítási munkák eddigi tapasztalatai a következőkben foglalhatók össze.

Az ilyen acéllemezek egyengetése során az egyengető szerszámot (kalapácsot) lényegesen erősebben és precízebben kell használni, mint a hagyományos lemezeknél. Ennek oka az ilyen lemezek lényegesen nagyobb horpadásállósága, amely erős visszaragázásához hajlamos párosul. Ezek az anyagok csak korlátozott mértékig terhelhetők a javítás során - ezért fontos a precizitás - túlterhelésre azonnal reagálnak.

3.2.1.1.1. ábra Megnövelt szilárdságú acélelemezek gyakori karosszéria alkalmazásai

A túlhúzás során fennáll a túlterhelés veszélye, amely következtében - még a lemez törése előtt - az anyag
hirtelen megfolyik, és nagyobb méret jön létre a kitűzötténél. A szükséges túlhúzás nagyobb erőbevitellel párosul, amely a többi hagyományos acél-lemezből készült alkatrész
nyagabb igénybevételét is eredményez. Előfordulhat, hogy mielőtt még a növelt szilárdságú lemez visszaállna a megkívánt helyre, azelőtt a többi, jól mélyhúzható lemez rész már megnyúlik. Ilyenkor erre előre számítva a
Sérülésmentes részek továbbá megtámasztása, rögzítése szükséges.
Erős helyi deformációknál néha célszerűnek látszik hőbevitellel dolgozni, ezzel azonban nem árt vigyáznia, ugyanis a növült szilárdságu acélök néhány típusa már a 400°C hőmérsékletet elérve elveszíti a biztonságot eredményező szilárdságot, többé már nem képes utasszédelmi funkcióját betölteni. A javítás során az acél futtatási színéből ezt megállapíthatja igen nehéz, mivel ebben a tartományban csak enyhe kékes árnyalatok láthatók. Ezért általános szabály, hogy az ilyen anyagból készült alkatrészeket csak hidegen szabad vissaalakíthatni! Ha ez hőbevitel nélkül nem megoldható a deformált elemeket cserélni kell. A hidegen történő visszaalakítás - mint már említésre került - vonatkozik a hagyományos karosszéria anyagokra is, bár a szövetkeretek átalakulása magasabb kb. 740°C hőmérsékleten következik be, ahol a futtatási szín még mindig nehezen felismerhető. A növült szilárdságú acéllemezek javítása tehát húzás közben végzett intenzívebb feszültségmentesítő kalapácsütéseket és a gyűrött zóna végeinek ellentartását igényel [dams, 96].

3.2.1.2 Ragasztás
Adott esetben különösen jól alkalmazható, olocsó és különös szakképzettséget nem igénylő javítási módszer a ragasztás.

Ragasztással javíthatók:
• fagyás okozta repedések, törések (hengertömbön, hengerfejen),
• porózus öntvények vagy hegesztési varratok,
• kopott csapágyhelyek,
• tömitetlenségek,
• olajtechnikai és fedelek
• alvázak ill. karosszériák profilos darabjai, lemezei.

A ragasztott kötés előnyei:
• alkalmas két különböző potenciálú fém közötti kötés létesítésére,
• nem korrodálódik, víz- és gáztömör, elektromosan szigetel,
• a ragasztott kötés keményítéséhez alkalmazott hőkezelést a legtöbb ötvözetet nem lágyítja ki, az igénybevétel közel egyenletesen oszlik el a kötésben, nincsenek feszültséggyűjtő helyek

• (mint pl. szegéscsill vagy ponthegesztett szerkezetben),
• ragasztás után a felület közvetlenül festhető vagy anódosan oxidálható, a kifolyt ragasztófelesleg a legtöbbször könnyen eltávolítható, így a kötés varratmentes.

Hátrányai:
• a ragasztás munkaigényes mivel előfeltétel a felületek tisztasága és jó illeslésére,
• tompa illeslésének a kis keresztszeleti felületek miatt általában nem készíthetők,
• a ragasztott kötők lefejtését megakadályozók a kivánt rétegvastagság állítólemezekkel lehet megadni.

A ragasztott kötés tervezésekor elsősorban a kötést, az átlapolás szélességéért és a ragasztóréteg vastagságát kell figyelembe venni. A ragasztott kötés szilárdsága nagymértékben függ attól, hogy mennyire sikerült a kötést nyíró-igénybevételre tervezni, ami legképageSizeon a csövek és a hornysos testek ragasztásakor biztosítható.

A ragasztott kötők biztonsága érdekében a végeket egy-egy szegéccsel vagy hegesztési ponttal célszerű rögzíteni.

A ragasztott kötők szilárdsága a ragasztóréteg vastagságának csökkenésével nő. Átlapolt próbatestekkel vizsgálva a szükséges ragasztóréteg-vastagságot, a kivánt rétegvastagság állítólemezekkel alakítható ki. A ragasztott kötés igen érzékeny a felület tisztaságára ezért a felületet mechanikai majd végyi úton tisztitani, zsírtalaníthati kell. Lemezek és alakos profilok tisztitására kifelé tisztitást, csiszolóvászonnal végzett csiszolást, köszönrőlést és homokfúvatást alkalmaznak.
A vegyi tisztítás végzése során a darabot apoláris oldószerbe (pl. trikló-rétén, aceton, lúg, szénteraklorid) mártva zsírtalanítják, pácolják (az acélfelületet 30%-os salétromsav fürdőben 15 percig pácolják, az aluminium-és színesfém ötvözeteket a PICKLING-eljárás segítségével pácolják), majd leöblítik.

A vegyi tisztítás végzése során a dara bot apoláris oldószerbe (pl. trikló-rétén, aceton, lúg, szénteraklorid) mártva zsírtalanítják, pácolják (az acélfelületet 30%-os salétromsav fürdőben 15 percig pácolják, az alumínium-és színesfém ötvözeteket a PICKLING-eljárás segítségével pácolják), majd leöblítik.

A ragasztóanyagok megvalósításánál úgy elfogadni kell arra, hogy fémek ragasztására csak a reakciós (egy- és többkomponensű) ragasztóanyagok felelnek meg, míg az oldószeres anyagok erre a célra nem megfelelőek. Ezek a ragasztók alkotórészeik kémiai átalakulása (polimerizáció, polikondenzáció, poliaddíció) útján keményednek ki.

A ragasztó anyag felvitelét az előkezelés utánonnal kell kezdeni, kétkomponensű ragasztónál ügyelni kell a tégelyidőre (kikeveréstől a zselésedésig tartó idő).

A ragasztóval bekent darabokat összeillesztik, elcsúszás ellen biztosítják, majd szobahőmérsékleten vagy hőnyomás segítségével kikeményítik.

Gyakorlati példaként szolgáljon a hengertömb-repedés és -átszakadás javítása.

A hengertömb-, hengerfej-, hajtóműház-, nyomatékváltóház-öntvény porozitástól a repedés és kitörésig ragasztással javítható, ha a javított helyet 120°C-nál nagyobb hőmérséklet nem éri és a ragasztás környezetében mechanikai igénybevétele nincs.

3.2.1.3 Fémszórázás

Kopott gépalkatrészek feltöltésére, javítására, a lekopott anyagréteg pótlására előnyösen alkalmazhatók a fémszórási eljárások.

Előnyei:
- kis beruházást igényel,
- a berendezés rövid idő alatt üzembe helyezhető,
- tárgyak bevonására mind sorozatban, mind egyedileg alkalmazható,
- gyors eljárás,
- a fémbevonatokon kívül különleges üvegkerámia, műanyag stb. bevonatok kialakítására is alkalmas.

A szóró fémbevonatok:
- korrózióálló, kopásálló felületet adnak,
- vastagsága széles határok között változtatható,
- papírra, textílle is felvihetők.
porózusak, ezért kenőanyag-tároló képességük kiváló,
kűlnöös festékálap,
tartós korrozióvédelmet ad.
Különösen elnyós akkor, ha hosszú élettartamot kell szavatolni, ahol az utólagos karbantartási műveletek csak nagy költségekkel valósíthatók meg.

Hátrányai:

- a dinamikai terheléseket kevésbé viselik el,
- repedt felületek fémszórással nem javíthatók.

A fémszóráshoz tartozó felület-előkészítés repedésvizsgálatból, zsírtalanításból, oxidmentesítésből, érdesítésből és zsírtalanításból áll [vad, 85].
A fémszórásra vonatkozó előírásokat az MSZ EN 582 szabvány írja le.

3.2.1.4 Műanyag felületi bevonatok

Kopott gépalkatrészek elnyös javíthatók műanyag felületi bevonatok alkalmazásával.

A fémfelületre ráolvasztott műanyag bevonat - egészen általánosan - a két összetevő, a hordozófém és a bevonatot képező műanyag, elnyös tulajdonságainak egyesítése, a meglevő anyagtulajdonságok javítása céljából. A bevonattal mindig a fémalap védelmét kívánjuk elérni, valamilyen külső hatással szemben.

A műanyag bevonatú fém heterogén anyag. Megtartja az alapanyag, a fém elnyös tulajdonságait és rendelkezik a műanyag szívósságával, kedvező siklási tulajdonságával.

Gépjárművekben, különösen erős dinamikai igénybevételnek kitett - motor, futómű, kormány, sebességváltó, hátsóhíd - alkatrészek ráolvasztott poliamid bevonata új fejezetet nyit a járműgyártás, üzemeltetés és a javítás területén.

A fémfelületre ráolvasztott műanyag bevonat jellegében és kivitelében megváltoztatja a hagyományos alkatrészgyártási és javítási módszereket. Számos gyakorlati példa és üzemi tapasztalat bizonyítja, hogy műanyag-ráolvasztással lényegesen megváltozik a csap és csapágypersely megoldás.

Az új technológiai eljárás szerint az értékesebb alkatrész, a csap felületét, kopásnak jól ellenálló műanyag keverékkel vonjuk be az egyszerűbb, szériaiban könnyen gyártatható persely, acélból, öntöttvasból forgácsolva vagy porkohászati eljárással készíthető.

Így kettős cél érhető el:

- az értékesebb alkatrészek felülete rugalmas, kopásnak jól ellenálló műanyag bevonattal védhető, mely egyben súrlódó-párokval a siklöcsapag anyaga és
- a mindig gyári alapmérletes öntöttvas vagy acél persely, a színesfém megtekintésén túl, az egyedi illesztések elmaradása miatt, jelentős időmenttekartítást eredményez.

Gépjármű célra felhasznált bevonó-anyagok megválasztásakor, az igénybevétel módját, a szükséges illesztés mértékét és a műanyagpor üzem szinten való feldolgozhatóságát kell figyelembe venni. A bevonó-anyagok javítását szolgálja a műanyagporok adalékolása. A helyesen megválasztott adalékanyag igen kedvezően befolyásolja a műanyag alpatulajdonságait, pl. grafit bekeverésével a hőállóság, molibdén-disulfid adagolással a tapadási szilárdság nö, javulnak a mechanikai tulajdonságok és a kenőképesség. A ráolvasztott műanyag bevonatok készítésére leginkább alkalmas, különféle poliamidok jellemző tulajdonságait mutatja be a következő táblázat.
<table>
<thead>
<tr>
<th>Jellemzők</th>
<th>PA 6</th>
<th>PA 6,6</th>
<th>PA 6,10</th>
<th>PA 11</th>
<th>PA 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sűrűség, g/cm²</td>
<td>1,12...1,13</td>
<td>1,13...1,15</td>
<td>1,07...1,10</td>
<td>1,04...1,05</td>
<td>1,01...1,02</td>
</tr>
<tr>
<td>Szakítósziáldárgság, N/mm²</td>
<td>43...82</td>
<td>52...86</td>
<td>50...65</td>
<td>22...60</td>
<td>53...61</td>
</tr>
<tr>
<td>Szakadási nyúlás, %</td>
<td>30...280</td>
<td>30...170</td>
<td>35...120</td>
<td>270...300</td>
<td>280...300</td>
</tr>
<tr>
<td>Keményseg, kp/cm² (Brinell)</td>
<td>600...960</td>
<td>650...1000</td>
<td>600...650</td>
<td>700...800</td>
<td>600...800</td>
</tr>
<tr>
<td>Alkalmazhatóságai</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hőmérsékletartomány, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rövid ideig</td>
<td>140...160</td>
<td>150...170</td>
<td>140...160</td>
<td>100...130</td>
<td>100...120</td>
</tr>
<tr>
<td>hosszú ideig</td>
<td>80...100</td>
<td>80...100</td>
<td>89...100</td>
<td>60...80</td>
<td>60...80</td>
</tr>
<tr>
<td>Olvadási hőmérséklet, °C</td>
<td>215...220</td>
<td>225...250</td>
<td>210...215</td>
<td>180...188</td>
<td>175...180</td>
</tr>
<tr>
<td>Vízfelvétel, telítettség, %</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>1,5</td>
<td>0,7</td>
</tr>
</tbody>
</table>

4.2.2.1.1 táblázat A poliamidok jellemző tulajdonságai

A bevonás utáni méretre-munkálásra az esztergálás megfelelő és elegendő felületi finomságot ad. A köszörülés több okból nem előnyös. Esztergált felületek részletes vizsgálatára igazolta a kenőanyag-tárolás lehetőségét és szükségességét. Az esztergálással megmunkált felületek megmunkálási nyomaiban elhelyezkedő kenőanyag, a műanyag rugalmassága és deformálhatósága miatt, az érintkező felületek csúcsait és annak környezetét állandóan kenőanyag részecskékkel látja látja el, melyet elősegít tengelybevonat esetén a centrifugális erő is, míg a persely esetén az ellentétes hatással érvényesül, vagyis a műanyag „letapad” a felületi egyenetlenségek legmélyebb pontjához.

A centrifugális erő megszüntetésével még a kisebb viszkozitású kenőanyag sem folyik ki a felület közül, mert az elektroosztatikus feltöltödés hatására a kenőanyag molekulák a felületethez tapadnak. Megmunkált műanyagfelület elilestése, a fémeknél használt illesztéseket alapul véve, sokkal tágabb határok között végezhető, hihasználva az anyag nagyfokú rugalmasságát.

A ráolvasztott bevonatok legnagyobb előnye, hogy a gépek és felületek megengedett kopása és elhasználódása, a felületi finomságot ad. A köszörülés hatására jellegében más kenési viszonyok keletkeznek és a hagyományos kenéselmélet megállapításai módosulnak. Az üzemű tapasztalatok azt mutatják, hogy a műanyagok felületi finomsága nem elsődleges követelmény, mint a fémeknél. Gyártástechnológiai szempontból ez igen előnyös, mivel jelentősön csökkentenek a feldolgozási, megmunkálási költségek [vad, 95].

3.2.2 Műanyag alkatrészek javítástechnológiája

3.2.2.1 Műanyagok hegesztése

A műanyagok egyik jellemző javítástechnológiai módszere a hegesztés, mely elsősorban a termoplásztok javítását teszi lehetővé. Megfelelően hegesztünk akkor, ha a hozzanyag minősége megfelel az alapanyaggal (megfelelő anyagazozosítás), megfelelő felület előkészítés (felület homogenizálás), pontosan állítjuk be a hegesztési hőfokot (átégés ill. tökéletlen varrat megelőzése), megfelelő erővel nyomjuk össze a hegesztendő felületeket és optimalisan választjuk meg a hegesztés sebességét (elkerülve a túl nagy (átégés) ill. túl kis (tökéletlen varrat) hőhasadás). Mint a követelmények felsorolásából kiderült alapvetően a hőfényes műanyagok alkalmazására jellemző betűjelzéssel látjuk be. Régebben műanyagokat a legkézenfekvőbb módszer az ún. “lángpróba” mely során az azonosítani kívánt anyagból 3-5 mm-es darabot levágva és semleges gázláng felett meleggyújtja az égés lefolyásából és hevesességéből, a láng színéből és az eltávozó anyag és oldószerzőgők illatából az anyag könnyen és gyorsan detektálható.

Néhány példa:
- a PVC anyagok sárga lánggal égnek, míg a láng éri, erős, kohögésre ingerlő sósavágaz keletkezik,
- a cellulóz-aceto-butirát élénkítő lándgall ég, kesernyes, mandulára és vajsavra emlékeztető illata van,
- a polietylén, polipropilén kékes világító lánggal hevesen ég, jellegzetes viasz szaga van, tovább ége lecsappeen,
- a poliamid kékes, lassan terjedő lánggal ég, égetett körömre, csontra (szarura) emlékeztető szaggal,
- a poliformaldehid (poli-oximetilén) kékes lánggal ég, olvad, bomlik, az eltávozó gőzőknek csipős formalin szaguk van,
- a poliészter sárga, világító, kormozó lánggal ég, sztirol illata van, lágyul, bomlik.

Amennyiben rendelkezünk azonosított mintadarabokkal célszerű lehet sűrűség alapján azonosítani a levágott mintadarabot. Ennek menete: egy üvegpohárba vizet töltve, azt pár csepp öblítőfolyadék segítségével a polietylén (ρ=0,92 g/cm³) úszik, míg a PVC, a polisztirol, a fenolgyanta, a polimetil-metakrilát és a poliészter lesüllyed. A víz sűrűségét ilyenkor konyhasó beleszórásával óvatosan növelve az egyes darabok eltérő sűrűségük alapján folyamatosan felemelkednek.

Alkalmazható még az oldószeres analízis is, melynek során az egyes műanyagok agresszív anyagokkal szemben eltérő ellenőrzési kapcsolatot mutatnak.

Az elkészült varrat akkor tekinthető megfelelőnek, ha a felhasznált hozaganyag a varratot egyenletesen kiölti, a varrat egybefüggő és sima felületű.

3.3 Összefoglalás

A fejezetben a bontásból származó járműalkatrészek eredeti rendeltetési célra történő továbbalkalmazását lehetővé tévő technológiák kerültek ismertetésre.

Az újrahasznosítás ilyen formája a teljes anyag- és energiamérleget figyelembe véve a lehetőségekhez képest a legkedvezőbb, természetesen ennek azonban előfeltétele a fennálló felújíthatóság, javíthatóság.

A karosszériagyártásban alkalmazásra kerülő új speciálisan erősített, megnövelt szilárdsgágú acélelemek javítástechnológiája a hagyományos lemezekhez képest lényegesen precízebb beavatkozást igényel, mivel ezek horpadásállósága lényegesen nagyobb és ez jelentős visszarugózási hajlammal párosul. Ezek az anyagok javításával csak korlátozott mértékben terhelhetők, tülerhelésre azonnan törekszik bánalmakkal.

Az ilyen anyagból készült alkatrészeket deformációik visszaalakítása során – a visszarugózási hajlam miatt – jelentősen túl kell húzni az előírt mértéken, amely viszont a korlátozott erőbevitel lehetősége okán a javítást végző szakemberek nagyobb szakutadását igényli.

A járműmotorok felújításának zárt rendszerben történő elvégzésének komoly hagyományai vannak Magyarországon, ennek elsődleges oka a korábbi alkatrészhiányban – hiánygazdaság - és a helyzet kezelésére szakosodott szakembergárdája kialakulásában és meglétében keresendő. Bár az utóbbi években a márkakereskedők jelentős mértékben növelték és növelik az új alkatrészek beépítését még viszonylag időssebb járművekbe is, még mindig létezik egy olyan – nem is elhanyagolható mérték – vásárlófok, amely vevők és igénybevétel számára nagyobb szaktudását igényli.

Sajnos ma Magyarországon az alkatrészek szükséges minősítésére vonatkozó jogszabályok megléte ellenére is ebben a témakörben jelentős lemaradások tapasztalhatók az előírások be nem tart(at)jása következtetében.
4. Gépjárművek szerkezeti anyagainak újraszhasznosítása

4.1 Féanyagok újraszhasznosítása

4.1.1 Vas- és acélhulladékok újraszhasznosítása

A vas-, acél- és nemesfémipar hulladékaival, illetve azok kezelésére alapvetően a hulladékgazdálkodás általános szabályait kell alkalmazni. Legfontosabb, hogy a hulladék termelőjének, birtokosának felelőssége a gyűjtéstől kezdődően valamennyi kezelési művelet, eljárás során fennáll. A gyűjtési és az ártalmatlanítási kötelezettség minden gazdasági vállalkozásra vonatkozik.

Azon vállalkozások esetében (ők a hulladékezelők), amelyek a – más termelőtől átvetett – hulladék kezelését végzik, a szabályok megkövetelik, hogy az ilyen tevékenység ellenőrzött körülmények között történjen. A felügyeletet a jogszabályok a tevékenység engedélyezéhez kötésével és a környezetvédelmi felügyelet segítségével által történő ellenőrzésével rendezik.

Bármely hulladék kezelése esetén valamennyi kezelési műveletre (gyűjtés, begyűjtés, szállítás, előkezelés, tárolás, hasznosítás, ártalmatlanítás), eljárásra, létesítményre és telephelyre engedélyvel kell rendelkezni a környezetvédelmi felügyelet megkönnyítése érdekében – a kellemetlen hulladékok ellenőrzése alatt álló környezetvédelmi felügyelet szükséges. Ez alól kivételt csak azok a gazdálkodók kaptak, amelyek telephelyükön belül csak saját hulladékok kezelését végzik (vagyis ők tulajdonképpen nem kezelők).

A hulladékkereskedő a rá vonatkozó szabály értelmében a nem veszélyes hulladék fogalmázását a kereskedelmi jogszabályokban foglaltaknak megfelelően végezhet meg, akkor, ha a hulladékot változtatlan formában értekesíti. Bármely előkezelés (pl. bálázas, aprítás) esetében azonban már szükséges a felügyelet engedélye.

A jogszabályok rendezik a telephelyen belüli hulladékkészletkezelési tevékenységekre vonatkozó követelményeket is. A hulladék a telephelyen belül egy évnél tovább nem tartható, három éven túl pedig ártalmatlanítani kell. A hulladékkészletkezelésre engedély avatását, az ártalmatlanítási felügyelet és a települési állomány felügyeletével, igazolásával kötelezik a jogszabályok.

Bármely hulladék kezelése esetén valamennyi kezelési műveletre (gyűjtés, begyűjtés, szállítás, előkezelés, tárolás, hasznosítás, ártalmatlanítás), eljárásra, létesítményre és telephelyre engedélyvel kell rendelkezni a környezetvédelmi felügyelet megkönnyítése érdekében – a kellemetlen hulladékok ellenőrzése alatt álló környezetvédelmi felügyelet szükséges. Ez alól kivételt csak azok a gazdálkodók kaptak, amelyek telephelyükön belül csak saját hulladékok kezelését végzik (vagyis ők tulajdonképpen nem kezelők).

A hulladékkereskedő a rá vonatkozó szabály értelmében a nem veszélyes hulladék fogalmázását a kereskedelmi jogszabályokban foglaltaknak megfelelően végezhet meg, akkor, ha a hulladékot változtatlan formában értekesíti. Bármely előkezelés (pl. bálázas, aprítás) esetében azonban már szükséges a felügyelet engedélye.

A jogszabályok rendezik a telephelyen belüli hulladékkészletkezelési tevékenységekre vonatkozó követelményeket is. A hulladék a telephelyen belül egy évnél tovább nem tartható, három éven túl pedig ártalmatlanítani kell. A hulladékkészletkezelésre engedély avatását, az ártalmatlanítási felügyelet és a települési állomány felügyeletével, igazolásával kötelezik a jogszabályok.

Bármely hulladék kezelése esetén valamennyi kezelési műveletre (gyűjtés, begyűjtés, szállítás, előkezelés, tárolás, hasznosítás, ártalmatlanítás), eljárásra, létesítményre és telephelyre engedélyvel kell rendelkezni a környezetvédelmi felügyelet megkönnyítése érdekében – a kellemetlen hulladékok ellenőrzése alatt álló környezetvédelmi felügyelet szükséges. Ez alól kivételt csak azok a gazdálkodók kaptak, amelyek telephelyükön belül csak saját hulladékok kezelését végzik (vagyis ők tulajdonképpen nem kezelők).

A hulladékkereskedő a rá vonatkozó szabály értelmében a nem veszélyes hulladék fogalmázását a kereskedelmi jogszabályokban foglaltaknak megfelelően végezhet meg, akkor, ha a hulladékot változtatlan formában értekesíti. Bármely előkezelés (pl. bálázas, aprítás) esetében azonban már szükséges a felügyelet engedélye.

A jogszabályok rendezik a telephelyen belüli hulladékkészletkezelési tevékenységekre vonatkozó követelményeket is. A hulladék a telephelyen belül egy évnél tovább nem tartható, három éven túl pedig ártalmatlanítani kell. A hulladékkészletkezelésre engedély avatását, az ártalmatlanítási felügyelet és a települési állomány felügyeletével, igazolásával kötelezik a jogszabályok.
Nagysággrendjét tekintve a vas- és acéll hulladék mérsékelése Magyarországon évente 800 ezer, 1 millió tonna. Ez a mennyiségtől és az áráktól függően 40-60 mililliárd forint bevételt jelenthet. A magyar fémhulladék-kereskedelmben terjed a lánckereskedelem, az igazi nagy hasznos a közvetítők szerzük meg maguknak. Jelenleg nagyjából 1000 bejegyzett vas- és színesfém-hulladék kereskedőt tartanak nyilván. Megközelítőleg 200 a jelentősebb cég és talán két tucat az igazán nagy vállalkozás. Egy bizonyos nagyágrend felett már jókora beruházást igényel az ISO nemzetközi minőségbiztosítási rendszer elnyeréséhez szükséges feltételek megteremtése és folyamatos fenntartása. A jogszabályi előírásokat betartó vállalkozásoknak jelentős költségráfordítást jelent egy-egy szakember alkalmazása, az adók és a 25% mértékű általános forgalmi adó (IFA) megfizetése. Az Európai Unióban a szakágra vonatkozó legmagasabb mértékű IFA kulcsa is csak 18%. Nehezíti a tisztességes kereskedelmet az, hogy a korrekt kereskedőknek azonnal fizetniuk kell a megvásárolt árucikket, miközben a forintos huzamosítás nem szigorú, az ismert és legális kereskedőket ellenőrizzük. Sajnos a késes vállalkozások rontják a szakma megítélését, gyakran már a korrekt kereskedőket is általanosítva ítélik meg az elvétésével. Az ország EU-tagsága valószínűleg segít majd a problémának oldásában. A vállalkozások körének megszűrésével, az engedélyek kiadásakor a telephelyek és a vállalkozók tevékenységének további ellenőrzésével, a rendeletek szigorúbb betartatásával sikerülhet az átlátható piacok kialakítása.

4.1.1.1 Acélgyártás: a konverter betétszerkezete

2001-ben a kapacitásokhoz szükséges acéll hulladék mennyisége mintegy 230 ezer tonnával volt több, mint 1999-ben. Összehasonlítva ez a mennyiség megközelítő a Dunaáffel későbbi időszakot ismertté tett alacsony gyárak mellett, mind ennek elsőrendű hatása amint a 1980-as években jelentkezett a szénfém eredetének drasztikus csökkenése. Összefoglalóan a drótt és rúdtermékek mennyiségegyéből folyt átkerül a termékbe. Ez csökkenti a termékköltséget, de csökkenti az ismert eredet mérsékelését, aminek a hatására a hatóságok számos esetben megkötéseket ítélt, így az eredet megállapítását követően a fémhulladéktól várható vízszintes tényező átlagosan 22%-os, az általános forintos árakat 20%-os kockázatot jelent. Az 1990-es években az alacsonyabb eredmények arányában is csökkent a továbbiakban a rendszernek a hatóságok által meghatározott hajtómérték rendelkezésre álló hulladékhelyzet, amely a termelésben jelentős részt vesz.

A hulladékbetét szennyezőit a következők szerint csoportosítják:

- Maradó szennyezők (Cu, Cr, Ni). Acélgártás során csak részben vagy egyáltalán nem távolíthatók el, a betétben lévő mennyiség átkerül a termékbére.
- Egyéb káros szennyezők (Sn, Zn, Pb). [pall, 01]

Bármilyen gyártási technológia is kerül említésre, az acéll hulladék betét tisztasága egyaránt igen fontos tényező. Az üzemlevegek legfontosabb feltétele, hogy a termelésben és a betétkészítésben a fizetéskor is felkészült legyen az, hogy az anélkül, hogy kedvező vagy káros hatással lenne a működéshez. Az említett feltételek kielégítése előtt a termelésben nincs más feladat. Az értékesítés személyes feltételeit is meg kell felelniük, hogy a termeléset lehetővé tegyék a termékek tisztaságát. A folyamat általánosan elfogadott mértékei: 0,05% Cu, 0,03% Ni, 0,02% Cr és 0,01% Na és 0,02% P.

A hulladékbázisú (ívfényes kemence) technológiákban az ottani értékek általánosan elfogadott mértékei: 0,01% Cu, 0,03% Ni, 0,02% Cr és 0,01% Na és 0,02% P.
fémhulladékban ezek a szennyezők (Cu, Cr, Ni) felhígulnak (kb. ¼-ére), viszont egyes szennyező előírások 5-6-szor szigorúbbak az elért eredménynél. A jelen feladatok mellett a jövőre is gondolva, amennyiben a saját visszatérő hulladék minőségét a bekerült szennyezők által csak kismértékben is tovább rontják, ezzel tovább csökkent a „holnap” acélyágyrásának tisztá alapanyaga. Az alábbi ábra a Dunaferr saját visszatérő hulladékkának szennyezőanyag változását szemléletti 3 év tapasztalatait feldolgozza.

A 0,51-0,60% értékcsavot kiválasztva szemléletes a változás: 1989-90-ben (a martinkemencék még üzemelték) a gyártott anyagok (saját hulladékforrás) 40,7%-ában volt 0,06% alatt a réztartalom. 1995-ben (1993-tól csak az LD konverter üzemelt) ennek aránya 82,5%-ra nőtt, látványos volt a hulladék tisztulása. Az 1999-es év 57,5%-os értéke a 90-es évek elejének szintjét közelíti, mialatt a termékkövetelmények drasztikus mértékben szigorodtak.

1996-tól az acéltermékek minőségét a bekerült szennyeződményekben készen érhetők fel, melyek elsősorban az ötvözetlen és jó minőségű acélhulladék forgalma az exporttal együtt 955 000 t volt.

Az éves magyarországi acélhulladék-forgalom 950 000 – 1150000 t körüli értéken stabilizálódott, amely a belföldi acélművek és öntödék összes igénye elméletileg belföldről vásároltak belföldről.
Az 1996 és 2000 közötti hulladékigény-változást foglalja össze a következő 4.1.2.1. táblázat.

<table>
<thead>
<tr>
<th>Év</th>
<th>Al-öntvénygyártás (t)</th>
<th>Közvetlen hulladékfeldolgozás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ALCOA</td>
</tr>
<tr>
<td>1996</td>
<td>10495</td>
<td>1200</td>
</tr>
<tr>
<td>2000</td>
<td>39135</td>
<td>~9600</td>
</tr>
<tr>
<td>Δ</td>
<td>28640</td>
<td>8400</td>
</tr>
</tbody>
</table>

(Hulladékegyenlegben: ~ 32100 t)

Összes hulladékigény-növekedés: 41500 t

Megjegyzés: A hulladékegyenlegnél a hulladé kb. 10%, az ötvözetből történő öntvénygyártásra 2% veszteség van figyelembe véve.

4.1.2.1. táblázat A hulladékigény változása Magyarországon 1996-2001 között

Ennek alapján elmondható, hogy a hazai alumínium-feldolgozás 41500 tonnás hulladékigénnyel állt elő. A hazai öntvényanyag alapanyag ellátásának egy részét importból fedezte, a hazai ötvözetgyártók hasonló arányban exportáltak is. Összegezve az 1996-ot megelőző hulladékigénye és elérést képest a 41,5 et többletigényt a hazai hulladékgazdálkodó társaságok biztosítani tudtak. Ennek magyarázata, hogy a vizsgált időszakot általában is a gazdaság erősödése jellemzette. Az öntvénygyártás lőkesszerű termeléssel és kulyszerű előkészítéssel párhuzamosan több, főként építőipari és gépipari célú aluminiumszerkezet-termelő céggel is felkerültek a hazai feldolgozók területére. Így fokozott mértékben növekedett a gyártási hulladékok mennyisége. Ezek egy jelentős része forgács, amelynek gazdaságos feldolgozására a hazai olvasztóművek még nincsenek felkészülve. A másik jelentős változás, hogy a kilencvenes évek közepén az addig egyutassá vált alumínium-hulladék külkereskedelmei megtették az importot.

A következő 4.1.2.2. táblázat a vizsgált időszak alumínium-hulladék külkereskedelmi adatait foglalja össze.

<table>
<thead>
<tr>
<th>Év</th>
<th>Export Mennyiség (t)</th>
<th>Export Fajlagos érték (USD/t)</th>
<th>Import Mennyiség (t)</th>
<th>Import Fajlagos érték (USD/t)</th>
<th>Mennyiség egyenlege (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>12890</td>
<td>1174</td>
<td>1583</td>
<td>819</td>
<td>-11307</td>
</tr>
<tr>
<td>1997</td>
<td>15747</td>
<td>1053</td>
<td>11640</td>
<td>1450</td>
<td>-4107</td>
</tr>
<tr>
<td>1998</td>
<td>17355</td>
<td>1030</td>
<td>9638</td>
<td>1128</td>
<td>-7717</td>
</tr>
<tr>
<td>1999</td>
<td>16587</td>
<td>998</td>
<td>8864</td>
<td>985</td>
<td>-7723</td>
</tr>
<tr>
<td>2000</td>
<td>23098</td>
<td>1130</td>
<td>8929</td>
<td>861</td>
<td>-14169</td>
</tr>
<tr>
<td>2001*</td>
<td>21521</td>
<td>1146</td>
<td>5359</td>
<td>999</td>
<td>-16162</td>
</tr>
</tbody>
</table>

*A-I-III. negyedéves adatok

4.1.2.2. táblázat Az alumínium-hulladék külkereskedelme 1996-2001 között

A kilencvenes évek végére beállt a következő változások: megjelenedt a forgácsok exportja, és megszűnt a hazai ötvözetgyártás. 2000-től ismét lendületet vett az export és a hazai ötvözetgyártásban már 2000 második felében hulladékvákuum volt tapasztalható.

A begyűjtői oldalon a kilencvenes évek elején már a rendszer decentralizációja jellemzette. Az ezredfordulóra már kialakult egy nagykereskedői réteg, amely folyamatosan gyorsan kifejlesztett előkezelési technológiával, minőségbiztosítási rendszerekkel jellemező feladatként tevékenykedett. Eredményeiként a bázisos hulladékkal együtt, a kistechnológiai és gazdasági felkészítési tekintetében is megnőtt a külkereskedelemben ismert, illetve a forgácsok számát.

Az öntvénygyártási munka alapján, a milliók száma mellett a hulladékkal járó kibocsátások minőségileg mindenkori kibocsátási előkészítési és kezelési szabályozási rendszerrel döntő jelfeszülésével járt. A hulladékkal járó kibocsátási előre felépítés és kerületi szabályozási rendszer is megkívánt szerepet játszott a hulladékkal járó kibocsátások minőségétől. A hulladékkal járó kibocsátási előre felépítés és kerületi szabályozási rendszer is megkívánt szerepet játszott a hulladékkal járó kibocsátási előre felépítéshez lendületet vetett.

Az öntvénygyártások között a vasművek öntvényinek változása és a hulladékigény változása közötti kapcsolat a hulladékkal járó kibocsátási előre felépítéshez lendületet vetett.
4.1.3 Ólomakkumulátorok újrahasznosítása

A másodlagos ólom nyersanyagát többnyire ólomtartalmú hulladékok jelentik, ebből az akkumulátorok aránya 70-75% körüli. Egyes ólomtermékek visszaforgatási arányát és életciklusát szemlélheti a következő 4.1.3.1. táblázat.

<table>
<thead>
<tr>
<th>Termék</th>
<th>Termék-visszaforgatás, (%)</th>
<th>Életciklus (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkumulátorok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gépkocsi</td>
<td>80-90</td>
<td>3-4</td>
</tr>
<tr>
<td>Vontatás</td>
<td>-100</td>
<td>5-6</td>
</tr>
<tr>
<td>Állandó telepítésű</td>
<td>-100</td>
<td>5-15</td>
</tr>
<tr>
<td>Lemez</td>
<td>95-100</td>
<td>-100</td>
</tr>
<tr>
<td>Cső</td>
<td>70-80</td>
<td>50</td>
</tr>
<tr>
<td>Kábelburkolat</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

4.1.3.1. táblázat Ólomtermékek visszaforgatása

A másodlagos ólom alkalmazása az összes ólomfelhasználáson belül a fejlett ipari országokban 30-60% közötti értéket mutat. A legnagyobb a visszaforgatási hányad az Egyesült Királyságban, ahol ez az érték 200.000 t/év körüli értéken mozog. Az egyes országok másodlagos ólomtermelését szemlélteti az alábbi 4.2.3.2. táblázat.

<table>
<thead>
<tr>
<th>Ország / Régió</th>
<th>Másodlagos ólomtermelés (t)</th>
<th>A másodlagos termelés a hazai igény %-ában</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franciaország</td>
<td>109.000</td>
<td>50</td>
</tr>
<tr>
<td>Németország</td>
<td>169.000</td>
<td>45</td>
</tr>
<tr>
<td>Japán</td>
<td>122.000</td>
<td>30</td>
</tr>
<tr>
<td>Egyesült Államok</td>
<td>201.000</td>
<td>66</td>
</tr>
<tr>
<td>USA</td>
<td>698.000</td>
<td>51</td>
</tr>
<tr>
<td>Arika</td>
<td>48.000</td>
<td>41</td>
</tr>
<tr>
<td>Amerika</td>
<td>921.000</td>
<td>58</td>
</tr>
<tr>
<td>Ázsia</td>
<td>311.000</td>
<td>36</td>
</tr>
<tr>
<td>Ausztrália</td>
<td>20.000</td>
<td>29</td>
</tr>
<tr>
<td>Egyiptom</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>Európa</td>
<td>804.000</td>
<td>48</td>
</tr>
<tr>
<td>Nyugati világ</td>
<td>2.104.000</td>
<td>49</td>
</tr>
</tbody>
</table>

4.1.3.2. táblázat A másodlagos ólom részesedése a hazai igények kielégítésében [med, 97]

Az ólomakkumulátorok feldolgozására többféle alternatívá létezik. A hulladék visszanyerésére szolgáló eljárások a:

a) pirometallurgiai eljárás
b) a hidrometallurgiai eljárás és az
c) elektrometallurgiai eljárás.

A pirometallurgiai eljárások között megkülönböztetjük az aknakemencében történő újraolvasztást, a lángkemencés olvasztást, az ún. Isasmelt kemencés eljárást és a Pickles és Torugi által javasolt hasznosítási módszert. A legelterjedtebben alkalmazott aknakemencés eljárás végzése során az akkulemezeket elkülönítik a savtól és a háztól és az ólomtartalmú hulladéket beadagolják a kemencébe.

Valamennyi feldolgozási folyamatban fontszerűen játszik felhasználói eljárások a: pirometallurgiai eljárás, a hidrometallurgiai eljárás és az elektrometallurgiai eljárás.

A pirometallurgiai eljárások között megkülönböztetjük az aknakemencében történő újraolvasztást, a lángkemencés eljárás, a Pickles és Torugi által javasolt hasznosítási módszert. A legelterjedtebben alkalmazott aknakemencés eljárás végzése során az akkulemezeket elkülönítik a savtól és a háztól és az ólomtartalmú hulladéket beadagolják a kemencébe.
Az aknakemencében a szulfát vas hozzáadása mellett ólom-oxiddá alakul. Ezt ólommá redukálják. A szerves anyagok elének és a koksz hozzáadására redukáló légtérben folyó olvasztás részleges energiatartalékát jelentik.

A folyamat lépései: A legnagyobb hőmérséklet a fúvóka közelében van (1200-1400°C) és a koksz, valamint szerves anyagok elének következménye. A nagy olvadáspontú salak alkotói megolvadnak, a kéntartalom CaSO₄-tá alakul. A redukáló térben (700-900°C) a keletkezett szén-dioxidot az izzó koksz redukálja.

\[
C + CO_2 \rightarrow 2CO
\]

Ugyanakkor a kis olvadáspontú salakalkotók megolvadnak, az ólom-szulfát az olvadékban jelenlevő vas és nyers ólom hatására ólom-oxiddá alakul.

\[
PbSO_4 + Fe \rightarrow PbO + FeSO_3
\]

A reakcióterben (400-700°C)

\[
PbO + CO \rightarrow Pb + CO_2
\]

Ebben a fázisban a szerves alkotók illékony termékei eltávoznak.

D.A. Wilson fémvisszanyerési eljárásának ábra 4.1.3.2. ábra. A használt akkulemezeket kerámiaelésű golyósmalomban egy órán át finomporrá örlik, hogy elkülönítsék a pasztaanyagtól és a rácsanyagtól. Ezután a szulátelemzésből számtitott sztöchiometrikus arányban Ca(OH)$_2$-ot (mésztejet) adnak az anyaghoz. A keverék a jó elkeveredés és reakció teljesessé tetele érdekében a golyósmalomban további 30 percig örlik. Szűrés, szárítás, adalékok hozzáadása és olvasztás fejezik be a folyamatot.
Gépjárművek szerkezeti anyagainak újrahasznosítása

4.1.3.2. ábra D.A. Wilson ólomvisszanyerési eljárásának folyamatábrája

4.1.3.3. ábra E.R. Cole eljárása akkumulátor-iszap kioldására és elektrolitikus feldolgozására

Az elektrometallurgyiai eljárásokat E.R. Cole és társai dolgozták ki. Ezek folyamatábráját mutatja be az 4.1.3.3. ábra.

Amennyiben nem rendelkeznek megfelelő szétválasztóval, csak daraboló berendezéssel, akkor az elektrolit kiöntése után a műanyag házat lefeszítik, az ólomtartalmú cellákat kiemelik és elkülönítve tárolják. Az esetleges továbbzállítási térfogat-csökkentést előszeretettel alkalmaznák pofas-törőberendezést, esetleg shreddert.

Kevésbé ismert, de nagy jelentőségű lehet az ólom más helyeken való újrahasznosítása, ilyen pl. a számítógépek, kommunikációs rendszerek megszakítás-mentes üzemű energiaellátó rendszereihez az ólomakkumulátorok terjedő alkalmazása. Új felhasználási terület az ólom stabilizáló-szerként való alkalmazása útburkoló aszfaltokban és tetőcserépeken. A dimetil-ditiokarbamáttal (L DACD) stabilizált útburkolók kísérletei eredményei szerint a stabilizálás az aszfalt élettartamát megkettőzi, miközben a burkolat költségeit csak 5% körüli értékké növeli.

Az ólom egy további bővülőben levő és figyelmet érdemlő felhasználási területe a hagyományos gépkocsikban van, a gyártók újabbak kettős akkumulátorok kifejlesztésével és elterjesztésével foglalkoznak: a gépkocsikba szerelt egyik akkumulátor feladata az indítás, a másiké a villamos berendezések energiaellátása lenne. Még a kombinált kivitelben kifejlesztett kettős akkumulátorokhoz is több ólomra van szükség, mint a jelenleg elterjedt akkumulátorokhoz.

Magyarországon a szaktárcsa adatai szerint évente mintegy 20 ezer tonna akkumulátorhulladék keletkezik. A becslések alapján 90% körüli. Az éves forgalmi adatokat a következő 4.1.3.3. táblázat szemléleti.
Gépjárművek szerkezeti anyagainak újrahasznosítása

4.1.3.3. táblázat Magyarország éves forgalmi adatai az ólomakkumulátor hulladéket tekintve

<table>
<thead>
<tr>
<th>Év</th>
<th>Gyártás (3)</th>
<th>Import (1)</th>
<th>Export (1)</th>
<th>Belföld felhaszn. (1)</th>
<th>Export (2)</th>
<th>Import (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>10870</td>
<td>6256,6</td>
<td>2694,8</td>
<td>14431,8</td>
<td>17580,2</td>
<td>18685</td>
</tr>
<tr>
<td>1999</td>
<td>9353</td>
<td>7519,6</td>
<td>2198,2</td>
<td>14674,4</td>
<td>15955</td>
<td>15667</td>
</tr>
<tr>
<td>2000 (I-V)</td>
<td>4225</td>
<td>2980</td>
<td>936,92</td>
<td>6268,08</td>
<td>6581</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Megjegyzések

Források: (1) Kopint-Datorg Rt.-től származó adatok
(2) A KöM HAWIS adatbázisából származó adatok
(3) A helyszíni riport alapján becslült (számított) mennyiség

4.1.3.1 Működő begyűjtő programzadák

Észak-Magyarországi Hulladék begyűjtő Konzorcium
- Győr: Észak-Dunántúli MÉH Rt.
- Miskolc: Észak-Magyarországi MÉH Rt.
- Budapest: FEGROUP INVEST Rt.
- Jászberény: Jász-Plasztik Kft.

Dunántúli Hulladék begyűjtő Konzorcium: BIOKOM Kft.
Alföldi Hulladék begyűjtő Konzorcium: Dél-Magyarországi MÉH Rt.

A korábban célállomásnak tekintett Szlovénia 1996-ban átmenetileg felfüggesztette az átvételt, míg Ausztriával még nem került hasonló szerzásd megkötésre. Ebben az átmeneti helyzetben, 1997-ben a Perion Akkumulátorgyár Rt. lehetőséget kapott egy feldolgozómű felépítésére, azonban a Gyöngyössorosziban megvalósítani kívánt beruházás lakossági tiltakozásának eredményeként nem valósulhatott meg. Hasonló sorsra jutott még a tervezett beruházás Monokon ill. Perén. A Perion Budapesten a XIII. kerületben saját szabadalmom alapuló technológiaival bont használt akkumulátortokat, jelenleg a hazai mennyiség 5-10%-át feldolgozva. Nagyberuházást tervez még a francia érdekeltségű, a korábbi MÉH telepeket egy részét privatizáló ERECO Rt. is, amely évente 8500 t akkumuláscsontot vesz át és 15000 tonnás bontási kapacitást tervez felépíteni. A korábban Győrbe, majd Budapestre telepíteni tervezett üzemet Tatabányán gondolták felépíteni, azonban az ilyen beruházásnak szólamot állítottak meg a lakosságnak. Úgy tűnik ehhez jelentős közrejátszásnak a hazai környezetvédelmi kapacitások nem teszik lehetővé és gazdaságosságát a hazai feldolgozó üzemek felépítését, a hulladékexport folytatását az ország számára olcsóbbnak és környezetbarátabbnak tekinthető.

Az EU csatlakozással mindenesetre a szigorú EU-szabályok akkumulátorok gyártására és feldolgozására vonatkozó bevezetésével kell számolni, amelyek:
- az egyes elemek és akkumulátorok higanytartalmát 2000. január 1-jéig le kellett csökkenteni 0,0005 tömeg%-ra (egyébként tilos a forgalmazásuk),
- az elemeket és akkumulátorokat jelölni kell (ez magában foglalja az elkülönített gyűjtés szükségességét és a nehézfémintabilitást); a gyűjtést ennek megfelelően kell megszervezni,
- programot kell kidolgozni a nehézfémintalom csökkentésére, a kisebb mennyiségű veszélyesanyag-alkotmány termékek forgalmazására, az ilyen irányú kutatások támogatására,
Gépjárművek szerkezeti anyagainak újrahasznosítása

- biztosítani kell az elkülönített gyűjtést (és/vagy betéti rendszer alkalmazását),
- meg kell oldani a fogyasztók tájékoztatását az ellenőrzés nélküli elhelyezés veszélyeiről, a termékek jelöléséről, a használhatatlanná vált elemekről és akkumulátorok eltávolítási módszeréről. [bes, 00]

Az eddigiekben az országban tervezett beruházások technológiáját az alábbiak szerint képzeltek kialakítani:

1. Aprítás, saveltávolítás után az akkumulátort alkotórészeinek szelektív hidraulikus, ill. vibrátorszitás elválasztása, osztályozása, ülepítése, szűrése. Ennek során külön-külön főleg ölbomlattal szőrös vérűmeneten, kontaktusokat, öloxoxidokat, szulfátokat tartalmazó ún. rögtönző masszát, továbbá szerves (űanyag) frakciókat (akkuház, szeperatorlemezek) nyernek ki. A gyöngyösorosztól eltérően az apei és a monokori HAF-üzemnél az ilyen előkészítést a lényegesen korszerűbb ún. CX Compact eljárással tervezték.

3. A redukált ólomot és a fémes ólom frakciókat tégely es kemencében finomítják, raffinálják (pl. a Cu eltávolítására).

4. A kemence-végzárók és a munkahelyi levegő porttartalmát a „monoki” HAF-nál újrahasznosítást kérő anyagokat a 36 m-es kéményen való távozásuk előtt.

4.1.4 Katalizátor-hulladékok újrahasznosítása

A katalizátor kerámia – esetleg fém – hordozójának (monolithának) fajlagosan igen nagy, mintegy 15000 m²-nyi felületén mikroszkopikusan 4–7,5 g platina, illetve 0,8–1,5 g ródium van szétosztva. Ezek visszanyerése pirometallurgiával vagy nedvesítő eljárás alkalmazásával kivitelezhető, ezek a megoldások 98% hatásfokkal működnek. Az újrahasznosítás nemcsak gazdasági, hanem ékölógiai szempontból is elsődleges fontosságú, mivel a Föld becsült platina készlete 30000 t-nyi, ródiumból még körülbelül 3700 t áll rendelkezésre. A ródium évente kitermelt mennyisége 0,3 µg/m³, akkor érzékelhető, hogy csupán e szennyező milyen hatalmas légtérre terjedhet ki. Arra viszont, hogy az egyedi határtartalékot biztosítsák-e a tervezett berendezések, nincs dokumentált referenciaízumi adat a hatástanulmányokban. [bodi, 00]
Az ezredfordulón Európában évente mintegy 1500 tonna katalizátorhulladék keletkezett, amelyből 2.250 kg platina és 450 kg ródium volt visszavezethető az új katalizátorok gyártásába [luk, 94].

A konkrét feldolgozási folyamat a kerámia-monolit finomörülésével kezdődik (homogenizáció). Ezt közvetlenül a nemesfém tartalom meghatározására szolgáló próba elvégzése követi. A további feldolgozás pirometallurgiai vagy nedves-kémiai úton történhet, pirometallurgiai megoldást mutat be az 4.1.4.1. ábra.

Az értékes tartalmuktól megszabadított külső központi fajtája eltávolítás módon szétválasztják a többi burkolattól és közvetlenül az acélművekbe vagy öntödékbe szállítják, ahol belölik újabb nemesacéltermékek készülnek.

A pirometallurgiai eljárás során az őrlést a nemfémes frakció leválasztása követi. Eztután a homogenizációt egy gyűjtőfém mellett közösen redukáló környezetben aknakemencében felolvasztják. Ennek során a gyűjtőfém megkötő a nemes- illetve az egyéb fémeket, míg a hordozóanyag alakulja a salakot. A kapcsolódó eljárás konverterben lejátszódó oxidáció során elkülöníti a nemesfémet a többi fémmel. A tulajdonképpeni nemesfém-raffináció kémiai eljárásval valósul meg. A süllyesztő eljárás mellett megtalálható a frakcionált kristályosítás és a folyékony-folyékony extrakciós alkalmazás is. Az eljárás végén szivacs vagy por formájában keletkező platina a szennyeződésekől csaknem teljesen mentes.
A nedves-kémiai eljárás kétféle változata ismert: a nemesfémet a hordozóanyagról oxidáló savval vagy alkalikus nyomásos feltárással nyerik ki. A nemesfémek visszanyerése az első esetben az oldatból, a másodikban az oldatmaradványból történik. A nemesfémek egymástól történő elkülönítését kémiai eljárásokkal hajtják végre. Az új katalizátorok előállításához a platinafémet vizelő oldathoz adják. Ebben a formában közvetlenül beolvatható a monolit rétegee eljárásában.

A nemesfémek újrafeldolgozásánál különleges figyelmet szentelnek a mérgező hatású kísérőelemeknek, amelyek a feldolgozó eljárások költségigényét fokozzák.

<table>
<thead>
<tr>
<th>Vegyi eljárások</th>
<th>Vegyi kicsapatás</th>
<th>Katalízis</th>
<th>Ioncsere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fizikai eljárások</td>
<td>Elgőzőöltetés, kristályosítás</td>
<td>Porlasztás</td>
<td>Fordított ozmózis</td>
</tr>
<tr>
<td>Kapcsolt eljárások</td>
<td>Ionicser+elektrolízis, Elgőzőöltetés+elektrolízis</td>
<td>-</td>
<td>Fordított ozmózis+elektrolízis, elektrodialízis</td>
</tr>
</tbody>
</table>

Valamennyi visszanyerési eljárás közül egyedül az elektrolízis az, amelynek végterméke fémes alakban jelentkezik, ami különösen a 100%-ot közelítő visszanyerési hánya miatt kedvező. Az elektrolízises eljárás előnyei:
- a folyamatot kíséroló anyagok felüldülése kizáró,
- a közvetlen fémtávolítás miatt nincs szükség Velgyi anyagokra azok eltávolításához, így a keletkező iszap mennyisége lényegesen kisebb,
- az elektrolízis rendszerek kezelése egyszerű és az eljárások a meglevő berendezésekekkel többnyire problémamentesen kivitelethetők,
- az eljárás rugalmasága fokozottan megnyilvánul a különböző fémkoncentrációjú oldatok kezelésében, valamint a kis koncentrációjú öblítő-oldatok folyamatos feldolgozásában, mivel ezek azonos berendezésen végezhetők,
- a kódrendszerek kezelése egyszerű és az eljárások a meglevő berendezésekekkel többnyire problémamentesen kivitelethetők,
- a különleges anódok váltakozó felhasználása valamint az alkalmazási tartomány – változatlan teljesítmény mellett – gyakorlatilag korlátozottan bővíthető,
- bizonyos esetekben lehetőség nyilik olyan réz- vagy ezústanódok használatára, amelyek a további eljárás során anódént lehet felhasználni [hage, 95].

Magyarországi katalizátor-feldolgozásról nem lehet említést tenni, mivel az országban a környezetvédelmi hatóságok általában szigorúbban sorolják be ezt a hulladékként, mint más nálunk gazdaságilag lényegesen fejlettebb országokban. Így fordulhatott el, hogy még a Bázeli Egyezmény érvényességi idejében Németországban a katalizátorhulladék a zöld lista tartozott, addig hazánkban ez a hulladék a sárga lista hulladéknak száma alá esett, a korábbi felújítási költségek növekedésével megnőtt.

4.1.5 Kábelhulladékok újrahasznosítása

4.1.5.1. kép Vegyes kábelhulladék frakció

A lefélőtt szigetelőanyagok többféle színűek, ezért az újrafeldolgozás során feketére színezik. A kábelek bontásánál egyéb alko töelemekből is keletkezik hulladék. A kitöltésre használt gumialapú anyagot, amely téphető, darálógépen darálják, és mint teljes értékű alapanyagot ismét felhasználják. A kábelek szerkezetében található szalagokat, amelyek részben fémszalagok (acél, alumínium, réz), részben pedig műanyag szalagok (PVC, polipropilén) a bontáskor külön-külön gyűjtik. A fémszalagokat fém anyagként értékesítik, a PVC-szalagokból pedig ismételt PVC-szalagot gyártanak. [ujh, 01]

4.2 A könnyűfrakció hasznosítási lehetőségei

4.2.1 A műanyag hulladék reciklálása

4.2.1.1 Műanyag hulladékok keletkezése és újrahasznosításuk helyzete, lehetőségei

A műanyagok térhódításával együtt járt a hulladékmennyiségek növekedése is. Nyugat-Európában 1980-ban 5,5 M tonna, 1985-ben 7,3 M tonna, 1990-ben kb. 9 M tonna műanyaghulladék keletkezett, 2000-re prognosztizált adatok szerint már 11 M tonna műanyaghulladék-képződéssel lehetett számolni. A műanyag termékek mintegy 20%-a 1 évnel rövidebb, 15%-a 1-8 év közötti, 65%-a több mint 8 éves használat után kerül hulladékba. Az Európai Közösség országáiban a műanyaghulladék megoszlása a keletkezési forrás szerint a következő szerint alakul:

<table>
<thead>
<tr>
<th></th>
<th>Műanyaghulladékok keletkezése (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lakossági eredetű</td>
<td>76,25%</td>
</tr>
<tr>
<td>értékesítési területen keletkező</td>
<td>12,50%</td>
</tr>
<tr>
<td>gépkocsi-roncsból származó</td>
<td>5,00%</td>
</tr>
<tr>
<td>mezőgazdasági</td>
<td>3,75%</td>
</tr>
<tr>
<td>gyártási műanyag hulladék</td>
<td>2,50%</td>
</tr>
</tbody>
</table>

A műanyaghulladékok mintegy háromnegyede a kommunális hulladék részévé válik, amelynek 5-7%-át teszi ki. A kommunális hulladékba kerülő műanyagok túlnyomó része, mintegy 70%-a szeméttelenre (deponálásra) kerül, nem hasznosul. Jelenleg a legelterjedtebb kb. 30%-os arányban az égetéssel történő energetikai hasznosítás.
4.2.1.1.1. ábra Műanyaghulladékok hasznosítási lehetőségei

A nagytérfogatú, lassan lebomló műanyaghulladékok kétségtelenül környezeti tehetetlent jelentenek, így a műanyagok környezetvédelmi megítélése nem túl pozitív. A műanyagok alkalmazásának a környezettel való harmoniája élénken, gyakran túlhangsúlyozottan és nem mindig elég szakszerűen értékelt vitatémává vált.

Ma már nyilvánvaló, hogy a műanyagok felhasználásának visszaszorítása nem lehet hosszú távú megoldás. A műanyagok alkalmazása mellett szól az előállításuk kis energiaigénye. A műanyagok felhasználásának teljes energiamerlegét különösen kedvezővé teszi az a tény, hogy a megfelelő termékfunkciók biztosítása a legtöbb termékcsoporthoz a hagyományos anyagokhoz viszonyítva kisebb anyagfelhasználással érhető el.

4.2.1.1.1. kép Előbontott járműkarosszéria és a belőle származó könnyűfrakció
Széles körben alkalmazható és főleg rövid távú radikális megoldást nem biztosítanak a fény hatására és biológiailag lebontható és a víz által oldható anyagok sem. Ezek fejlesztésénél az ipari gyártáshoz számos fejlesztési feladatot még meg kell oldani, szükséges a gyártási költségek csökkentése is. A műanyag újrafelhasznosítási rendszert veszélyeztető szerepük miatt jövőjük is vitatható. Nincs más út, mint a képződött hulladékok újrafelhasznosításának fejlesztése. A műanyagipar fejlesztésekkel és megfelelő érveléssel eddig is sokat tett a műanyagok kedvezőbb környezetvédelmi megítélése érdekében, de nyitvánvaló, hogy még sok a temnivaló, különösen a hulladékhelyesztés hatékonyságának, gazdaságosságának javítása terén.

A recesszió miatt alacsony hasznosításának. A reciklált műanyag hulladékok újrafelhasznosítására, hulladékhasznosításra irányuló központi fejlesztési programok is szerepet játszottak a műanyagtermékek fajlagos anyagfelhasználásának csökkentésében. Az egyenmű, tisza technológiai műanyaghulladékok újrafeldolgozásához itthon is egyre szélesebb körben rendelkezésre állnak a gépek és technológiák. Egyre több műanyaghulladék és gyártatlan terméket gyártó termékek fejlesztenek ki. A gazdasági érdek mellett a technológiák kiforrottsga és viszonylagos egyszerűsége miatt is várható további fejlődés e téren, elsősorban a termelő vállalatoknál.

A műanyaghulladékok újrafelhasznosítási lehetőségeit vizsgálva megállapítható, hogy lényegesen bonyolultabb és kevésbé gazdaságosan megoldható feladat az egynemű homogén, de már szennyezett és főként a kevert, különböző kémiai típusú polímereket tartalmazó és több-kévesbé szennyezett felhasználási és gyártási hulladékok újrafelhasznosítása.

A kommunális hulladékok már bekerült műanyagok jelenleg legelterjedtebb, leggazdaságosabban itétl hasznosítási megoldása az égetés. Ennek alapja a műanyag magas fűtőértéke: 1 kg vegyes műanyaghulladék fűtőértéke kb. 1 liter fűtőolajéval egyenértékű. A műanyaghulladékokat kisebb fűtőértékű hulladékkal keverve égetéssel távfűtésre, elektromos energiatermelésre hasznosítható energia nyerhető. A kommunális hulladékok levő műanyag biztosítja az összes hőpotenciál kb. 30%-t. Égetésnél emellett a műanyaghulladékok tőredékre csökken és ezzel megkönnyíti a deponálást.

A korszerű égetőművekben ma már nagyságú környezetbarátabb hulladékúgy is megoldható, mint a világ éghajlata és megfelelő fűtőgáztermeléshez a PVC elégetése is megoldható. A műanyag hulladékok mechanikai úton anyagként történő hasznosítása az égetés. Ennek alapja a műanyag termőanagikal műanyagok mechanikai úton történő hasznosítása. A korszerű égetőművekben ma már nagyságú hőmérsékletű oxigénszennyezetlen homogén vagy homogén-kompozit anyagok jelenleg legelterjedtebb, leggazdaságosabbnak ítélt anyagtermékek térfogatának csökkentésében. Az egynemű környezetbarátabbabb hulladéktermékek fajlagos anagikal csökkentése érdekében, de nyitvánvaló, hogy még sok a temnivaló, különösen a hulladékhelyesztés hatékonyságának, gazdaságosságának javítása terén.

4.2.1.2. Műanyag hulladékok mechanikai úton anyagként történő hasznosítása

A recesszió miatt alacsony műanyag árak jelenleg nem kedveznek a műanyag hulladékok anyagként történő hasznosításának. A reciklált műanyagok ára ugyanis követi a primer műanyag árát, általában ennek kb. 70%-a. Általánosan elfogadott nézet szerint a műanyag hulladékok mechanikai úton történő hasznosítását akkor kell előnyben részesíteni, ha

- a hulladékból gyártott termékek jól definítható biztos piaca van,
- a hulladéket lehetőleg fajtahomogén módon, megfelelő mennyiségben minél kevésbé szennyezetten be lehet gyűjteni,
- az ország szabályozása, a helyi lakosság, illetve az önkormányzatok partnerekhez tehetőek a szelektív begyűjtésben,
- kommunális személyből való válogatást egészségügyi, higiéniai szempontok miatt lehetőleg automatizáltan lehet megvalósítani (ám ilyen esetben is a gazdaságosságú szempontok figyelembevételével, a kb. 30-40 g/db-nál kisebb súlyú műanyag termék termelésére, elektromos energiatermelésre hasznosítható energia nyerhető. A kommunális hulladékok újrafelhasznosításához termékesen korszerű égetőművekre van szükség.

Az égetés értékeléshénél nem feledkezhetünk meg arról, hogy a műanyaghulladékok energiatartalmának ily módon csak kb. 25%-a hasznosul, és ez az újrafeldolgozás energiamérlegéhez viszonyítva különösen kedvezőtlen.

A nagy gépjárműgyártó cégek Németországban közös szervezeteket hoztak létre, amely saját gyártási gépkocsikból származó alkatrészeinek lehetőleg fajtahomogén módon történő újrafeldolgozására, illetve újrafelhasznosítására, valamint visszavételére rendszer dolgoz ki, és ezeket alkatrész kereskedőknek adja el. Ami a jövőben gyártandó gépkocsik környezetbarátabbá tételére illeti, a műanyag alkatrészek terén fő szempont a könnyű szétszerelhetővé tétele mellett a lehetőleg azonos, vagy jól definíált kis tipusválaszték műanyag
féleségek alkalmazása és a fajtahomogén hulladékóból ismét gépjárműipari termékek gyártása. Ezen túlmenően várható a nehezen újrafeldolgozható erősített műanyagfajták alkalmazásának korlátozása.

4.2.1.3. Fajtahomogén műanyag hulladékok újrafeldolgozása

Ezen anyagok egyik legismertebb módja a koextruzió, amikor a regranulátum képezi a belső réteget, míg a két külső réteg primer anyag. Ilyen módon nem élelmiszeripari céla különböző méretű flakonok, tartályok, marmonkannák és nyomásnélküli felhasználásra alkalmas különféle csövek, valamint főliák gyárthatók.

4.2.1.3.1. ábra Műanyag megjelölése fajtatiszta szétválasztás

Fajtatiszta PVC hulladékából koextrudált csöveket gyártanak (10-14% reciklátum tartalommal), amelyek azonban sem ivóvíz, sem gázvezeték és más nyomás alatti csövek céljára nem használhatók, de pl. dréncsövek, szennyvíz-, esővíz lefolyások, kábelvédelmi csövek, telekommunikációs kábel céljára szolgáló csövek, gépgyártásban használt főliák, távtartók, stb. gyárthatók.

A kábelipari hulladékok átlagos fémtartalma (réz, alumínium) kb. 55%. A maradék 45% polimer. PVC-t ezek közül az esetek 60%-ában használnak, amelynek visszanyerése érdekében szükséges az elölvágatás, a PVC tartalmú kábeleket különböző létesítményekbe. A kábelből a fémek ma már meglehetősen jó hatásfokkal nyerhetők ki (a maradék résztartalomban kb. 0,5%). Ezt a fémmaradékot már csak ún. olvadékszűrővel lehet eltávolítani. Az így megszűnt PVC kábelipari céljára ismét feldolgozható, míg a fémel szenyezetlenített, nem szürt PVC felhasználása korlátozott. Egyik ismert felhasználási terület a cipőpapírgyártás, a másik a sárványgyártás a gépjárművekhez. A PVC kábelhulladékok deponálása a szabadban, napnak, esővihar ideig kitéve, káros a környezetre, a PVC bomlásizellődésnek a talajba történő bemosódása, továbbá deponiatüzek veszélye, dioxin képződés miatt. Deponálása kompaktálva, légmentesen, földdel takarva tanácsos. Ez esetben a hosszú időtartamú tárolás nem okoz jelentős környezeti károkat.

Polisztirolból habok hulladékából direkt gáz extrudálásos eljárással szigetelő hablemezek, tojástartók, stb. gyártathatók, vagy betonba keverve könnyíthető szerkezetű építőanyagok.

A polisztirolból habok hulladékából directed gáz extrudálásos eljárással szigetelő hablemezek, tojástartók, stb. gyártathatók, vagy betonba keverve könnyíthető szerkezetű építőanyagok.

A polisztirolból habok hulladékából direkt gáz extrudálásos eljárással szigetelő hablemezek, tojástartók, stb. gyártathatók, vagy betonba keverve könnyíthető szerkezetű építőanyagok.

A polisztirolból habok hulladékából direkt gáz extrudálásos eljárással szigetelő hablemezek, tojástartók, stb. gyártathatók, vagy betonba keverve könnyíthető szerkezetű építőanyagok.
Elastogran cég a poliuretán hulladékok kémiai visszadalgozásának lehetőségére kutatott munkákat. Az (Entwicklungsgesellschaft für die Wiederverwertung von Kunststoff Institut) támogatja a poliuretán RIM és a BASF, Bayer, Dow Hoechst és a Hüls, valamint a poliuretán feldolgozók, mint a Happich, Pebra és Phoenix a problémakör megoldására és folyamatos gondozására az olaj és más anyagú alapanyaggyártók, mint - tölt. Kétféle módon valósítható meg a poliuretán újrahasznosítása:
ajtó- és tetőpanelekhez. A témát 20 millió DEM-mel támogatja az EWKI.

A problémák megoldása és folyamatos gondozása érdekében a legnagyobb poliuretán alapanyaggyártó, mint a BASF, Bayer, Dow Hoechst és a Hüls, valamint a poliuretán feldolgozók, mint a Happich, Pebra és Phoenix autóalkatrész beszállító cégek 1991-ben közös kutatási vállalkozást hoztak létre. Az EWKI (Entwicklungs gesellschaft für die Wiederverwertung von Kunststoff Institut) támogatja a poliuretán RIM és RIM technológiával gyártott autóalkatrészek anyagának kémiai visszanyerését célzó kutatásokat. Az Elastogran cég a poliuretán hulladékok kémiai visszadalgalógásának lehetőségéit kutatja. Tisztázott regranulált poliuretán aprítéket MDI-vel keverten magas hőmérsékleten és nyomáson alakítják különféle autóalkatrészszé, pl. ajtó- és tetőpanelekhez. A témát 20 millió DEM-mel támogatja az EWKI.

Kétfele módon valósítható meg a poliuretán újrahasznosítása:
- töltőanyagként felhasználva a finomra örölt hulladék részcsekkéket magas hőmérséklet és nyomás alkalmazásával új autóalkatrészek, formadarabok gyártásához adalékolható kb. 20% körüli mennyiségben,
- kémiai eljárás (pl. glikolízis) segítségével kinyert anyagok poliolhoz adagolva visszavezethetők a formadarabok gyártására.

A RIM és RIM hulladékok visszadalgalógását erőteljesen támogatják a nagy autógyárait. Így pl. a német Přeba 10% hulladékokat használ fel a Jaguárnak szállított autóalkatrészeihez, a Pebra max. 2% glikolízzel nyert anyapot kever az új termékek alapanyagaihoz. A Ford autók üléseit Aalenben kísérleteztek ki úgy, hogy 15% újrahasznosított poliulát alkalmaznak. Franciaországban a Polyrim cég a Renault alkatrészek gyártásához 5-10% recikliált anyagot használ. A BMW-nek Landshutban működő kisérleti szétszerelő, recikliáló üzem. Németországban a BASF, Bayer, Dow, DSM, Du Pont, GE Plastics, Himont, Hoechst, ICI, Monsanto és PCD és a Projektgruppe Autoverwertung der Deutschen Automobilindustrie (PRAVDA) együtt dolgoznak a visszadalgalógás témákon. Az eljárási változatokat átadják a BMW, Ford, Mercedes Benz, Opel és a Volkswagen számára. Hat projekt már létezik, s mindegyik mögött egy-egy az autóipari üzemre szánt gyártási eljárás.

Az olasz Macchi SpA roncs autókból származó porrá drasztusan megdrágul a hulladékkezelés. Az ezekre a folyamatokra vonatkozó kísérletek akkor gyorsulnak fel, ami kor emelkednek az olajárak és/vagy más kémiai újrafelhasználási eljárások (alkoholízis, pirolízis, hidrogénés) ma még nem tartják gazdaságosnak.

Angliában számos kezdeményezés indult az utóbbi két évben a motorgyártó üzemek között, és nemes problémát okoz az ilyen hulladékok elhelyezése a lerakókban. A technika mai állapotában a műszaki erőforrásokkal, amik az egyes anyagok fajtatiszták (szétválasztás) és lehetőségére készen állnak (azonosítás), csak akkor lehetséges, ha ismert műszaki adatokkal rendelkezik a használt anyagok felhasználójának. A használt anyagrészek többnyire újrafelhasznált polipropilén alapanyagot alkalmaznak. Az Opel új kiskocsijához, az Astrához recikulált polipropilénből készülnek pl. a lókahárítók és a kerékdoborítók, melyek az abroncsok felett a karrosszériát a felpattanó kövektől és a szennyeződéstől védik. A használt poliuretán ülésekből újrafelhasználás során hangtompító anyag készül, pl. a motorteret zajtompításra szolgáló
Gépjárművek szerkezeti anyagainak újrafogalomzása

4.2.1.4. A megerősített poliuretán újrafeldolgozása

4.2.1.5. Műanyagból készült üzemanyagtartályok újraszolóhelyiségi felhasználása

Az műanyag tüzelőanyagtartályok hasznosítási projektje 1990-ben kezdődött a VW AG-nál, a "Volkswagen Recycling" kutatási program keretében. Közös munkával a BASF és a Kautex céggel együtt sikerült megtalálni a műanyag tüzelőanyagtartályok (továbbában MTT) újrafelhasználásának egyik optimális megoldását. Az eljárás kifejlesztésénél az okozta a fő problémát, hogy az MTT-k polietilén nagy molekulája a hosszú éveken át tartó tüzelőanyagcsoportjának való érintkezés során diffúzióval növekednek. A használt anyag céljutágotosan kifejlesztett eljárás technikájával, ezen belül egy speciális száritó folyamat eredményeként sikerült a kitűződött minőségi követelmények és biztonsági előírások megfelelő eredményét elérni. A sikeres kísérletek keretében lehetővé vált optimalis és funkcionálisan kifejlesztett MTT-t a Volkswagen számára készíteni mind 100%-ig reciklátumból, mind különböző új anyagokkal való összekeveréssel együtt.
Gépjárművek szerkezeti anyagainak újrahasznosítása

A kísérletet záró mechanikai vizsgálat valamennyi elvárást teljesítette, egyedül a kötelező ejtési teszt - amely során a tűzelőanyaggal teletöltött MTT-t -40°C-ra lehútvé 6 méter magasból többször leejtve annak sértetlennek kell maradnia - zárult pozitív eredménnyel.
A vizsgálat eredményeit felhasználva a VW jelentős mennyiségű reciklált anyagot használ fel a MTT-ok gyártása során.

4.2.1.6. Lökhárítók hasznosíthatósági lehetőségei

Ahogy a modern járművek fejlesztése előrehalad, úgy lesznek a műanyag-lökhárítók egyre nagyobbak. Ez funkcionális- és biztonsági okokból elengedhetetlen. A növekvő felhasznált anyagmennyiség miatt a reciklálás nélkülözhetetlen vált.
A reciklálás és a könnyű bontás elősegítése érdekében az alkalmazott anyag egy módosított polipropilén. A lökhárító leszerelése után - bontásnál - az oldalvölgököket, a diszléceket stb. el kell távolítani róla. Miután a lökhárítókat tenyérnyi nagyságra felaprítják, az anyag könnyebben szállíthatóvá válik, a lökhárítók a finomra örlést elvégző üzembe kerülnek. Az anyagokat a még bennlevő idegen testekkel. Ezután az örlémenyt kompozícióják és ezt követően új anyaggal keverik.

Az anyagróba után, amelyet a nyersolajból készült anyag esetén szintén elvégeznek, a regranulátumból új lökhárítók készülnek. Ezek minősége nem rosszabb, mint az új anyagból készülteké. A VW AG első autógyárként vezette be 1991 májusában a szériában reciklált műanyagból készült lökhárítók alkalmazását.

4.2.1.7. A műanyagok kémiai újrahasznosítása

Csak kevés műanyagfajtánál jöhet szóba a kémiai újrahasznosítás, ilyenek pl. a polikondenzátumok és a duromerek. A keletkező termék minősége jó, szinte alig lép fel értékesítés miatt. Ezért kívánatos lenne ezeknek a műanyagoknak a kémiai újrahasznosítása, ha a recirkuláció költsége alacsony.
Műanyag hulladékok anyagként, kémiai úton történő hasznosításának többféle lehetséges módja van, pl. pirolizis, hidrolizis, hidrogénezés, alkoholizis, glikolizis, stb. A pirolizis (krakkolás) módja, hogy az előkezdett hulladékot fluid homokágyas reaktorban 400-600°C-on krakkolják. Egy folyékony és egy gáznyomú, könnyű szénhidrogén molekuláit átmeni. A módszer egyszerű és robosztus, vannak azonban korlátai, ezek a begyűjtés, előkezdés és szortírozás szükségsessége, valamint a műanyagok külön kezeléssel rendelkező egyéb anyag tartalma (pl. ólom és kadmium, ill. a PVC klórtartalma).

Az üzem létesítésének gazdasági oldala is van, egy néhány tíz kt/év kapacitású vegyes műanyag hulladékok feldolgozó cég gazdaságos szempontból nem versenyezhet egy több millió tonna kókolatot feldolgozó nagyüzemmel.
A vegyes műanyag hulladékok kémiai hasznosítási módszerei közül szóba jöhet még a hidrogénezés és a hidrolizis is, azonban ezek beruházási költsége nagy és gazdaságosságuk kétséges. Kivételt képez a PET, PMMA és POM, amit glikolizisnek, vagy metanolizisnek alátét glikol és dimetil-tereftalát keletkezik. Az így visszanyert monomereket új polimer gyártásához ismételten fel lehet használni. Újabban már PET palackokat is gyártanak az így visszanyert alapanyagokból.

Például PUR hulladékok (kemény habok és elasztomerek) glikolizissel szintén lebonthatók. PUR esetén ez sokszor a legkétségesebb eljárás.

4.2.2 A gumiabroncs-hulladékok kezelési lehetőségei

A ma gyártott gumiabroncsok meghatározó anyaga a szénhidrogénekből álló, természetes vagy műkaucsukból készült elasztomerrendszer, amelyet a kopásállóság érdekében viszonylag nagy mennyiségű speciáliskorommal kevernek.

Az abroncs szilárdságát a szövetváz biztosítja, amelynek anyaga poliamid, poliészter, acél vagy üvegszál.
A gumikeverékek térhálósodását, azaz vulkanizálását kevés kén és gyorsítók, míg az ózon és ultraibolya sugárzás hatására történő lebomlási megakadályozását öregedés-gátló adalékokkal biztosítják. A gumipektóna hasznosítás problémája az, hogy nem pusztán gazdaságossági követelmények korlátozzák az újrahasznosítást, hanem még sem oldható meg műszakilag a vulkanizált kautscuk másodnyersanyagként való felhasználása, mint az egyszerűbben visszadalogozható csomagolóanyagé vagy műanyagoké. [ben, 02]

A gumipektón átlagos kémiai összetétele:

<table>
<thead>
<tr>
<th>Komponens</th>
<th>Összetétele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szén</td>
<td>74%</td>
</tr>
<tr>
<td>Hidrogén</td>
<td>7%</td>
</tr>
<tr>
<td>Kén</td>
<td>0,8-1,6%</td>
</tr>
<tr>
<td>Nitrogén és oxigén együttesen</td>
<td>4-8%</td>
</tr>
<tr>
<td>Vas</td>
<td>5-10%</td>
</tr>
<tr>
<td>Cink+réz</td>
<td>0,1%</td>
</tr>
<tr>
<td>Hamu, illetve nem éghető anyag</td>
<td>13%</td>
</tr>
<tr>
<td>Nedvesség</td>
<td>1%</td>
</tr>
</tbody>
</table>

4.2.2.1. kép Hulladék gumiabroncso

4.2.2.1. ábra Gumihulladékak hasznosítási lehetőségei [dar, 91]

Egyszerű szerkezet ugyanakkor kémiai összetétele ellenére a hulladékká vált gumiabroncso hasznosítása világszerte problémát okoz. A begyűjtés és a tárolás nem igényel különösebb technikai eszközöket, viszont a szállítás a nagy térhulladék, mely a viszonylatban a kevésbé hasznosított hulladék hulladékkal szemben jelentősen megnyilvánul. A hulladékértékelés és a hasznosítás azonban a nem megfelelő minőségű és nem kevert gumiabroncsoktól kifolyólag jelentős problémákat okozhat. A körülvévek és a hulladéktermelés mellett a hulladékhasznosítás úgy is fontos a környezeti környezetben, hogy megakadályozza a hulladékok kibontakozását és hordoztathatóságát. A hulladékot nem csak szárazként hasznosítsák, hanem éghető és égethető formában is hasznosíthatják.

A hulladékok kezelési lehetőségei az alábbi területekre terjednek ki: anyagként történő hasznosítás, nyersanyag visszanyerést célzó hasznosítás, energiaállítás, hulladéktárolókban történő tárolás. A hulladékok hasznosítási lehetőségeit foglalja össze a ábra.

Az anyagként történő hasznosítás alatt a gumiabroncso eredeti formáját megtartó, azonos vagy más célú továbbalkalmazását, ill. a feldolgozása után örömményként történő értékesítését értjük. Az anyagként történő hasznosítás mellett a gumiabroncsokban található gumihulladékok hasznosítása is fontos. A gumihulladékok különböző jellemzőit és hasznosítási lehetőségeit foglalja össze a ábra.

Az anyagként történő hasznosítás egyik fontos lehetősége a gumihulladékok újraindítása. A gumihulladékok újraindítása az újraindítás általánosításának egyik fontos részletje, melynek célja a gumihulladékok újraindításának elősegítése. A gumihulladékok újraindításának fontossága azért is jelentős, mert ezáltal a gumihulladékok újraindítása erősíthető és általánosítandó alkalmazási lehetőségeket kínál. A gumihulladékok újraindításának elősegítése a környezetbarát és anyagjavító céllal megvalósulhat, és ezáltal az anyagjavító célok megoldására is mutat lehetőségeket.
Gépjárművek szerkezeti anyagainak újrahasznosítása

4.2.2.2 kép Gumiabroncsok acélfelnőttől történő eltávolítását megkönnyíti űn. felhőprés

Ezek a rugalmas aszfaltokon a nyári melegben sem alakul ki az első keréknem, míg télen az aszfáltban rejlő gumiörlényem azt nem engedi szétfagyni, jelentősen hosszabb élettartamát biztosítva. Létesítési költségei, valamint az a tény, hogy a meglevő gumiabronc mennyiségének csak kis hányada hasznosítható ilyen módon akadályozták meg eddigi elterjedését.

A nyersanyag-visszanyerést célzó hasznosítások közül manapság három eljárást alkalmaznak elterjedten, ezek a szintetikus gáz előállítása, a pirolízis és a hidratálás. Ezek az eljárások a magas létesítési és üzemeltetési költségek, a keletkező és visszamaradó anyagok tekintetében jelenleg nem versenyképesek az égetéssel, hosszútávon azonban a technika fejlődésével és a nyersanyagkészletek szűkülsével előrejtszük várható.

Az energetikai hasznosítás a gumiabroncsok magas fűtőértéke miatt igen jó megoldás. Fűtőértéke (kb. 30 MJ/kg) kevéssel jobb a köszénnél (kb. 27-29 MJ/kg) és 25%-kal marad el a kőolajtól (38-46 MJ/kg), így teljes értékkő helyettesítője lehet a szénnek és kedvező körülmények között a kőolajnak és földgáznak. Mivel a gumiabroncsok összetétele ismért és az egyes abroncsgyárak termékei vegyi összetételükben nem térnek el egymástól jelentősen, ezért a hulladék gumiabronc homogén tüzelőanyagnak tekinthető. Az égetés során ugyan elvész a primer anyag előállításában befektetett energia, a technika jelenlegi állása szerint az energetikai hasznosítás jelent a gumiabroncok hasznosításának legkazdaságosabb módját.

Gumiabroncokat égethetnek önmagában, háztartási- vagy veszélyes hulladékégetőben fűtőértéket növelő adalékként, a legelterjedtebb megoldás azonban a cementművi égetés. A gumiabroncokat a cementművekben már több mint 20 éve a szén és az olaj mögött másodlagos tüzelőanyagokként alkalmazzák, az abroncsokat a legtöbb esetben egészben juttatják be a kazánba. A cementgyártás tüzelési körülményei és a cementgyártás technológiája megfelelő, az abroncokat.getCell költő alapanyagok céljára hasznosítjuk. A jelen fejlesztések a cementművi kazánok korszerűsítését, az égési folyamatok javítását célozzák.

A cementgyártás, illetve a klinkerégetés során alternatív anyagok hasznosíthatók, amelyek vagy teljes mértékben elének, vagy égetési hamujuk, illetve alapanyaguk alapján hasonlók a cement klinker-összetételéhez. Ezek égetéséhez a cementgyártás majdnem ideális technológiá a következők okai miatt:

- a fűgő hőmérséklete 1800-2000°-os.
- A kemencében 1450°C az anyaghőmérséklet.
- Gázfázisban az anyagok kb. 10 másodperccel 1000°C feletti hőmérsékleten tartózkodnak.
- A kemence-hőcserélő-nyersmalom rendszer többszokozatú, zárt füstgáztisztítóként funkcionál.
- Az elektrofilterben 99,999 ezred százalékos a porleválasztás.
- Az elektrofilterben bázikus viszonyok jellemzőek a nyersliszt 70%-os CaO-tartalma miatt.
- Oxidáló atmoszféra.
- A hőcserélőben lecélviteli készülék megkötődne a végtermékben.
- Nem keletkezik egyéb hulladék.
- A szervetlen alkotórészek kémiailag megkötődnek a végtermékben.
- Nem keletkezik egyéb hulladék.
- Nagy mennyiségek anyagáramoltatás.

A hazai cementgyárak fel vannak szerelve modern, a kulecsfontosságú helyeken a BAT (elérhető legjobb technikák) követelményeinek megfelelő környezetvédelmi berendezésekkel, nagy hatásfokú porszűrképekkel és egyéb levalasztó-, mérő-, érzékelő-, elemző-berendezésekkel, amelyek európai színvonalon működnek és biztosítják a technológiai rendszer folytonos ellenőrzését, készen tartását. [fer, 02]

A másik lehetőség a pirolízises (hőbontásos) eljáráson alapuló, gumiulladék újrahasznosítási módszer. Az eljárás lényege, hogy az öt-tiz centiméteres darabokra aprított használt gumiabroncsokat forgósíkokon mélyen, oxigénszegény környezetben 400-500°C-on teljesen lebontják el. A bontás során keletkező anyagok - pl. a korom, a szénhidrogén, a korom keresett nyersanyaga a gumi- és a festék- és a műszaki szürekek gyártásának, de készülhet bele pl. brikett is. [bih, 01] A pirolízis alkalmazásával a gumiabroncstól BTO (bíztetett terület) lehetővé válik, a briketjének készülhet kölcsönös módon tárgyalásra. Ilyen üzem telepítését tervezik az alföldi régióban évi 20 et kapacitással, amely az éves keletkező gumiabroncs-hulladék felének hasznosítását tenné lehetővé.

4.2.2.1 A gumiabroncs-hulladékok hasznosításának nemzetközi helyzete

A világ gumiipara 14-16 millió tonna szintetikus, illetve kisebb hányadban természetes kaucsuk felhasználásával hozzáférhetetlenesen 30 millió tonna gumiterméket állít el, amelynek több mint fele gumiabroncs. A becslések szerint évente legalább 13 millió tonna hulladék gumiabroncscs keletkezik a világon, az EU termelése ebből mintegy 2-2,5 millió tonna, az USA évi 4 millió tonna hulladéket termel – emellett további csaknem 4 millió darab hulladék abroncsot halmozott fel -, míg Japánban mintegy 0,5 millió tonna abroncshulladékot produkált. [kos, 01]

Az Európai Unióban a hasznosítás mértéke átlagosan 65%-os haladja meg az 50%-ot.

Az EU és Magyarország hulladék-gumiabroncs feldolgozását hasonlítja össze az alábbi táblázat:

<table>
<thead>
<tr>
<th>Hulladékképződés</th>
<th>Európai Unió 2500 et</th>
<th>Magyarország 40 et</th>
</tr>
</thead>
<tbody>
<tr>
<td>Újrafutózás</td>
<td>16%</td>
<td>10%</td>
</tr>
<tr>
<td>Újrahasznosítás</td>
<td>14%</td>
<td>10%</td>
</tr>
<tr>
<td>Energetikai hasznosítás</td>
<td>26%</td>
<td>15%</td>
</tr>
<tr>
<td>Export</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Depónia, egyéb</td>
<td>34%</td>
<td>60%</td>
</tr>
</tbody>
</table>

4.2.2.1 táblázat Az Európai Unió és Magyarország gumiabroncs-hulladék hasznosítási gyakorlata [ben, 01]
Darabolatlan egész abroncs felhasználása	Anyagában való hasznosítás aprítást, darabolást, elkülönítést, osztályozást, kezelést követően	Energetikai hasznosítás
Mesterséges zátonyok | Útburkolás (aszfaltmódosítás) | Cementgyártás
Kikötői ütközök | Mesterséges gyepl | Villamos-energia
Úszó hullám | Gumicikkékhez adagolás: | termelés
Helyi felszínkiképzés | Közlekedésirányítás | Vízcsöves kazánokban
Közúti biztonsági gátaek | gyártmányok | hőhasznosítás
Autópályák hangszigetelő falának kitöltése | Vízfajták | Ipari helyi hőenergia
Talpfák Ipari padlók | Védőfedések | termelés
lerakás | Öntözés | 4.2.2.1.2. táblázat A ma alkalmazott gumiabroncs-hulladék hasznosítási módszerek[kos, 01]

A gumiabroncsokra vonatkozó deponáció tilalma az EU-ban 2003-ban fog életbe lépni, az EU hulladéklérerőforrások 1999/31/EK irányelv 5. cikkének értelmében, ami a csatlakozástól ránk is vonatkozik majd: 1400 mm-es átmérő alatti elhasznált gumiköpenyt nem lehet hulladéklérerőforráson elhelyezni. 2006-tól továbbá tilos lesz lerakni a darabolt terméket is.

4.2.2.2 A gumiabroncsok hasznosításának hazai tapasztalatai
Magyarországon évente közel 1,2 millió gumiabroncsot értékesítenek és nagyjából ennek megfelelő mennyiségű, kb. 45-50 ezer tonna gumiabroncs hulladék keletkezik. Emellett a mennyiség mellett jelenleg 250-270 ezer tonnányi használt abroncs vár sorsára a begyűjtő helyeken, illegális lerakókban vagy egyszerűen a közterületeken hagyva.
Az országban jelenleg a teljes területet lefedő gyűjtőkapacitás nem épült ki, a begyűjtést, feldolgozást szakosodott cégek áltában eseti alapon végzik.
A rendelkezésre álló gyűjtőkapacitások elégségesek, ám a környezetvédelmi támogatással megvalósult hasznosítók jelenleg alig 15000 tonna/év gumiabroncs hulladék hasznosítására alkalmasak. További 10000 tonna/év kapacitásti örököz, valamint öremény-feldolgozó beruházás kezdődött meg szintén környezetvédelmi támogatással és több vállalkozás is pályázik mind beruházási, mind rendszeres támogatás elnyerésére az évente meghirdetett pályázati feltételek szerint. [kos, 01]
Magyarországon épült – az 1995-ben kidolgozott KAC pályázati rendszer révén állami támogatással – feldolgozóüzem, mind energetikai, mind anyagában való hasznosítást végző öröközüem (Gumill Rt.).
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]
A cementgyári égetés támogatása az üzemanyagköltség megtakarításával együtt önfenntartó addig a mennyiségi határig, amíg a környezetvédelmi előírások nem követelik meg az emissziós értékek monitoring rendszerének kiépítését. E korlát ma 6-7 et/év kapacitás körül van: tehát az üzem kisfeszültségének nem éri el az 50%-ot sem. Egy újabb, az észak-magyarországi körzetben megépített öröközüem, a Gumiabroncs hatókörzet feldolgozó-üzem, mind energetikai és anyagában való hasznosítást végző öröközüem [Gumill Rt.]

4.2.2.1.2. táblázat A ma alkalmazott gumiabroncs-hulladék hasznosítási módszerek[kos, 01]
A korszerű gyártástechnológiával gyártott esésvédő lapok közül a vékonyabbak (30-40 mm) 0,9-1,3 m-es, a közepes vastagságúak (40-50 mm) 1,4-1,6 m-es, míg a legvastagságabbak (80-100 mm) már 2,2-3,0 méteres esési magassággal rendelkeznek. [fej, 01]

A granulátum-felhasználás nehézségei is ráirányítják a figyelmet a kisebb-nagyobb méretű aprított hulladék abroncokra. A tiszai árvizek országokban az útalapok, szemétlerakók, sportpályák, gátak és egyéb terjedelmes működhetek közepes vastagságúak (40-50 mm) 1,4-1,6 m-es, míg a legvastagabbak (80-100 mm) már 2,2-3,0 méteres esési magasságot is elérhetik. A feldolgozásnak a termékdíjak célja az elhasználódott abroncsok okát által okozott környezetszennyezést, közegészségügyi veszélyek és légszennyezés megelőzése. A hollán hozzáférhető kisüzemek helyen működnek. [fej, 02]

A termékdíj-rendszer kialakulásának első éveiben sokan spekulálták jövőbeni támogatás reményében a felhalmozásra. Amint „bedugultak” a hasznosítás csatornáit a kormány, a közkeleti rendelkezési kapacitás ingerlésével, a komoly gyártási ellenállás is nőtt. Az egyéb termékeinek forgalomban maradása után, a termékdíjnak a kezdeti lehetségességek mellett a komoly technológiai és szakipari kihívások mellett van a sajátításra nem mondott felkészültség. Az újraindítás nem teljesít a termékdíjat befizető, mivel a felújítók újabb költségei, költségek és a készletmegtakarításokat a termékdíj nem foglalja magába. [fej, 03]

A gumiabroncsra kivetett termékdíj célja az elhasználódott abroncok által okozott környezetszennyezést, közegészségügyi veszélyek és légszennyezés megelőzése, semlegesítése olyan arabulákat létrehozásán keresztül, amelyből a hulladékabroncsok megváltoztathatóak és hasznosítók. A 1995. évi LVI. Korm. rendelet tagja a környezetvédelmi és területfejlesztési indikátorok mellett a következő: a termékdíjat, amelyet a készlet megváltoztatására, az újraindításra vagy felújításra hasznosító árban kifizet a feldolgozó a termékhez. A termékdíj-kiosztás a következőképpen történhet: a termékdíj iránytájékozat, a termékdíj színvonalát és a termékdíj-kiosztás korlátozása. [fej, 04]

Az országban jelenleg nincs területet lefedő begyűjtő hálózat. Így tehát nem teljesül a termékdíjat befizető, tehát annak fejében valamit el is váró felhasználó, a hollán hozzáférhető kisüzemek helyen működnek. A jelenlegi rendszerben nem jelenik meg a környezetvédelmi és területfejlesztési indikátorok megfelelő megvalósulásának. [fej, 05]

A termékdíj, amely a KAC-ból (Környezetvédelmi Alap Célelőirányzata) pályázati úton nyerhető el, a feldolgozásra gyakorolt pozitív hatásai mellett az alábbi veszélyekkel jár együtt: - minthogy a hasznosításban résztvevők szelektív jelleggel „jutalmazza”, ezért a piaci verseny korlátozódhat, nem mindig a legkedvezőbb hasznosítási megoldások kerülhetnek előérbe.
- ha az Alap (jóhiszemű)n tűl sok pályázót részesít támogatásban, akkor a tevékenység lényege a felaprózódás miatt elveszhet, rengeteg életképtelen (és ellenőrizhetetlen tevékenységet folytató) új vállalkozás jöhet létre. Amennyiben viszont egyetlen, az egész országot átfogó rendszer támogat, úgy azonnal monopolhelyzet létrehozásával, részrehajlásával, a piacon verseny korlátozásával vádolhatják.

A két helyzet közötti optimumot megtalálni szinte lehetetlen, így válik az áram a legdrágább hulladékhasznosítóvá, amely közben ráadásul állandóan a résztervek vitáinak keresztüüebbe kerül.

Az EU-ban elfogadott elv, hogy a hulladékbejutést és –hasznositást az végzi, aki ezt előállította (termékfelelősség). A hasznosítás elősegítését általában nem szabályozzák közvetlenül törvényekkel – éppen a piacon egyenlőség és az egyenlő versenyfeltételek biztosítása érdekében -, a gumiabroncsok gyártói közvetett módon érintettek a hasznosítás kivitelezésében.

Az EU-n belül minden tagorszában elsődlegesnek tartják a logisztikai háttér megeremtését, az egész országot lefedő gújt és hasznosító hálózat létrehozását, amelynek kiépítését több-kevesebb sikerrel már mindenütt megkezdtek. A rendszer felépítése során törekednek a piacon viszonyok megeremtésére, figyelembe véve a hulladék-feldolgozó tevékenység és a szekunder anyagok megítélésének sajátosságait.

4.2.2.4 Megoldási lehetőségek a gumiabroncsok hulladékére szóló támogatások terén

Szerte az országban nagy mennyiségű gumiabroncshulladék van közterületeken hagya, illegális hulladéklerakókban, illetve összegyűjtve azokon a keletkezési helyeken, ahonnan azt nem tudják bizonyítottan legalis átvevőnek átnézni.

A termékdíj rendszer korrekcióra szorul, a támogatást most már tudatosan azoknak kell juttatni, akik a hulladék begyűjtését, feldolgozását, elégetését, ténylegesen elvégzik.

A gumiabroncsozok behozatalával kapcsolatban megjegyzendő, hogy 1999-től a felújított gumiabroncsozok ENSZ-ENGB „E” jóváhagyási jellel vannak ellátva, így újnak minősülnek.

Az új gumiabroncsozok közül is csak azok behozatala javasolt, amelyek „E” jóváhagyási jellel rendelkeznek.

A felújításra behozott használt gumiabroncsozok esetében az zsombak megfelelően indokolt, azonban a termékdíj mértéke indokolatlan magas, úgy értelmezi, hogy a felújító üzemek elegendő jó minőségű, felújításra alkalmas gumiabroncsoz gyártóként számolnak.

A hazai begyűjtés támogatásához szükséges, hogy a felújítók a hazai begyttjésből nyert felújított gumiabroncsozok után a termékdíjjal rendszerez támogatást kapjanak.

A felújításra behozott személyabroncsozok esetén két részegyűjtéses termékdíj javasolt, mert ezek egyszer újíthatók fel, a tehergépjármű gumiabroncsozok esetén egyszeres, mivel ezek akár háromszor is fel lehet újítani.

A támogatási rendszerek kapcsolatban az éves Támogatási Irányelvekben meghatározott mértékű rendszeres támogatásra való jogosultságot korlátozandán időre lehessen pályázatot megszerezni. Ez feltétlenül szükséges, mivel a gumiabroncsoz felújításának és hasznosításának irányításának számára a támogatások kapcsán előre tervezhető három év nem elegantő a vállalkozásba fókuszált pénz megértelmezéséhez, bizonytalan gazdasági feltételek mellett pedig egyszerűen nem lesz a feladatra vállalkozó befektető.

A KAC-pályázatok által visszajuttatott támogatások csak részben értek célt: egyes beruházások meg nem valósultak, mások felől kell működnek. Az okok csak részben műszaki vagy gazdasági jellegűek az orlóüzem műszaki nehézségekkel küszködik, nem tudja megfejtetni a begyűjtésért követelt árat, mert ma nem kapott támogatást a begyűjtésért. Ma már a hatóságok is elismerték, hogy a gumiabroncscs termékdíj rendszere a jelenlegi formájában nem érte el a célját, nem szolgálja a képződő hulladék fokozatos és egyre nagyobb mértékű felhasználását és az EU sem ismeri el az adójellegű beszédési és újraelszövő motót.

A szabályozás felülvizsgálatát össze kell kapcsolni az EU-csatlakozással együtt járó termelői felelősség új rendszerének hazai bevezetésével. Ez azt jelenti, hogy a gyártó és a forgalmazó felelősséget kell, hogy vállaljon a termékdíj az eljárást annak egész élettartamára, beleértve a hulladékká válását is.

Az év végén fel kell állítani a termelők és importőrök javaslatát alapján a hasznosítást koordináló szervezetet, amely a begyűjtés, kezelés és újrahasznosítás teljes körű feladatát végzi, ill. végezeti. Az érintett szereplők a szakmai érdekképviseleti szervezetek vezetésével (Magyar Gumipari Szövetség, Gumionicscsügártók Magyarországi Egyesülete) most dolgozzák ki e szervezet létrehozásának és működésének feltételeit és a termékdíj alapján való finanszírozásának módját.

Ebben a munkában – tekintve a roncsautók témakörrel való hasonlatoit és részben átfedéseket az MGSZ és az MGE is előzetes támogatásról biztosította a projekt kidolgozóit.
Az új kezelőszervezet feladata lesz, hogy megszervezze a területileg egyenletes begyűjtő-hálózat kiépítését, koordinálja a különböző energetikai célú és anyagában való hasznosítást végző üzemek működését, segítsége a végfelfolgazók tevékenységét, felkutassa és támogassa a hasznosítás új lehetőségét. [ben, 02]

Fontos leszögezni, hogy a rendszeres támogatást a felhasznált hulladék mennyisége után lehessen igényelni. A tapasztalatok azt mutatják, hogy több olyan külföld-magyar vegyes vállalat jött létre az elmúlt időszakban, amelyeknél csak a támogatási összegek megszerzése volt a cél – amelyet azután mind magyar, mind külföldi részről az illetők meg is kaptak – ezután azonban az adott gazdasági egységek ténylegesek és a befektetett állami pénzeket gyakorlatilag többé nem lehetett visszaszerezni.

A külföldi tapasztalatok azt mutatják, hogy csak rendszeres támogatással lehet érni jó eredményt a hulladékfeldolgozásban.

Célkeret lenne a gumiabroncs felújítást, mint hulladék-feldolgozó tevékenységet alanyi jogon rendszeres támogatással részesíteni.

A jelenlegi helyzet javítása érdekében a legsürgetőbb feladat az egész országot lefedő, korrekt begyűjtő hálózat piaci alapokon történő kiépítésének támogatása és a megfelelő, szerzödéses átvevők nevének, címének nyilvánosságra hozatala. A hazai felújító üzemeket sanyargató rendeléti háttér szerinti módon történő megváltoztatása szükséges, egyébként ez a nagy hagyományokkal rendelkező (sok munkahelyet biztosító és az állam számára komoly adóbevételt jelent) iparág könnyen eltűnhet az „ütesztőben”.

Az említett hiányosságok kijavítása már csak azért is szükséges, mert az ország európai integrációja során az EU várhatóan komoly hangsúlyt fektet a magyar környezetvédelem állapotának átvilágítására és egy ilyen „időzített bomba”, mint amelyet jelenleg a hazai hulladékabroncsok-kezelési rendszer jelent hátrányosan érinti megítélésünk.

Ma – a technika jelenlegi állása szerint – az energetikai hasznosítás jelenti a gumiabroncs hulladékok leggazdaságosabb kezelési módszerét, hosszú távon azonban számosan kell a nyersanyagok visszanyerését és az anyagában történő hasznosítást támogató megoldások előrelépéssé válására, míg csak azért is, mert ezekkel a megoldásokkal nem veszítjük el az eredeti termék előállításába fektetett energiát sem [luk, 98f].

4.3 Üzemanyagok reciklálása

Az üzemi folyadékok környezetre gyakorolt hatását szemlélteti a következő ábra és táblázat.

![Vízkörfolyamat](image)

<table>
<thead>
<tr>
<th>Veszély...-re</th>
<th>Ember</th>
<th>Víz</th>
<th>Talaj</th>
<th>Levegő</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Üzemanyag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzin</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3,5</td>
<td>3,4</td>
</tr>
<tr>
<td>Dízelolaj</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Motorolaj</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Hajtóműolaj</td>
<td>4</td>
<td>3,5</td>
<td>3</td>
<td>1</td>
<td>2,9</td>
</tr>
<tr>
<td>Leng.csill.olaj</td>
<td>4</td>
<td>3,5</td>
<td>3</td>
<td>1</td>
<td>2,9</td>
</tr>
<tr>
<td>Fékfolyadék</td>
<td>2,5</td>
<td>3</td>
<td>2,5</td>
<td>1</td>
<td>2,3</td>
</tr>
<tr>
<td>Hűtővíz</td>
<td>2</td>
<td>2,5</td>
<td>0</td>
<td>0,5</td>
<td>1,7</td>
</tr>
<tr>
<td>Szélvédomosó</td>
<td>1</td>
<td>1,5</td>
<td>0</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Akku. folyadék</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0,5</td>
<td>2,2</td>
</tr>
</tbody>
</table>

0: nem számottevő, 1: gyengén befolyásoló, 2: kis mértékben veszélyes, 3: veszélyes, 4: fokozottan veszélyes, 5: hatása igen erősen befolyásoló

4.3.1. ábra Az üzemi folyadékok környezetre gyakorolt hatása

Korunk jelenlegi műszaki színvonalja alapján gépjárműveink üzembe elképzelhetetlen megfelelő üzem- ill. segédanyagok nélkül. Ha járműünk valamennyi üzemanyaggal kielégítően el van láta jelenléték szinte fel sem tűnne, más a helyzet azonban, ha akár egy is hiányzik közülük. Hiszen nincs kellemetlenebb, mint ha kilyukadt
hűtőrendszerünk számára próbálmunka legalább a szervizbe való eljutást lehetővé tevő mennyiségű hűtőfolyadékot beszerezni, vagy ha főkrendszerünk tömítettsége közvetlen veszélyhelyzetet eredményez, az üzemanyagok szükségsessége vitathatatlan, azonban kevesebb szó esik ezek környezeti hatásairól, még kevesebb arról, mi történik velük elhasználódásuk után. Ezekre a kérdésekre próbálmunka meg választ adni a következőkben.

A mai üzemanyagok - eredetüket tekintve - ásványolaj-, glikol- és vízbázisúak.

Veszélyességi potenciáljuk nincs inkább alkotó elemeiktől, hanem döntő részt a környezeti közegekre gyakorolt hatásuktól függ. Ez alatt a felvevőképesség és a lebomlás képesség és a lebomlási hajlam értendően. A környezet emberekre gyakorolt közvetett ill. közvetlen hatásai alapján vett veszélyességi besorolás általában nem mérvadó, a meglévő kisérleti eredmények alapján azonban - legalábbis összehasonlítási szinten - tájékoztatást nyújthat az üzemanyagok mindenkor környezetvédelmi oldalról.

Az alapján elmondható, hogy az ásványolajbázisú folyadékok (tüzelőanyagok, ásványolajok) jelentik a legnagyobb potenciális veszélyt. Az illékony szénhidrogének nemcsak rákeltők, hanem részben felelősnek az ismert smog-jelenségek kialakulásában.

4.3.1 Üzemanyag hulladékok keletkezése

Üzemanyag hulladékok keletkeznek a jármű természetes üzemeltetése során az időszakos olaj-, hűtővíz-, főkőfolyadék- stb. természete alkalmával. Lényegesen nagyobb mennyiségben keletkezik üzemi folyadék hulladék a használatból kivont járművek szisztematikus bontása során. A járműroncsok folyadékmentesítése - az ún. „szárazra fektetés” során a következő üzemanyagok ill. üzemanyag-tartalomú egyéb részek különíthetők el:

- benzín (benzinmotor),
- dízelolaj (kompresszió-gyújtású motor),
- motorolaj (fáradt olaj),
- olajszűrő,
- hajtómű- ill. differenciálolajok (fáradt olaj),
- fékfolyadék,
- hűtővíz,
- akkumulátor,
- klímaberendezés közégei ill. egyéb pl.: ablakmosó-folyadék, lengéscsillapító olajok, kormány- ill. hidraulika olajok.

Az üzemanyagok összetevőik révén túlnyomórészt az élővizekre veszélyes folyadékok kategóriába, tehát a veszélyes hulladékok közé tartoznak. Ez alapján nemcsak eltávolításuk, hanem tárolásuk és szállításuk is megfelelő előírások figyelembe vételével történhet.

A technika mai állása szerint az üzem szerű szárazra fektetés során kb. 30 perc alatt kb. 40 kg könnyű hulladékfrakcióba tartozó anyag kerül eltávolításra, ezek mintegy 60-70%-a üzemi folyadék. Az össz. szárazra fektetési hatásfok mintegy 70%.

Egy üzem szerű szárazra fektetési tervet mutat be a következő ábra.
Az egyes üzemanyagok eltávolításával, tárolásával kapcsolatosan az alábbiakat érdemes betartani:
- Alapvetően minden üzemanyagtípus elkülönítetten (szelektíven) gyűjtendő, ez befolyással van a későbbi újrahasznosíthatóságra. Nem szabad pl. a fáradt olajhoz keverni a fékfolyadéket ez az olaj regenerálását nagymértékben megragadja.
- A tüzelőanyag eltávolítása során figyelemmel kell lenni a mindig fennálló fokozott tűz- és robbanásveszélyre (az üresnek tűző tartályban is lehetnek gázformájú frakciók).
- A közhiedelemmel ellentétben a hűtőfolyadék helye nem a csatornarendszerben van. Az etilénglikol ugyan szerves vegyület - tehát idővel lebomlik -, azonban a bomlási ideje hosszú, így jelentős többleterhelést okoz a hagyományos elven működő szennyvíztisztító műveknek.
- Az akkumulátorok saválló tartályban gyűjthetők ill. szállíthatók.
- Csak olyan helyre végyük vissza - adjuk át - az összegyűjtött fáradt olajat, akkumulatórt, ahol biztosak lehetünk a szakszerű további kezelésben. Elretetté példaként szolgálhat az utóbbi időben sok helyen - fáradt olajjal - üzemeltetett kisteljesítményű tüzelőberendezés ill. a mátravidéki falvak akkumulátorbontó „tevékenysége”. Ezáltal jelentős szennyezéstől óvhatjuk meg a környezetet.

4.3.1.1. kép Tüzelőanyag depressziós eltávolítására alkalmas berendezés felépítése ill. alkalmazása használat közben
4.3.2.1.1. kép Gépjárművek szárazra fektetéséhez használt berendezés

A tüzelőanyag eltávolítására alkalmas vákuumos berendezést mutat be az alábbi kép, a berendezés a hannoveri egyetem gépjárművek tanszékének és a VW leeri recycling-központjának együttműködésében készült.

4.3.2 Üzemanyagok újrahasznosítása

4.3.2.1 Fáradt olajok

A 75/439/EGK számú direktíva alapján a fáradt olaj olyan használt, folyékony és/vagy felfolyékony anyag, amely részben vagy egészben ásványolajból, illetve szintetikus olajból áll, beleértve az emulziókat és a víz-olaj keverékeit is.

4.3.2.1.1 A fáradt olaj hulladékok hasznosításának nemzetközi gyakorlata

Az EU-ban az olajhulladékok kezeléséről a Tanács 87/101/EGK irányelvével módosított 75/439/EGK tanácsi irányelv rendelkezik. A módosítással az eredeti irányelv gyakorlatilag teljesen átalakult, az eredeti hűsz cikkből összesen hat maradt meg változatlanul.

78
Az irányelv bevezetője rögzíti a szabályozás alapelveit és céljait. Eszerint az olajhulladékok újbóli felhasználásának legésszerűbb módja általában a regenerálás, különös tekintettel az így elérhető energia-megtakarításra. Ezért ott, ahol azt a műszaki, gazdasági és szervezeti adottságok is megengedik, elsőséget kell biztosítani az olajhulladékok regenerálásának. Ennek érvényesítése érdekében a tagállamok területükön bizonyos feltételek között meg is tilthatják az olajhulladékok égetését. Ha a tagország nem el a tiltási lehetőséggel, akkor az olajhulladékok égetését is szabályozni kell, mivel az olajhulladék égetése során képződő füstgáz olyan összetevőket tartalmaz, amelyeknek bizonyos koncentració feletti kibocsátása káros a környezetre.

Az olajhulladékok környezeti veszélyessége miatt szükséges azok begyűjtési hatékonyságának javítása és a folyamatos ellenőrzés, illetve annak szigorútására. Különösen érvényes ez a PCB/PCT-kkel szennyezett olajhulladékok égetésére vagy regenerálására.

Az európai irányelv- azon túlmenően, hogy megszabja a fáradt olajok kezelésével kapcsolatos teendőket és követelményeket - egyértelműen rögzíti a fáradt olajok kritikus minőségi ismérveit is. Ausztriában például a fáradtolaj-törvény hatálya alá tartoznak az olyan olajtartalmú hulladékok, amelyek:

- kevesebb mint 15%, a termék felhasználásából eredő szennyeződést tartalmaznak,
- kevesebb mint 30 ppm PCB-t vagy PCT-t tartalmaznak,
- 0,5%-nál kisebb a halogén-tartalma,
- 55°C feletti a lobbanáspontuk.

A fáradt olajból előállított termék PCB(PCT)-tartalmának 5 ppm alatt, halogéntartalmának pedig 0,03% alatt kell lennie. Az emlő rosszabb minőségű fáradt olajokra a veszélyes hulladékokra vonatkozó jogszabály előírásait kell alkalmazni.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a jellemező. Az irányelv az égetési tilalom mellett a környezet védelme érdekében lehetővé teszi a környezetvédelmi szempontból megfelelő körülmények között az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az irányelv az égetési tilalom mellett a környezet védelme érdekében lehetővé teszi a környezetvédelmi szempontból megfelelő körülmények között az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.

Az OECD-országokban a fáradt olajok hasznosítása (beleértve az energetikai hasznosítást is) különböző arányú, általában a 40-60% közötti nagyságrend a környezet védelme érdekében lehetővé teszi az irányelv rendelkezései figyelembe vételeé alapján. Amennyiben nem a regenerálás, sem az energetikai hasznosítás nem valósul meg, akkor az olajhulladékok biztonságos lebontásáról és ellenőrzéseket maga nem képes (vagy nem akarja) elvégezni – köteles a hulladékolajt a szükséges feljogosítással rendelkező vállalkozásnak adnia.
viszonyok lényegi torzulását, és nem idézheti elő a termékek kereskedelmének mesterséges megosztását. A támogatás fedezetéül részben a használat után hulladékka válok olajtermékekre vagy a hulladék olajra kivetett díj szolgál, de a megoldásnak összhangban kell lennie a "szemnyező fizet" elvvel. [mar, 00]

4.3.2.1.2 Az olajhulladékok hazai kezelése

Magyarországon nincs az olaj-hulladékokra vonatkozó, speciális szabályozás, azokra a veszélyes hulladékokról szóló 102/1996. (VII. 12.) Korm. rendelet előírásait kell alkalmazni.

Emellett a környezetvédelmi termédkijről, továbbá az egyes termékek környezetvédelmi termékdijáról szóló1995. évi LVI. törvény és végrehajtási szabályai vonatkoznak az ásványolaj-termékekre, illetve azok hulladékaira is. Ennek értelmében a forgalomba hozott ásványolaj-termékek után termékdijat kell fizetni a Környezetvédelmi Alapba, amely a bevételből támogatja a hulladék olajok begyűjtését és újrafelhasználását, illetve az ezeket szolgáló beruházásokat. Az igazoltan begyűjtött és hasznosított mennyiséggel arányosan lehet a befizetett termékdijat visszaigényelni.

4.3.2.1.2.1. kép Üzemanyagok eltávolítására szolgáló berendezés állványa

Az egyikre az ad okot, hogy mivel az olajok több szempontból is veszélyes anyagok (tűzveszélyesek, bizonyos adalékanyagok vagy természetes szennyező összetevők következtében esetenként toxikusak, a környezethez kerülve pedig megakadályozzák a természetes légcserét), az olajhulladékok speciális kezelési biztonságának garantálásához a veszélyes hulladékokról szóló rendelet átfogó előírásai nem elégségesek.

A másik ennél sokkal prőziabb ok, nevezetesen az Európai Unió hulladékgazdálkodási szabályozásához igazodva be kell vezetnünk az Unió olajhulladékokra vonatkozó irányelveinek előírásait. Ezeknek szintén az, hogy az olajhulladékok okozta környezeti veszélyek elhárítását külön speciális intézkedésekkel kell megoldani.

E jogharmonizációs kötelezettség kapcsán tehát az olajhulladékok „termelőinek” és kezelőinek ismerniük kell az EU irányelveket figyelemmel kísérni, lehetővé kell tenni a környezetvédelmi és egészségügyi előírások által előírt intézkedéseket.

A hazai szabályozáson a felsorolt általános követelményeknek való megfelelés módját kell megfogalmazni, figyelembe véve az EU-Irányelv további végrehajtási követelményeit is. Így meg kell tiltani az olajhulladékok felszíni és felszín alatti vizekbe, talajra, valamint közcsonthomába történő kibocsátását, az olajhulladékok feldolgozásából származó maradék anyagok ellenőrizetlen elhelyezését, továbbá minden olyan feldolgozást, amely határtartományt a környezet érinti, vagy a végrehajtásban szereplő adalékokat kizárólag néhány fémekkel és egyéb keményanyagokkal kell kezelni.

Az olajhulladékok energiahordozói is veszélyesek, bizonyos adalékkollekciók feldolgozásának alkalmazására kizárólagos jogosultak az olajhulladékok kezeléséhez és az újrahasznosításához, mint például az EU irányelvek szerint az eltérő korlátozások mellett az olajhulladékok energiahordozói szereplői.

Az olajhulladékok regenerálásánál biztosítani kell, hogy a regenerált olaj a továbbiakban ne legyen toxikus hulladék, és ne tartalmazzon 50 ppm-nél nagyobb koncentrációban PCB/PCT-t.

Az olajhulladékok kezeléséhez és a végrehajtás helyes és megfelelő elvégzéséhez az olajhulladékok kezelésénél és kezelésével kapcsolatos intézkedések általában kialakulják az Unió irányelvei azt is, hogy az olajhulladékok kezelésekor az adalékokat kizárólag néhány fémekkel és egyéb keményanyagokkal kell kezelni, és a regenerálás során el kell érni, hogy az így nyert olaj a továbbiakban ne legyen toxikus hulladék, és ne tartalmazzon 50 ppm-nél nagyobb koncentrációból.
4.3.2.1.4 Rangsorolás klórtartalom alapján

A kenőolaj kiindulási jellemzői a felhasználás során jelentősen megváltoznak, amelynek mértéke függ az olajcserék gyakoriságától és a felhasználás szakszerűségtől is.

A kenőolaj komponensei a magas üzemű hőmérsékleten egyrészt oxídálódnak, elbomlanak, módosulnak, másrésztt az olaj külső forrásokból elszennyeződik. Külső forrásokért szerepelhet például az üzemanyag, amelynek bomlástermékei - korom, olajgyléletűek, víz - az olajba kerülnek, valamint a mozgó alkatrészek kopásával képződő fémrezsekek, amelyek szintén feldúsulnak a használt olajban. Ezért a termék eredeti összetételéből nem lehet egyértelműen meghatározni a fáradt olaj jellemzőit. Ehhez járul a gyakorlatban a különböző típusú kenőolaj-hulladékok együttes gyűjtésének és egyéb „olajnemű” anyagokkal (pl. oldószerekkel) való keveredésének kedvezőtlen hatása is.

Az ipari olajokban gyakran alkalmaznak klórtartalmú származékokat, vagy a használat során szennyeződik velük az olaj. A klórtartalmú olajok készítéséhez és kezeléséhez több ként megkülönböztethető módszer létezik:

- közvetlen vagy tisztítást követő újradesztillálás és újrafinomítás,
- tisztítás fizikai eljárással,
- tisztítás az alapfolyamatok segítségével a következő módszerek alapján:
 - Az I. kategóriába sorolják azokat a fáradt olajokat, amelyek PCB-tartalma 20 mg/kg-nál és összes klór tartalma 0,02%-nál kevesebb. Ezek alkalmasak az újrafeldolgozásra.
 - Az II. kategóriába tartoznak az I. kategóriához tartozó olajok, amelyek bizonyos technikai feltételek mellett energetikai hasznosítására alkalmasak.
 - Az III. kategóriába azokat a - többnyire ismeretlen eredetű - fáradt olajokat sorolják, amelyekhez vélhetően idegen anyagok, pl. oldószerek is keveredtek. Ezek hasznosítása nem engedélyezett, kezelésük kizárólag a német szennyeződészárnyalatokban történhet.

Mindezek alapján egyértelmű, hogy a fáradt olajok hasznosítása és ártalmatlanítása környezetvédelmi szempontból különös figyelmet érdemel. Az ez irányú fejlesztési törekvések a fáradt olajok hatása és lehetőleg gazdasági hasznossal is járó kezelésére irányulnak. A nemzetközi gyakorlatban használatos megoldások:

- tisztítás fizikai eljárásokkal,
- újrafolvonás,
- közvetlen vagy tisztítást követő energetikai hasznosítás.

A tisztítási műveletek szüresét, centrifugálást alkalmaznak a szilárd szennyeződések és a víz eltávolítására. Ezek a legkisebb beavatkozást igénylő, a keletkezés helyszínén is kivitelezhető eljárások, amelyek kis mennyiségű szennyezést okoznak. A leggyakrabban tervezett ívesen keletkező szennyezések a víz és a szilárd anyagok kezelésére alkalmasak.

Ebben az esetben alapkövetelmények alapján a szennyeződések eltávolítását biztosíthatják a következő módszerek.

- A centrifugálást alkalmaznak származékok esetén, amelyek 0,02%-nál kevesebb szennyezést tartalmaznak.
- A centrifugálást építkezés alatt használt anyagok esetén is alkalmaznak.

A centrifugálásra a szilárd anyagok kezelésére vonatkozó előírások szerint történhet.

A szűrés történhet gravitációs úton vagy tűlnyomás alkalmazásával. A kolloidszennyeződések eltávolítására az alapják, amelyek stb.

A centrifugálás és a kolloidszennyeződések eltávolítása a hagyományos módszerek adapteréjével adagolható.

Az alacsony forgatópontú higító-komponensek eltávolítása ezekkel a módszerekkel nem oldható meg, és a fizikai műveletekkel végzett tisztítást a nagyobb adaléktartalmú olajok (pl. motorolajok) esetében nem ad kielégítő eredményt. Az újrafeldolgozás célja, hogy a fáradt olajokból ismét az eredeti célra alkalmas kénytelen. Az olaj eladásának előkészítése során a műveletek folyamatosan figyelembe vehetőek.
Az ún. forrókontakt eljáráson az olajat általában 140°C fölötti hőmérsékleten kezelik a derítőfölddel. Az ennél alacsonyabb forráspontú komponenseket előzetesen desztillációval el kell távolítani. Az eljárásnál problémát jelent a szennyezett derítőföld további kezelése. Kis kapacitásoknál elnyós, viszont különösen a nagyobb adalékolási szintű motorolajok esetében nagy derítőföld-felhasználást igényel.

A fáradt olajok különböző forráspontú és viszkoztatású olajok keveréseiből állnak, ezért megfelelő minőségű kenőolajok előállításához általában nem nélkülözhető a frakcionált vákuumdesztilláció művelete.

A desztilláló kolonna kiművelet és a termékminőség javítása céljából a vákuumdesztilláció rendszerint egyéb fizikai vagy kémiai tisztítóeljárásokkal - vegyszeres kezeléssel, extrakcióval, krakkolással, hidrogénezessel - kombinálják. Ezekkel a legkorszerűbb technológiákkal 90% fölötti hozamot nyernek ki a friss olajokéval azonos minőségű kenőolajokat a fáradt olajokból.

Ezek az eljárások környezetvédelmi szempontból az előírásoknak megfelelnek, maradékaire erre alkalmazza berendezéseken a nehézolajokkal együtt elégélhetők. Hátályuk a hagyományos késavas és forrókontakt eljárásokkal szemben a jelentősen nagyobb beruházási és üzemeltetési költség.

Az általánosan alkalmazott újszabályozási eljárások a következők: a hagyományos késavas-derítőföldes eljárás desztillációval párosított változata (LUWA-eljárás), a fémátriumos és frakcionált desztilláció kombinációja (Recyclo-eljárás), a vákuumdesztilláció és hidrogénezés kombinációja (KTI-eljárás), a propánoextrakció és vákuum-desztilláció együttes alkalmazása (Shamprogetti-eljárás).

Az energetikai hasznosítás nem sok előkészítést igényel, cészerű azonban a fáradt olajat üledékmentesíteni és a víztartalmat néhány százaléknál csökkenteni. Ez a feladat ülepítéssel, szűréssel, centrifugálással oldható meg.

Az előkezelési, tisztítási módszerekkel azonban elérhető, hogy a fáradt olajokat jobb tűzeléstechnikai jellemzőkkel bíró tűzelőanyaggá alakítsák. A tűzeléstechnikailag kedvezőtlen nagy víztartalmat és az ülepődő szilárdanyag-tartalmat redukálva, javulnak a betáplálási és égési kondíciók, és csökkennék az égőfő felhasználásának környezetvédelmi hatását.

Az előkezelési, tisztítási és tűzeléstechnikai felügyelési rendelkezések által támasztott követelmények betartása érdekében az előírás- vagy előkezelési eljárás, ahol a fáradt olajat újra használható formációban kell feldolgozni.

Az előkezelés és tisztítás metódusai és rendelkezések által támasztott követelmények az eljárásokra vonatkoznak. Ezek alapján az előírás- vagy előkezelési eljárások megfelelően és megfelelően megvalósíthatók.

Minden esetben előírás- vagy előkezelési eljárás hozzájárul az elkerüléshez, hogy az energiaelméleti kéziség lebontása, az orvosi és társadalmi érdekként nem célszerű és választását egészen a földes eljárás bezárását megelőzi, az energiastruktúra megújulását követően az energiatermeltetés elkerülése és a megfelelő energiaelfogadás megvalósítása fennállását biztosítja.

A fáradt olajok többségében a nem hagyományos kénsavas és forrókontakt eljárásokkal szemben, a szennyezett derítőanyagokkal többségében a nem hagyományos kénsavas és forrókontakt eljárásokkal szemben a szennyezett derítőanyagokkal többségében készíthető fáradt olaj energiaelméleti és társadalmi érdekként nem célszerű és választását egészen a földes eljárás bezárását megelőzi, az energiastruktúra megújulását követően az energiatermeltetés elkerülése és a megfelelő energiaelfogadás megvalósítása fennállását biztosítja.
4.3.2.3. Hűtőfolyadékok

A közelmúltban kifejlesztett desztháliós eljárás eredményeként a hűtőfolyadékok etilén-glikolra, vízre ill. üledékre választhatók szét.

4.3.2.3.1. ábra Hűtőfolyadékok összetétele

Az etilén-glikol útra felhasználható hűtőfolyadékok készítésére, míg a keletkező üledék megfelelő módon semlegesíthető.

4.3.2.4. Klímaberendezések hűtőközegei

4.3.2.5. A légzsákok és övfeszítők pirotechnikai szilárd anyagai

A fékfolyadékokhoz hasonlóan biztonsági okokból nem alkalmazhatók útra. Elsősorban az illetéként kezeneke jutást megakadályozzón, a kiszerelt patronokat elégetik. Az égetésnél keletkező gázok összetétele a környezetre veszélytelen, 95% nitrogén, 3% hidrogén és 2% oxigén.

4.4 Összefoglalás

Ebben a fejezetben gépjárművek bontásából származó szerkezeti anyagok újrahasznosítási lehetőségei kerültek összefoglalásra. Ez a folyamat – volumenét tekintve - elsődleges jelentőségű az EU Direktíva hasznosítási irányszámainak betartása érdekében.

Az eddigi sokéves tapasztalat alapján a shredderekben feldolgozott karosszériák fémalkotói – a mai hasznosításra kerülő járművek tömegarányára vonatkoztatva mintegy 70-75%-ot kitevő része – szinte 100%-ában hasznosításra kerültek az eljárás befejezésével, a mintegy 20-25%-nyi – üzemanyagokkal szennyezett - shredderezési könnyűfraktció – kevert műanyag-, elasztomer és üveg anyagarány – azonban lerakóba, esetleg hulladékétőbe került. Mint látható ez a tevékenység ilyen formájában lehetetlen teszi a kitűzött 85- illetve
Gépjárművek szerkezeti anyagainak újrahasznosítása

95%-nyi újrahasznosítási mérték elérését, ezért tehát elengedhetetlenül fontos a járművek feldolgozást megelőző ún. „szárazra fektetése” – azaz, üzemanyagainak eltávolítása, valamint a shredderezéses aprítást megelőző növekvő mértékű előbontás végrehajtása.

Az üzemanyagok eltávolításuk után hasznosításra kell, hogy kerüljenek, amely jelen esetben leginkább csak a fáradt olajok és a hűtőfolyadékok esetén valósul meg. A műanyag-, elasztomer- és üvegalkatrészek megfelelő újrahasznosíthatóságához hozzájárulnak az ilyen alkatrészek megfelelő megjelölése, szín-, betű-, számkoddal történő ellátása, amely lehetővé teszi a bontást végző – általában kevésbé iskolázott – személyzet számára a megfelelő beazonosítást, elkülönítést. Ezeket a jelölési rendszereket a jogalkotó úgy színtén előírta a gyártóknak az EU Direktívában.

Komplex kísérletek zajlanak a shredderezési könnyűfrakció egyéb úton történő szétválasztásának elősegítése érdekében, a ma meglevő megoldások azonban még nem rentábilisak az égetéses ártalmatlanítás mellett.
5. A recycling szempontjainak érvényesülése a modern terméktervezésben

5.1 Termékek kialakításának alapvető újrahasznosítási szempontjai

Mivel az 53/2000/EK Direktíva a gépjármű gyártójának termékfelelősségét hirdette meg, ezért a gyártó alapvető anyagi érdekévé vált, hogy termékeit olyan módon alakítsa ki, hogy az minél olcsóbban, megfelelő módon kezelhető legyen. Ennek elérése alapvetően a konstrukció stádiumában már kialakul, ezért fokozottan indokolt és szükséges azon szempontok és elvek kutatása, rendszerezése és a konstruktor számára való rendelkezésre bocsátása, ami elősegíti a reciklálás szempontjából helyes konstrukciók kialakítását.

A tervezési folyamat során a tervezőnek tekintettel kell lennie egyrészt a gyártási hulladékok mennyiségének csökkentésére (5.1.1. ábra).

5.1.1. ábra Hulladék körfolyamatok a termék teljes élettartamán

A termék tervezési eljárása (fejlesztési eljárás) a követelményjegyzékkel kezdődik az egyes munkafázisok növekvő konkretizálásai foka jellemzi (lásd melléklet ábrája).

A tervezési folyamat kiindulását jelenti követelmény jegyzék az első fontos állomás, ahol ezek a szempontok már döntő mértékben megjelennek. A követelményjegyzékben kell rögzíteni a tervezett élettartamot, valamint azokat a recycling formákat és az ezekhez kapcsolódó technológiákat, amelyeket fel kívának használni. Ez nem egyszerű feladat. (az elhasználódás időszakában rendelkezésre álló technológiák, költségek stb.) Ismerni kell azonban a tervezés időpontjában meglévő helyzetet, ami már önmagában is a gyártóművön kívüli ismeretek bevonását követeli meg.

A tervezés egyes lépésein haladva, a követelményjegyzékben megfogalmazott recycling eljárásokból adódó követelményekre kell tekintettel lenni.
Itt figyelembe kell azt venni, hogy a termék-reciklálás megvalósítása általában az alábbi technológiai műveletek végrehajtását teszi szükségessé: szét (le) szerelés, tisztítás, vizsgálat, ellenőrzés, csoportosítás (pl. kötőelemeknél) esetleges utánmunkálás, javítás (pl. henger felmunkálás), újraszerelés. Valamennyi technológiai művelet esetén ismertek azok az esetenként triviális lépések, melyek a reciklálást elősegítik. Ezeket a követelményeket szemléltetik a melléklet ábrái.

Az anyagban való recycling szintén valamilyen, az anyag, a technológia stb. függvényében szükséges technológiai folyamatot tesz szükségessé, amelyek célja az egyes anyagfélesekeket külön vagy egymással recycling szempontjából összerőhétő csoportokba csoportosítani. Ebbé beleértendő pl. az, hogy a túlzottan olaj szennyezett acél elemek nem tekinthetők összerőhétő csoportban lévőnek (acél, szénhidrogén származék.). Az anyagban való recycling szempontjából fontos a feldolgozás folyamatának ismerete, ebben közvetlenül adódik az a követelmény, hogy törekedni kell gazdaságosan reciklálható anyagféleseket alkalmazni, lehetőleg minél kevesebb félét, több anyagféleségénél összerőhétőeket, ha nem összerőhétők a könnyen szétszerelhetők legyenek.

A recycling érvényesítésének szempontjai bizonyos tekintetben nem újak a tervezésben. A minél kevesebb gyártási hulladéka való törekvés, a felújítás, a karbantartás stb. szempontjából pedig a konstrukciós kialakítás alapvetően a termék minél hosszabb ideig való felhasználhatóságának elősegítését jelenti, ami a terméktörvényszerzés szempontjaként mindig is szerepelt, ha nem is a recycling elősegítése céljából. A recíklálhatóság szempontjai bemutató konkrét megvalósítást jelent. Újraalkalmazott anyagok a követeléssel ellátó konkrét megvalósítás példákat szemléltetnek a melléklet M6-M10 ábráin. Az alapvető dilemmát itt az jelenti, hogy a műszaki fejlődéssel egyre újabb lehetőségek adódnak, így a régi, esetleg még használható termékek erőkölcsönvá lasnak el. E kérdés alapvetően összefügg a tervezett élettartam kérdésével, mind az egész berendezés mind annak egyes alkatrészei vonatkozásában. A „hosszú életű autóval kapcsolatos kutatások” – Langzeitauto – alapján egyértelmű világossá vált, hogy bár a hosszú élettartamra való tervezés, ezeket megvalósítható, de nem feltétlenül jelent gazdasági optimumot is.

Műszaki termék és természetes környezet

![Diagram](image)

5.1.2. ábra Műszaki termék és környezete

Az új technológiai eredmények ugyanis olyan megoldásokat is lehetővé tehetnek időközben, amelyek az anyagfelhasználás szempontjából kedvező hosszú élettartam hasznosságát késésgessé teszik. Sok esetben célzottan az élettartam-recycling összefüggés helyes megítélése, esetenként nagyobb haszonnal jár a rövidebb élettartam a megfelelő recycling technológiával együtt. Persze itt igen nagy nehézséget okoz mind annak előrebelesése, hogy egy adott időhorizonton belül milyen mértékű avallással kell számolni, illetve hogy egy bizonyos élettartam leteltével hogyan alakulnak majd a recycling lehetőségek és költségek.
Recycling szempontból helyesnek akkor tekinthető egy konstrukció, ha a termék egészével illetve annak egyes alkatrészei a tervezett élettartam alatt racionálisan üzemben tartó, (gazdaságosabb, inkább környezetbarát stb. műszaki megoldások megjelenése) ugyanakkor a recycling költségei elfogadható szintűek. Figyelemmel kell lenni arra az egzakton nehezen megfogható szempontra is, hogy a társadalom környezeti érzékenysége egyre határozottabb: esetenként még gazdasági hátrányokat is elfogad a környezetbarát termék kedvéért. E szempontok globális mérlegelése, illetve annak a termékkialakításban való érvényesítése a terméktervező felelőssége.

Recycling szempontjainak érvényesülése a modern terméktervezésben

5.2 Az anyagmegválasztás szerepe

Az anyagmegválasztás szerepe elsőként a konstrukcióképzésben és alapvetően meghatározza az elérhető újrahasznosítási mértékét. A európai roncsautó direktíva előírásai szerint 2015-re az anyagában történő újrahasznosítás mértéke el kell hogy érje a 95%-ot, miközben ugyanez a szabályozás – bizonyos kivételek megállapítása mellett - megtúlja az álom, a hatvégyértékű-krom, a higany és a kadmium alkalmazását. Ez azt jelenti, hogy ezeket az anyagokat a jövőben más anyagokkal kell kiváltani a konstrukcióképzés során.

5.2.1. kép Műanyag alkatrész betűkódolása

A jövőben igen fontos a shredderezési könnyűfrakció mennyiségének csökkentése, amelyet közvetlen módon elő lehet segíteni az egyes alkatrészek szín- illetve betűkódolásával. Ez azután megítélte a bontást végző személyzet előválogatási munkáját. Ilyen betűkódot mutat be a 5.2.1. kép.

Az alábbiakban az anyagmegválasztások kapcsolatos általános szabályok kerülnek ismertetésre, melyeknek megfelelően:

- Az alkatrészeket alapvetően újra- és továbbalkalmazható anyagokból kell készíteni.
- A konstrukciók már a termékfejlesztési szakaszbán gondolnia kell a szerkezeti anyagok visszanyerésére és a használati idő után alkalmazandó kezelési eljárásokra. Ehhez szükséges a termék életciklusának és az alkalmazott reciklálási útvonalak a betervezése és a követelményegyzékében való felvétele.
- Az alátámasztási követelményeknek megfelelően kell az előkészítési- és hasznosítási technológiákat meghatározni és ezek lelőhelyének elő kell segíteni az alkatrészek, alkatrészcsoporthoz és/vagy az egész termék jól látható, nem eltávolítható és gépi úton leolvasható megjelölésével az alkalmazott nyersanyagok, a megfelelő használtanyag besorolás, a szerkezeti struktúra, a bontási lehetőségek és további paraméterek tekintetében.
A recycling szempontjainak érvényesülése a modern terméktervezésben

- Ha az értékesítés szempontjából optimális egyanyagos konstrukció nem valósítható meg, akkor csak olyan anyagkombinációk hozhatók létre (a festékeket és a bevonatokat beleértve), melyek gazdaságosan és megfelelő minőség elérése mellett hasznosíthatók (használt anyagcsoport-témakör).
- Amennyiben a szétválogatás nélküli részek és csoportok anyag-összeefélethetősége nem szavatolt, abban az esetben ezeket további összeefélethetőséget biztosító (akár egyanyagos) egységekre kell bontani.
- Azokat az anyagokat, melyek az előkezelés és/vagy hasznosítás során veszélyt jelenthetnek emberre, berendezésre vagy a környezetre (pl. mérgező vagy robbanásveszélyes anyagok), minden esetben jól láthatóvá és könnyen leválaszthatóvá ír leereszthetővé kell tenni.
- A különösen értékes és ritka szerkezeti anyagokat jól felismerhetően meg kell jelölni és használat utáni könnyű elkülöníthetőségüket meg kell oldani.
- Az olyan, a teljes körű feldolgozást zavaró részek ill. csoportok, melyek a részletes szétválasztás során leválasztásra kerülnek, könnyen bonthatónak és a külső termékzónából jól hozzáférhetőnek kell lenniük, valamint külön megjelölésükkel gondoskodni kell.

5.3 Összefoglalás

Ez a fejezet a recycling szempontjainak terméktervezésre gyakorolt hatásait mutatta be. Az új célkitűzések – a hasznosítási arányszámok elérése – új kihívások elé állítják a konstruktőket.
Míg korábban a termék élettartamának követése legfeljebb az első javíthatóság értékelésével bezárult, addig ma már a termék tervezése során gondolni kell annak majdani újrahasznosíthatóságára is. Ezt a tevékenységet nevezik a már a tervezőasztalon megkezdett újrahasznosításnak.
A tervező megfelelő körültkéntessel csökkentheti a gyártási hulladékok mennyiségét, az ahhoz szükséges energia-igényt, javíthatóvá, felújíthatóvá teheti a konstrukciót, amely az üzemeltetési időszakot könnyíti meg, okoz a környezet számára kisebb terhelést.

Az életciklusának végére ért termék esetében alapvetően fontos az egyes anyagféleségek könnyű elkülöníthetősége, szétválaszthatósága. A szükséges elömunka-igény ráfordítás gyors roncsolásos technológiák lehetővé tételével csökkenthető. Amennyiben a termék felújításában gondolkodnak elsődleges a bontás, tisztítás, vizsgálhatóság-osztályozás, feldolgozhatóság, összeszerelhetőség ötös követelményrendszer betartása. Igen fontos a kötőelemek, kötési technológiák megválasztása.

Már a termék végső formájának kialakítása során be kell kalkulálni a tervezés során a majdani újrahasznosítási technológiákat.
6. Tudományos eredmények

Ez a disszertáció részletesen bemutatja a szerző gépjárművek újrahasznosítása témakörben végzett kutatómunkájának eredményeit, amelyet 1994-1998-ig a BME Gépjárművek Tanszékének doktoranduszaként, majd 1999-től kezdve a Magyar Gépjárműipari Szövetség Recycling Munkabizottságának titkáráként, 2001-től kezdve elnökeként a most formálódó magyar jogszabályi háttér kialakításának szolgálatába állíthattak.

A tudományos értekezés felöleli a járművek újrahasznosítási folyamatának teljes egészét, annak autóiparra, a környezet védelmére, a javító-felújító iparra, valamint a termékeresztsévre gyakorolt hatásának figyelembe vételével. Ennek érdekében a disszertáció az alábbi főbb témakörök szerint került felosztásra:

- „A modern gépjármű-recycling menete”, amely bemutatta a tévékenység nemzetközi- és hazai jogszabályi, műszaki háttértrendszert, rámutatva egyúttal a hazai rendszer hiányosságaira. Felvázolta továbbá a folyamat végrehajtásában kulcsfontosságú bontó- és shredder-üzemek tévékenységét, annak részletezett munkafolyamatain keresztül.

- „A Gépjárművek bontásából származó alkatrészek azonos rendeltetés célra továbbalkalmazása” felvázolta a járműmotorok alkatrészeinek minősítéséhez, felújításához tartozó technológiákat, valamint bemutatta a új, megnövelt szilárdságú, de emiatt nehezebben alakítható karosszériaanyag jövőbeli javításának lehetőségét. Egyúttal rávilágított az olyan újszerű technológiák alkalmazási lehetőségeire is, mint a gépészeti műanyag-bevonatok használata.

- „A Gépjárművek szerkezeti anyagainak újrahasznosítása” bemutatta a járművek bontásából származó szerkezeti anyagok újrahasznosítási lehetőségeit, külön kitért a jelenleg problémát okozó ún. „shredderezési könyűfrakció”-t alkotó műanyag-, elasztomer- és üzemanyag hulladékok kezelési módszereire.

- „A recycling szempontjainak érvényesülése a modern termékeresztsében” ismertető módon nyújtott az újrahasznosítás követelményei megfelelően gyakorolt hatásairól, a konstrukcióképzés és a járványosság feltételeinek érvényesítésén keresztül az egyes anyagfelhasználási költségei, és a gazdasági szereplők számára gazdasági tervezhetőséget, biztonságot jelent, míg az ellenőrző hatóság számára garantálja az EU irányában kötelezően elkészíteni, az EU Irányelv által meghatározott hasznosítási irányzások teljesítését igazoló országjelentés elkészítését.

Ezen a helyen kerül sor a kandidáló tudományos eredményeinek bemutatására, összegzésére.

A tézisek elsősorban a magyar rendszer hiányosságainak megoldására szolgáló megállapításokat tartalmazzák.

Tézis 1.

„Az 53/2000/EK roncsautókról szóló Európai Unió Direktíva hazai jogharmonizációja nem hajtható végre a folyamat teljes egészét átfogó roncsautó kezelési koncepció megalkotása nélkül. A környezetvédelmi követelmények közvetlenül a járműgazdák számára fennállnak, ezért az EU-rendkívüli megalkotásra van szükség. A koncepció megléte és az abban leírtak következményei a folyamat átláthatóságát, ellenőrizhetőségét, a gazdasági szereplők számára gazdasági tervezhetőséget, biztonságot jelent, míg az ellenőrző hatóság számára garantálja az EU irányában kötelezően elkészíteni, az EU Irányelv által meghatározott hasznosítási irányzások teljesítését igazoló országjelentés elkészítését.

Igazolás:

A roncsautó kezelési koncepció valamennyi gazdasági- és a folyamat ellenőrzését végrehajtjó szereplő (utolsó üzemelő, áttelelők, bontó- és shredderüzemek, hulladékgazdálkodók, illetékes hatóságok) jogait és kötelezettségeit definiálja a jármű forgalomból történő kivonásától kezdve addig, amíg a járműből származó (valamennyi) alkatrészeknek az illetékes hatóságok mondváltoztatásában és lebontásában, valamint a hasznosíthatósági számlában ezeknek az alkatrészeken a hasznosíthatóságának megfelelő módon elnövekedik. A koncepció megfelelő és az abban leírtak következményei a folyamat átláthatóságát, ellenőrizhetőségét, a gazdasági szereplők számára gazdasági tervezhetőséget, biztonságot jelent, míg az ellenőrző hatóság számára garantálja az EU irányában kötelezően elkészíteni, az EU Irányelv által meghatározott hasznosítási irányzások teljesítését igazoló országjelentés elkészítését.
Igazolás:
Az utolsó üzemeltető kötelessége a járművet az autógyártók, a környezettvédelmi hatóságok és a Gazdasági- és Közlekedési Minisztérium által engedélyezt - általuk jóváhagyott, és erről igazolással rendelkező rocsautó-kezelő cégeknek átadni. Ezt a kötelességet úgy lehet érvényesíteni, ha az utolsó üzemeltető csak az erre engedélyel rendelkező átvételhely, vagy bontó- esetleg shredderüzemtől kapott leadási igazolás fejében vonathatja ki járművét a forgalomból, szűnik meg az adó- ill. biztosításieljárással kötött kötelezettsége. A leadás feltételeit a szabad piaci körülményekre – azaz a jármű leadási igazolás fejében vonathatja ki járműüzembentartó csak az erre engedéllyel rendelkező rendelkezés után a roncsautók leadásához, ott semminem. Az orvosi feladat a bontási- és bontási tevékenységet nem végeznek.

A rocsautó-bontóüzemeknek el kell végezniük a jármű "szárazra feltételest", ennek során leeresztik (kiszerelelik, eltávolítják) és szakszerűen gyűjítik, tárolják, majd az üzemeltetők kezűtőbb megállapodások alapján szállítják rendeltetési helyükre az üzemanyagokat, akkumulátorokat, katalizátorokat.

A folyamat piaci alapokon történő működhetetlenségéhez szükség van az eladható, újrafelhasználható részek pl. a motor, hajtásánc elemei kiserelésére, a hasznosítási irányzások betartására pedig a fajtáhozogén módon történő előbontás végrehajtására. Külön kell kezelni az aggregátokat, a műanyag-alkatrészeket a rajtuk levő gyári jelzések alapján szükséges szétvágyat, az üveget szinezett és világos frakcióra bontva kell gyűjteni, és a további karosszéria-feldolgozás előtt arról a gumiabroncsokat, a katalizátorokat, a nem-vasféremeket, kábellevelek el kell távolítani.

Az anyag-körfolyamatok zárásának biztosítása érdekében azokat az autógyártókot, a műanyagiparnak, az úvegiparnak, a kauzuliparnak, a fémkereskedelemnek és az epiótiparnak.

A szállítási költségek csökkentése érdekében a rocsautókarosszériát elő kell kezelni, ennek módja lehet a tömörítés, prémelés. Az így előkezetelt karosszériát vagy a shredderüzemekbe, vagy az esetlegesen elvégzett teljes bontás után (mindenféle idegen anyagot eltávolítva, esetleg rocsanalással is csak az egyenmű karosszériát meghagyva) közvetlenül az acélmuvekbe kell továbbítani.

A folyamat végrehajtását ellenőriző hatóságoknak ellenőrizniük kell a bontásból származó környezetre fokozott veszélyt jelentő anyagok megfelelő gyűjtését, tárolását, elhelyezését, kezelését különösen az acélmuvekbe és műanyagok közül a potenciális potenciális veszélyt jelező típusokra.

A hatóságoknak ki kell dolgozniuk az eljárási folyamatot tartozó stratégiájukat, begyűjtésében, megfelelő környezeti hatásokat zajló esetekben, a rocsautókarosszériát és katalizátorokat, gyakorlati körülmények mellett. Az esetleges büntetésekkel befolyó összegeket a rocsautókarosszériát és katalizátorokat a rocsautók megfelelő gyűjtésében, tárolásában és kezelésében, a rocsautókarosszériát és katalizátorokat a rocsautók megfelelő gyűjtésében, tárolásában és kezelésében.
Tézis 3.

„A termékfelelısőknek – a gyártóknak- illetve az országban fellelhetı gyártó hiányában az importőıöknnek – fel kell állítaniuk a területileg elvonatkozó-visszavételi rendszer alapjait. A gyártóknak el kell érniük az EU Direktíva II. melléklete által előírt, tiltólólásra szereplı 4 anyagféleség (kadmium, higany, hatvégértéktő kröm, ólom) gyártásból történı megfelelı kivonását, gondoskodniuk kell ezen anyagok megfelelı helyettesítésérıl. A gyártók kötelessége az arra engedélylrel rendelkezı bontóüzemek folyamatos bontási információkkal történı ellátása.”

Igazolás:

Az utolsó üzemembartı „leadási kényszer” megnyilvánul az adó- és biztosításfizetési kötelezettség bevezetésében, azonban ez megfelelı területileg elvonatkozó-visszavételi rendszer hiányában a rendszer mőködésképtelenségét eredményezheti. Nem lehet ugyanis a folyamat egyetlen szereplıjét sem nem elvárható mértékő kötelezettséggel, jelen esetben száz kilométerekben mérhetı roncszállítási költségékek terheli. A magyar viszonylatok között elvárható maximális roncsbeszállítási távolság 50 km lehet. Ez az elvárható mérték

A tiltólistán szereplı anyagféleségek helyettesítése nem egyszerő feladat, mindamellett a felsorolt anyagok potenciális veszélyessége miatt mindenügyen indokolt és szükségszerő. Ezen a területen az autógyártók nemzetközi szervezetekbe tömörülve, a költségmegosztás elvét alkalmazva próbálnak megoldást találni az potenciális veszélyessé miatt valamennyi típusának jellemzı

Tézis 4.

„Meg kell teremteni a hulladékteljesítményt és állapotban anyagi rendszer alapjait. A hasznosítási díj koncepció hatókörét ki kell terjeszteni valamennyi a jármő üzembe során előforduló problémának anyagra. A díjak megfelelı felhasználása érdekében a gyártóknak- importőıöknnek létre kell hozniuk egy olyan non-profit szervezetet (KHT – Közhasznú Társaság formájában), amely végrehajtja a termékfelelısők befizetéseit és azokból ellenőrzött módon finanszírozza a folyamatot. A fellelhetı gyártó- illetve importőr néhány gépjármőtípusok esetén mindenügyen állami szerepvállalásra van szükség, meg kell vizsgálni továbbá, hogy a felállítandı non-profit szervezet milyen feltételek mellett tudja ezeknek a járműveknek a kezelését, hasznosítását felvállalni. A magánimport keretében az országba érkezı járművek esetében a termékfelelıség az importált magánvezérelt kell, hogy terhelje, melynek során neki kell a majdan roncsas válo jármő megfelelı hasznosításáról gondoskodnia.”

Igazolás:

Jelenleg Magyarországon a könnyüfrakciókat alkotó (mőanyag-, elasztomer, üveg) szerkeztek anyagok piacai stagnáló képet mutat, a termelés kezdı lépést, érdemelt termékeket előállító cégek olsóban tudnak minıségő termékeket előállítani új anyagból, miközben egyfajta elıítélet is megtartódott a használt anyagok felhasználása iránt. Az előítéletek leküzdése miatt komoly kockázatokat a gondoskodó gazdasági ösztönzőrendszer kidolgozása. Ennek a rendszerek a kiépítését szerepet feltevı tudni tudja ezeknek a javítményeknek a kezelését, hasznosítását felvállalni. A magánimport keretében az országba érkezı járművek esetén a termékfelelıség az importált magánvezérelt lehet, hogy terhelje, melynek során neki kell a majdan roncsas válo jármő megfelelı hasznosításáról gondoskodnia.”

Tézis 5.

„Hagyományos hasznosítási módon – karosszériák előkezelés nélküli shredderezéses aprításával – az elıért 75%-női hasznosítási mérték nem növelhetı tovább.” Az 53/2000/EK Direktíva által elıírt hasznosítási irányelv alkalmazása érdekében elengedhetetlenül szükséges a járművekbıl az üzemanyagok előzetes elátovilága („szárazra fektetés”) és a megfelelı mértékú mőanyag- és elasztomer alkatrészekre is kiterjedő előbontás végrehajtása.”
Igazolás:
Az elmúlt 20 évben gyártott gépjárművek szerkezeti anyag-összetételét tekintve elmondható, hogy azok mintegy 70-75%-nyi arányban fémyagokat tartalmaznak az utóbbi években csökkenő jelleggel, amelyek a szokásos shredderezéses eljárást követő mágneses, ill. sűrűségkülönbségen alapuló szeparációs technikák alkalmazásával megfelelő mértékben kiválaszthatóak, újrahasznosíthatóak. A fémyagok legnagyobb koncentrációban a motor tömb mellett a járműkarosszériaiban vannak jelen, amelynek össz-hasznosítási mértékére gyakorolt kedvező hatása a magyar járműállományban jellemző nagyszámú Trabant gépkocsi miatt kevésbé érvényesül. Az ún. shredderek utáni technológiák – post shredding technologies – alkalmazhatóságának előfeltétele az üzemanyagok előzetes eltávolítása, mivel a veszélyes hulladékkal szennyezett anyagfrakciók még az esetleges szétválasztásuk után is csak igen költséges tisztítási műveletet követően válhatak újrahasznosíthatóvá. Mint látható a műanyagok előnyére csökkenő mértékű fémfelhasználás a járművekben és a Magyarországon egyébként is adott nagymennyiségű műanyag karosszéria mellett csak és kizárólag az üzemanyagok előzetes eltávolítása és a nagyobb műanyag-, üveg- és elasztomer alkatrészek előbontása és elkülönített hasznosítása teremtheti meg az előírt hasznosítási irányvonalak (85%-nyi újrahasznosítás 2006.01.01.-ére, valamint 95%-os újrahasznosítási mérték 2015.01.01.-re) teljesíthetőségét.
HIVATKOZÁSOK

[vad, 85] Vadász Emil Dr. – TMK zsebkönyv – Müszaki Könyvkiadó - Budapest 1985

PUBLIKÁCIÓK

1995-től

Folyóirat cikkek

[luk, 02a] Lukács Pál – A gépjármű-újrahasznosítás aktuális kérdései – Hulladéksors – 2002. 10. szám
[vad, 95] Dr. Vadász Emil - Lukács Pál - Gépészeti műanyagbevonatok elmélete és gyakorlati kérdései - Karbantartás & Diagnosztika II. évf. 4. szám 95. december, A. A. Stádium Kft.
Konferencia előadások, konferencia kiadványban megjelenő munkák

[luk, 02a] Pál Lukács – Die Wirkungen der EU-Richtlinie 2000/53/EC auf die Automobilindustrie – Expertentagung, Arbeit und Gesundheit in der zukünftigen Gesellschaft – Kloster Banz, Deutschland, 03-05.05.2002

Kutatási jelentések készítésében való részvétel, szakvélemények, tanulmányok

[tüv, 00] TÜV Hannover-KTI Kft. – A gépjármű újrahasznosítás magyarországi rendelettervezetének elkészítése, Környezetvédelmi Minisztérium támogatott: Dr. Kosaras Márta 2000.

Tankönyvek, jegyzetek, oktatási segédletrészek

A disszertációban bemutatott ábrák, képek, táblázatok jegyzéke

2.1.1.1.1 táblázat Az 53/2000/EK Direktíva II. számú melléklete ... 7
2.1.1.2.1. ábra Az ACEA által megvalósításra javasolt rendszer modellje ... 10
2.1.1.3.1. ábra A német újrahasznosítási rendszer szemléltetése a VW újrahasznosítási koncepcióján keresztül 11
2.1.1.3.1. táblázat Bontóüzemekben feltárt hiányosságok .. 12
2.1.1.4.1. táblázat Az ARN Igazgatósanácsa által az eddigi működés során háromévente megállapított hulladék- hasznosítási díj eddigi alakulása ... 15
2.1.1.4.2. táblázat Az ARN által az egyes költségtípusokra kifizetett prémiumok ELV-re vonatkozóan maximális mértéke ... 15
2.2.1.1. táblázat Az ARN által az eddigi működés során háromévente megállapított hulladék- hasznosítási díj eddigi alakulása ... 15
2.2.1.2. táblázat Az ARN által az eddigi működés során háromévente megállapított hulladék- hasznosítási díj eddigi alakulása ... 15

A disszertációban bemutatott ábrák, képek, táblázatok jegyzéke
A mellékletben szereplő ábrák, képek, táblázatok

M.1. ábra Az ACEA ingyenes visszavétel lehetőségét tartalmazó megoldási javaslatának folyamatábrája...............103
M.1. táblázat A holland ARN rendszerben prémiummal támogatott anyagféleségek kg-ban mért mennyisége egy gépjárműre vonatkoztatva a 2000. évben..104
M.2. ábra Forgalomból történő kivonások és az egyes EU-országokban kezelt rocsautók mennyisége 2000. évben 105
M.2. táblázat Az egyes EU-országok meleghalakjai jogszabályai, illetve az EU-ELV Direktíva harmonizációjának aktuális helyzete...106
M.3. táblázat Az egyes EU-országok aktuális rocsautó-visszavétel rendszereinek gazdasági hátttere107
M.4. táblázat Az egyes EU-országok gazdasági elképzeléseit az EU-Direktíva harmonizációja érdekében................108
M.5. táblázat Az egyes EU-országok gazdasági elképzeléseit az EU-Direktíva harmonizációja érdekében..............109
M.6. táblázat Az egyes EU-országok begyűjtési és bontási helyzetének felmérése...110
M.7. táblázat Az egyes EU-országok begyűjtési és bontási helyzetének felmérése...111
M.8. táblázat Az egyes EU-országok szerszámok szállítási költségeinek felmérése...112
M.9. táblázat A magyar járműállomány típus- és életkor szerinti összetételének változása 1990-től 2002-ig...............117
M.10. táblázat A Magyarországon kereskedelmi forgalomban értékesített járművek típusösszetétele 2001-ben....118
M.11. táblázat Személygépkocsik forgalomba helyezése Magyarországon 2001-ben, a gyártási év szerint...........119
M.3. ábra A tehergépjármű állomány változása 1990 és 2001 között, illetve várható változása 2002 és 2007 között...121
M.12. táblázat Volt szocialista gyártású személygépkocsik darabszámának változása 2002-ig, illetve a változás várható trendje 2007-ig...122
M.13. táblázat Volt szocialista gyártású tehergépjárművek darabszámának változása 2002-ig, illetve a változás várható trendje 2007-ig...122
M.4. ábra Shredder technológia folyamatábrája..123
M.5. ábra Az általános termékkutatás relációja a kijelölt vállalatok között...124
M.6.ábra Példák bontás-helyes konstrukciókra..125
M.7. ábra Példák tisztítás-helyes konstrukciókra..125
M.8. ábra Példák osztályozás-helyes konstrukciókra ..125
M.9. ábra Példák feldolgozás-helyes konstrukciókra ..125
M.10. ábra Példák összeszerelés-helyes konstrukciókra ..126
M.11. ábra Példa az IDIS (International Dismantling System) rendszerben történő jármű-típus kiválasztásra...........127
M.12. ábra Üzemanyagok elhelyezkedésének szemléltetése adott jármű-típusban az IDIS rendszerében.................127
M.13. ábra Üzemanyagok eltávolítási útmutatója az IDIS-ben..127
M.14. ábra Műanyag-alkatrészek összetételének szemléltetése az IDIS-ben..127
Melléklet
Visszavétel
Roncsautók feltételezhető alkatrész-maradványértékkel

Más termékek

Más termékek

Shredderezés

Lerakás

Égetés

Reciklálás

Lerakás

Gyártói termékfelelősség

Inform. áramlás a felügyelőségnek

Égetés Reciklálás Lerakás

M.1. ábra Az ACEA ingyenes visszavétel lehetőségét tartalmazó megoldási javaslatának folyamatábrája
M.1. táblázat A holland ARN rendszerben prémiummal támogatott anyagféleségek kg-ban mért mennyisége egy gépjárműre vonatkoztatva a 2000. évben.

<table>
<thead>
<tr>
<th>Veszélyes hulladékok</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hütőfolyadék</td>
<td>3,6</td>
</tr>
<tr>
<td>2. Olaj</td>
<td>4,9</td>
</tr>
<tr>
<td>3. Fékfolyadék</td>
<td>0,3</td>
</tr>
<tr>
<td>4. Akkumulátor</td>
<td>13,3</td>
</tr>
<tr>
<td>5. Szélvédőmosó folyadék</td>
<td>1,0</td>
</tr>
<tr>
<td>6. LPG-tank</td>
<td>(0,06 db)</td>
</tr>
<tr>
<td>7. Üzemanyag</td>
<td>5,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nem veszélyes hulladékok</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8. PUR hab ülések</td>
<td>6,5</td>
</tr>
<tr>
<td>9. Gumi csikok</td>
<td>7,7</td>
</tr>
<tr>
<td>10. Műanyag lókhárítók</td>
<td>5,2</td>
</tr>
<tr>
<td>11. Biztonsági övek</td>
<td>0,4</td>
</tr>
<tr>
<td>12. Kókusz szálas ülések</td>
<td>0,9</td>
</tr>
<tr>
<td>13. Üvegek</td>
<td>25,4</td>
</tr>
<tr>
<td>14. Rácsok</td>
<td>0,8</td>
</tr>
<tr>
<td>15. Irányjelzők és hátsó lámpák</td>
<td>1,4</td>
</tr>
<tr>
<td>16. Disztárncsák</td>
<td>0,7</td>
</tr>
<tr>
<td>17. Tömök</td>
<td>0,2</td>
</tr>
<tr>
<td>18. Gumiabroncsok</td>
<td>27,3</td>
</tr>
<tr>
<td>Összesen (kg)</td>
<td>104,6</td>
</tr>
</tbody>
</table>

A fenti táblázat alapján számítható újrahasznosítási arányszám az alábbiak szerint alakul:

- Egy ELV átlagos üres tömege: 906 kg
- Átlagos fémtartalom: 75 %
- ARN anyagok (kivéve üzemanyagok): 99,6 kg
- ARN anyagok (kivéve üzemanyagok): 11 %

Újrahasznosítási arányszám: 86 %
M.2. ábra Forgalomból történő kivonások és az egyes EU-országokban kezelt járművek 2000. évben
[acea, 02]

Összesen a forgalomból kivontak 11.090 ezer darabot, míg az országokon belül kezelték 7.335 ezer darabot, azaz a kezelendő járművek több mint harmadát nem az EU-n belül kezelték (a roncsautók célállomásai: Afrika, Közép- és Kelet-Európa, arab világ)
<table>
<thead>
<tr>
<th>Ország</th>
<th>Meglevő ELV-rendelet vagy önkéntes kezdeményezések</th>
<th>Főbb követelmények</th>
<th>Az EU ELV-Direktíva jogharmonizáció végrehajtásának állapota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>A rendeletek a Hulladékkedezési Törvényen alapulnak, az autóipar önkéntes kötelezettségvállalása az ELV-ék visszavételére 1992 óta él</td>
<td>Szennyező-mentesítés (veszélyes alkotók eltávolítása), kezelés shredderben</td>
<td>Megvalósíthatósági tanulmány folyamatban</td>
</tr>
<tr>
<td>Belgium</td>
<td>Flamand törvények 1999.06.01. óta, hasonlót kivának bevezetni a vallon területen ill. Brüsszelben is.</td>
<td>Ingyenes visszavétel, a 85% anyagában történő hasznosítás előrészét 2005.01.01-el (azzaz az EU által előírt négy évre korábban) kivánják teljesíteni.</td>
<td>Hamarosan végrehajtják a jogharmonizációt, az EU-direktívának megfelelő ingyenes roncsvisszavétel intézményét az előírthoz képest egy évvel korábban (2006.01.01.) kívánják bevezetni.</td>
</tr>
<tr>
<td>Finnország</td>
<td>Nincs</td>
<td>Nincs</td>
<td>Előkészületben.</td>
</tr>
<tr>
<td>Franciaország</td>
<td>Önkéntes megállapodás (1993-ból)</td>
<td>Szennyező mentesítés (veszélyes összetevők eltávolítása), a shredder könnyőfrakció lerakásának korlátozása</td>
<td>A 10. számú rendelet több miniszterium által előkészítés alatt áll.</td>
</tr>
<tr>
<td>Görögország</td>
<td>Nincs</td>
<td>Nincs</td>
<td>A megvalósíthatósági tanulmány elkészítését megkezdik.</td>
</tr>
<tr>
<td>Irország</td>
<td>Az önkéntes kötelezettségvállalás általános vitája zajlik.</td>
<td>Nincs</td>
<td>Vita alatt áll.</td>
</tr>
<tr>
<td>Hollandia</td>
<td>5 szervezet által létrehozott speciális kezelőszerv (ARN).</td>
<td>Újrahasznosítási kvóták, a minősített hulladékkhasznosítók eladata a rendszer környezetbarát működéséhez.</td>
<td>2001-ben a rendeleten megtételezték. A holland kormány az EU 2015-os célkitűzéseinek teljesítését (95%-os anyagában történő hasznosítási mérték) 2007-re előrehozta.</td>
</tr>
<tr>
<td>Norvégia</td>
<td>Kormányzati rendszer (1978)</td>
<td>Veszélyes alkotók eltávolítása, bontóüzemekre vonatkozó előírások</td>
<td>A kormányzati rendszer magánközösségre történő átadásának lehetőségét vizsgálják.</td>
</tr>
<tr>
<td>Portugália</td>
<td>Hulladékudvarokra vonatkozó rendelkezések</td>
<td>Kezelés, Certificate of Destruction (hasznosítási igazolás)</td>
<td>Nyitott, a kormányzat a portugál autógyártók javaslataira vár.</td>
</tr>
</tbody>
</table>
M.3. táblázat Az egyes EU-országok aktuális roncsautó-visszavételei rendszereinek gazdasági háttere
[acea, 02]

<table>
<thead>
<tr>
<th>Ország</th>
<th>Piaci feltételek</th>
<th>Ingyenes roncsvisszavétel</th>
<th>Termékdíjas rendszer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>X</td>
<td>Ingyenes visszavétel új vagy használt autó vásárlása esetén.</td>
<td>X</td>
</tr>
<tr>
<td>Dánia</td>
<td>Az utolsó üzemeltető és a bontóüzem közötti tárgyalás eredményeként alakul ki az átvétel feltétele (a tulajdonos ráfizetése vagy a bontóüzem fizet a roncsért).</td>
<td>Indirekt (az utolsó üzemeltető fizet a jármű hasznosításáért, kb. 800-1000 DK összegben, viszont 1500 DK kompenzációs díjban részesül, ha be tudja mutatni az engedélyezett bontóüzem által kiadott, az autóroncs leadását igazoló CoD-ét (hasznosítási igazolás).</td>
<td>Eves 90 DK mértékű díj befizetése autónként. Ezt a pénzt a kötelező felelősségbiztosítási keret prémium részével együtt kezelik.</td>
</tr>
<tr>
<td>Finnország</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Franciaország</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Görögország</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Irrország</td>
<td>Vita alatt.</td>
<td>2002-től kezdve ingyenes visszavétel; járulékos illetékkivetési koncepció vita alatt.</td>
<td>X</td>
</tr>
<tr>
<td>Olaszország</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hollandia</td>
<td>X</td>
<td>Járulékos illetékrendszer</td>
<td>X</td>
</tr>
<tr>
<td>Norvégia</td>
<td>X</td>
<td>Járulékos illetékrendszer, valamint a fémhulladékok hasznosításából származó bevétel.</td>
<td>X</td>
</tr>
<tr>
<td>Portugália</td>
<td>X</td>
<td>2001. novemberéig új autó vásárlása esetén bónusz beszámítása</td>
<td>X</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Svédország</td>
<td>X</td>
<td>Az 1998. január 1-jétől forgalomba helyezett gépjárművek ingyenes visszavétele a gyártók felelőssége.</td>
<td>Az utolsó üzemeltető részére bónusz fizetnek, ennek alapja egy állam által létrehozott alapba minden új jármű üzembe helyezésekor befizetendő illetékkkel teremtik meg.</td>
</tr>
<tr>
<td>Egyesült Királyság</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
M.4. táblázat Az egyes EU-országok gazdasági elképzelései az EU-Direktíva harmonizációja érdekében
[acea, 02]

<table>
<thead>
<tr>
<th>Ország</th>
<th>Az autógyártók (hasznosító ipar) álláspontja</th>
<th>A kormányzat elképzelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dánia</td>
<td>Elképzelhető, hogy az importőrök átvállalják a hasznosítás költségeit, de az első 5-8 éven igen kis költséget hajlandók elfogadni.</td>
<td>Nincs ismert álláspont, de elképzelhető, hogy az autógyártókkal való megnyugtató megoldásra törekednek.</td>
</tr>
<tr>
<td>Finnország</td>
<td>Nyitott, az importőrök 50%-nnyi költséget a biztosítási vagy adókeretek terhére, 50%-ot saját költségükre javasolnak elszámolni.</td>
<td>Nyitott.</td>
</tr>
<tr>
<td>Franciaország</td>
<td>Megbízásos alapuló visszavétel a shredderüzemekben. Az autógyártók csak a shredderüzemek bizonytható ráfizetésének erejéig hajlandók a költségeket viselni.</td>
<td>Az autógyártók (hasznosító ipar) álláspontjának megnyugtató változásai előfordulhatnak.</td>
</tr>
<tr>
<td>Görögország</td>
<td>Nyitott</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Írország</td>
<td>X</td>
<td>Valamennyi járműkategóriában hasznosítási illeték bevétele</td>
</tr>
<tr>
<td>Olaszország</td>
<td>Nyitott</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>X</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Norvégia</td>
<td>Fejlesztés alatt, esetlegesen a kormányzat és az importőrök megállapodásával.</td>
<td>X</td>
</tr>
<tr>
<td>Portugália</td>
<td>Az ELV téma tárgyalása a kezdeteknél tart.</td>
<td>Az ARN-hez hasonló együttes hulladékkhasznosítási rendszer, közös termékdíj alapok.</td>
</tr>
<tr>
<td>Svédország</td>
<td>X</td>
<td>Nincs szükség a rendszer megvalósítására, mivel a gyártók 1998 óta viselik a termékfelelősséget.</td>
</tr>
</tbody>
</table>
M.5. táblázat Az egyes EU-országok gazdasági elképzelései az EU-Direktíva harmonizációja érdekében
[acea, 02]

<table>
<thead>
<tr>
<th>Ország</th>
<th>Az autógyártók (hasznosító ipar) álláspontja</th>
<th>A kormányzat elképzelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Termékdíjs megoldás vitája várható. Cél a 2004 előtti megvalósítás.</td>
<td>X</td>
</tr>
<tr>
<td>Dánia</td>
<td>Nyitott, a jelenlegi termékdíjs megoldás meghosszabbítása várható.</td>
<td>Nyitott.</td>
</tr>
<tr>
<td>Finnország</td>
<td>Nyitott, az importőrök 50%-nyi költséget a biztosítási vagy adókeretek terhére, 50%-ot saját költségükre javasolnak elszámolni.</td>
<td>Nyitott.</td>
</tr>
<tr>
<td>Franciaország</td>
<td>Megbízásos alapuló visszavétel a shredderüzemekben. Az autógyártók csak a shredderüzemek bizonytható ráfizetésének erejéig hajlandóak a költségeket viselni.</td>
<td>Az autógyártók (hasznosító ipar) álláspontjával megegyező.</td>
</tr>
<tr>
<td>Görögország</td>
<td>Nyitott</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Irország</td>
<td>X</td>
<td>Valamennyi járműkategóriában hasznosítási illeték befizetése</td>
</tr>
<tr>
<td>Olaszország</td>
<td>Nyitott</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>X</td>
<td>Nyitott</td>
</tr>
<tr>
<td>Norvégia</td>
<td>Fejlesztés alatt, esetlegesen a kormányzat és az importőrök megállapodásával. A hatóságok kezdeti segítségére számíthatanak.</td>
<td>Az újrahasznosítási infrastruktúra fejlesztése a cél, a korábbi ingyenes visszavétel intézménye kivánatos.</td>
</tr>
<tr>
<td>Portugália</td>
<td>Az ELV témakör a kezdetektől tart.</td>
<td>Nincs konkrét elképzelés a gazdasági háttér működésével kapcsolatban. Amennyiben a rendszer vesztesége kimerül, az autógyártók a veszteség finanszírozóik.</td>
</tr>
<tr>
<td>Svédország</td>
<td>X</td>
<td>Nincs szükség a rendszer megváltoztatására, mivel a gyártók 1998 óta viselik a termékfelelősséget.</td>
</tr>
</tbody>
</table>
M.6. táblázat Az egyes EU-országok begyűjtési és bontási helyzetének felmérése [acea, 02]

<table>
<thead>
<tr>
<th>Ország</th>
<th>Minősített gyűjtőpontok száma</th>
<th>Minősített bontóüzemek száma</th>
<th>Ebből független auditáló által minősítettek száma (C)</th>
<th>Az autógyártók által minősített bontóüzemek</th>
<th>A veszélyes összetevők eltávolítására vonatkozó kötelezettség</th>
<th>A hasznosítási igazolás (CoD) kiállításra kerül</th>
<th>A CoD megélő feltétele a forgalomból történő kivonásnak</th>
<th>Feltételei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>1.553</td>
<td>Kb. 4.000</td>
<td>-</td>
<td>-</td>
<td>Igen</td>
<td>V</td>
<td>Nem</td>
<td>Igen, amennyiben minősített</td>
</tr>
<tr>
<td>Belgium</td>
<td>Dílerek / disztibútorok</td>
<td>7</td>
<td>0 (tervezés alatt)</td>
<td>7</td>
<td>Igen</td>
<td>Igen, amennyiben minősített</td>
<td>Tervezés alatt</td>
<td>Igen, amennyiben minősített</td>
</tr>
<tr>
<td>Dánia</td>
<td>190</td>
<td>190</td>
<td>0</td>
<td>0</td>
<td>Igen</td>
<td>Igen, amennyiben minősített</td>
<td>Nem</td>
<td>Nem</td>
</tr>
<tr>
<td>Finnország</td>
<td>(D)</td>
<td>X</td>
<td>30</td>
<td>0</td>
<td>Igen</td>
<td>Igen, amennyiben minősített</td>
<td>Nem</td>
<td>Nem</td>
</tr>
<tr>
<td>Franciaország</td>
<td>(D)</td>
<td>1.200</td>
<td>450</td>
<td>310</td>
<td>Igen</td>
<td>Igen, amennyiben minősített</td>
<td>Nem</td>
<td>Nem</td>
</tr>
<tr>
<td>Németország</td>
<td>15.000</td>
<td>1.139</td>
<td>1.139</td>
<td>300</td>
<td>Igen</td>
<td>Igen, amennyiben minősített</td>
<td>Igen</td>
<td>Igen</td>
</tr>
<tr>
<td>Görögország</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Nem</td>
<td>Nem, Nem</td>
<td>Nem</td>
<td>Nem</td>
</tr>
<tr>
<td>Irország</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0, 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Olaszország</td>
<td>(D)</td>
<td>1.800</td>
<td>0</td>
<td>314</td>
<td>Igen</td>
<td>Igen, Tervezés alatt</td>
<td>Igen, amennyiben minősített</td>
<td>Tervezés alatt</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>Nem</td>
<td>Nem, Nem</td>
<td>Nem</td>
<td>Nem</td>
</tr>
<tr>
<td>Hollandia</td>
<td>(D)</td>
<td>700</td>
<td>265</td>
<td>265</td>
<td>Igen</td>
<td>Igen</td>
<td>Igen</td>
<td>Tervezés alatt</td>
</tr>
<tr>
<td>Norvégia</td>
<td>(D)</td>
<td>135</td>
<td>0</td>
<td>0</td>
<td>Igen</td>
<td>Igen</td>
<td>Igen</td>
<td>Tervezés alatt</td>
</tr>
<tr>
<td>Portugália</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Igen</td>
<td>Igen</td>
<td>Igen</td>
<td>Nem</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>0 (tervezés alatt)</td>
<td>110 (V) – (+300)</td>
<td>0</td>
<td>0</td>
<td>Néhány (V)</td>
<td>0 (tervezés alatt)</td>
<td>0 (Tervezés alatt)</td>
<td>0 (Tervezés alatt)</td>
</tr>
<tr>
<td>Svédország</td>
<td>(D)</td>
<td>790</td>
<td>14</td>
<td>75</td>
<td>Igen</td>
<td>Igen</td>
<td>Igen</td>
<td>Igen</td>
</tr>
<tr>
<td>Egyesült Királyság</td>
<td>(D)</td>
<td>3.600</td>
<td>0</td>
<td>20</td>
<td>Helyi változatok</td>
<td>25% (V)</td>
<td>Tervezés alatt</td>
<td></td>
</tr>
</tbody>
</table>

(D) a törvény szerint a bontóüzemek, mint gyűjtőpontok is működnek, (V) Önkéntes megállapodás, vagy önkéntes kezdeményezés, (C) az auditálást akkreditált szervezet hajtja végre.
<table>
<thead>
<tr>
<th>Ország</th>
<th>Akkumulátorok</th>
<th>Gumihordozók</th>
<th>Pinotechnikai eszközök</th>
<th>Veszélyes anyagok</th>
<th>CFC</th>
<th>HFC</th>
<th>Lengéscsillapítók</th>
<th>Kerékkiegyszerűző olomsúlyok</th>
<th>Üzem folyadékok</th>
<th>Megjegyzések</th>
<th>Kiválasztható anyagok</th>
<th>Üveg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>Dánia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnország</td>
<td>(P)</td>
<td>(P)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P)</td>
</tr>
<tr>
<td>Franciaország</td>
<td>X (4)</td>
<td>X (4)</td>
<td>X (4)</td>
<td>X (4)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>Németország</td>
<td>X</td>
<td>X (1)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>(2)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Görögország</td>
<td></td>
</tr>
<tr>
<td>Írország</td>
<td>X (V)</td>
<td>X (V)</td>
<td></td>
</tr>
<tr>
<td>Olaszország</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxemburg</td>
<td></td>
</tr>
<tr>
<td>Hollandia</td>
<td>X</td>
<td>X</td>
<td>X (3)</td>
<td>X (3)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(3)</td>
<td>X (3)</td>
<td></td>
</tr>
<tr>
<td>Norvégia</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Portugália</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>Spanyolország</td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>Svédország</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egyesült Királyság</td>
<td>X</td>
<td></td>
<td>(L)</td>
</tr>
</tbody>
</table>

(A) A teljes I. számú melléklet szerint, (L) Helyi változatok, (P) Az importörök elképzeléseinek megfelelően, (V) Önálló
(1) „eltávolítani célzó” (mint nagyobb műanyag alkatrészek, üveg, ülések, réz kopóalkatrészek), (2) amennyiben nem kerül kiürítésre, (3) 2002. július 1-je után, ha nem választják el és nem hasznosítják újra a shredderezést követően, (4) Minősített bontóüzemek (önkéntes alapon)
M.8. táblázat Az egyes EU-országok shredderüzemeire vonatkozó felmérés [acea, 02]

<table>
<thead>
<tr>
<th>Ország</th>
<th>Shredderüzemeket műkötő vállalkozások száma</th>
<th>Shredderüzemek száma</th>
<th>Ebből független auditáló által minősített shredderüzemek száma</th>
<th>Előkezeletlen ELV-ket átvevő és veszélyes összetevőktől nem megtisztított roncsok feldolgozását végzik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausztria</td>
<td>6</td>
<td>6</td>
<td>X</td>
<td>Nem</td>
</tr>
<tr>
<td>Belgium</td>
<td>?</td>
<td>12</td>
<td>0</td>
<td>Igen</td>
</tr>
<tr>
<td>Dánia</td>
<td>5 (ADRI) – 6 (GM)</td>
<td>12 (ADRI) – 14 (GM)</td>
<td>0 (ADRI) – 1 (GM)</td>
<td>Nem</td>
</tr>
<tr>
<td>Finnország</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>1 igen, 1 nem</td>
</tr>
<tr>
<td>Franciaország</td>
<td>42</td>
<td>X</td>
<td>41</td>
<td>Igen (P)</td>
</tr>
<tr>
<td>Németország</td>
<td>41</td>
<td>X</td>
<td>41</td>
<td>Nem</td>
</tr>
<tr>
<td>Görögország</td>
<td>2-3 (N)</td>
<td>2-3 (N)</td>
<td>X</td>
<td>Nem (?)</td>
</tr>
<tr>
<td>Írország</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Igen</td>
</tr>
<tr>
<td>Olaszország</td>
<td>16</td>
<td>X</td>
<td>X</td>
<td>Nem (?)</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Hollandia</td>
<td>5</td>
<td>11</td>
<td>5 / 11 (1)</td>
<td>Nem</td>
</tr>
<tr>
<td>Norvégia</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>Nem</td>
</tr>
<tr>
<td>Portugália</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Nem</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>21</td>
<td>?</td>
<td>0</td>
<td>Igen</td>
</tr>
<tr>
<td>Svédország</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>Nem</td>
</tr>
<tr>
<td>Egyesült Királyság</td>
<td>8</td>
<td>37</td>
<td>X</td>
<td>Igen</td>
</tr>
</tbody>
</table>
A 28/2001 (VI.15.) Kormányrendelet 3. számú, „Szabályzat a veszélyes hulladékok gyűjtéséről és tárolásáról” íródott mellékletének a gépjármű bontótelep létesítési és üzemeltetési szempontjából legfontosabb előírásai a következők:

- Hulladékgyűjtő-hely a roncsautó begyűjtéssel átvetett veszélyes hulladékok elhelyezésére szolgáló külön kialakított gyűjtőhely, amely különböző műszaki megoldásokkal biztosítja, hogy a gyűjtés és tárolás idején alatt a veszélyes hulladékok ne szennyezzék a környezetet.

- A gyűjtőhely szigetelési rendszere kialakítható nyílttéri vagy fedett módon az alábbiak szerint.

Nyílt téren történő kialakítás

![Diagram]

Nyílt téren kialakítás

Tehergépkocsi-forgalom számára kialakított beton- vagy aszfaltfelületű térburkolás

Szivárgórendszer a csurgalékvíz gyűjtésére

A gyűjtendő veszélyes hulladékok a térburkolat anyagával való esetleges kémiai kölcsönhatásait a térburkolat anyagának (felületi kezelésével) megtervezésekor figyelembe kell venni.

Fedett helyen történő kialakítás

![Diagram]

Fedett gyűjtő-terület

Teherbíró padozat (folyadékzáró, szükség szerint vegyszerálló felületi védelem)

Ellenőrző szivárgó

A tároló-előkezelő telep szigetelési rendszere

Nyílttéri kialakítás

![Diagram]

Szilárd térburkolat

Szivárgórendszer a csurgalékvíz gyűjtésére

Műszaki védelem (szigetelő réteg)

A szivárgórendszer a térburkolat teljes felülete alatt készíttendő el.
A fedett tárolók funkcionális, épületszerkezeti és épületgépészeti kialakítására vonatkozó követelményeket – a helyi körülmények és a hulladék környezeti veszélyességét mérlegelve – az engedélyben szükséges rögzíteni.

- A környezetvédelmi hatóság engedélyt adhat a gyűjtőhelynek a technológiai épületben való kialakítására és üzemeltetésére - egyedi esetként vizsgálva - annak a gazdálkodó szervezetnek, amely egy telephelyen őt vagy ennél kisebb állandó létszámmal működik.
- A gyűjtőhely kialakítása és üzemeltetése során az egyes veszélyes hulladékfajták elkülönített gyűjtését abban az esetben kell biztosítani, ha a termelő a veszélyes hulladékok hasznosítani kívánja, illetve ha a keveredés következtében az eredetinél nagyobb környezeti veszélyességgel rendelkező, magasabb veszélyességű osztályba tartozó hulladék keletkezne, továbbá ha müszakilag nehezebb és költségesebb válna az ártalmatlanítás vagy a hasznosítás.
- A gyűjtőhely kialakítása során a következő szempontokat kell figyelembe venni:
 - a gyűjtőhelyhez vezető és az ott kialakított közlekedési útvonalakat szilárd burkolattal kell ellátni,
 - a tárolást a veszélyes hulladékok kémiai hatásainak ellenálló, teherbíró és folyadékzáró aljzaton kell megoldani,
 - a gyűjtőhelyet illetéklenen behatolását megakadályozó módon kell körülnézni,
 - vízelvezetési rendszer létesítésével meg kell akadályozni a külső csapadékvíznek a gyűjtőhelyre való jutását,
 - a gyűjtőhelyet úgy kell kialakítani, hogy a tárolás során esetleg megsérülő csomagoló- eszközből kikerülő veszélyes hulladék ne okozzon környezetszennyezést,
 - a veszélyes hulladék csomagolóeszközével érintkező csapadékvizet össze kell gyűjteni és azt csak ellenőrzés - szükség esetén kezelés - után lehet befogadásba juttatni.
- A gyűjtés során esetleg bekövetkező, a környezetet veszélyeztető üzemzavar, illetve baleset következményeinek csőkentésére és elhárítására intézkedési tervet kell készíteni.
- A gyűjtőhely működéséről üzemnaplót kell vezetni, amelyben fel kell tüntetni az ott tárolt veszélyes hulladékok összetételére és mennyiségére vonatkozó adatokat, a hasznosításra, illetve ártalmatlanításra átadott veszélyes hulladékokat átvétel adatait, az üzemvitellel kapcsolatos rendkívüli eseményeket, a hatósági ellenőrzések megállapításait és az ezek hatására tett intézkedéseket.
- A gyűjtőhely működtetése során különösen a következő szempontokat kell figyelembe venni:
 - a veszélyes hulladékot a hulladék kémiai hatásainak ellenálló, folyadékkzáró csomagolóeszközben kell gyűjteni,
 - illékony komponenseket tartalmazó veszélyes hulladékok gyűjtése során meg kell akadályozni, hogy ezek az összetevők a környezetbe kerülhessenek,
 - az Országos Tűzvédelmi Szabályzat szerint "A" tűzveszélyességi osztályba sorolt, egymással vagy önmagukban reakcióképes, továbbá gyorsan bomló szerves anyagokat tartalmazó veszélyes hulladékokat a környezetvédelmi hatóság, valamint a közegészségügyi és a tűzvédelmi szakhatóságok által jóváhagyott mennyiségben és módon kell gyűjteni,
 - a gyűjtés során használt csomagolóeszközök és tárolóterek (utak, térburkolatok) állapotát az üzemeltetési szabályzat előírásai szerint rendszeresen ellenőrizni és szükség szerint javítani kell.

A Hulladékgazdálkodási Törvény 1. számú melléklete szerinti, a gépjárműbontás során keletkező hulladékok megnevezései EWC (European Waste Catalog – Európai Hulladékkatalógus) kódjukkal együtt. (A „*”-gal jelölt hulladékok veszélyes hulladéknak minősülnek.)

<table>
<thead>
<tr>
<th>Kód (EWC-kód)</th>
<th>Főfejezet, alfejezet</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 01</td>
<td>Olajhulladékok és folyékony tűzeloanyagok hulladékai (Kivéve az étolajokat, valamint a 05, 12 és 19 fejezetekben felsoroltatkat)</td>
</tr>
<tr>
<td>13 02</td>
<td>Fáradt hidraulikai olajok</td>
</tr>
<tr>
<td>13 02 04*</td>
<td>PCB-ket tartalmazó hidraulika olajok</td>
</tr>
<tr>
<td>13 02 05*</td>
<td>Ásványi eredetű, klorvegyületeket tartalmazó motor-, hajtóolajok</td>
</tr>
<tr>
<td>13 02 06*</td>
<td>Szintetikus motor-, hajtóolajok</td>
</tr>
<tr>
<td>13 02 07*</td>
<td>Biológiai lebontatható motor-, hajtóolajok</td>
</tr>
<tr>
<td>13 02 08*</td>
<td>Egyéb motor-, hajtóolajok</td>
</tr>
<tr>
<td>13 05</td>
<td>Olaj-víz szeparátorkok hulladékok</td>
</tr>
<tr>
<td>13 05 01*</td>
<td>Homokfogóból és olaj-víz szeparátorkókból származó szilárd anyagok</td>
</tr>
<tr>
<td>13 05 02*</td>
<td>Olaj-víz szeparátorkókból származó iszaposok</td>
</tr>
<tr>
<td>13 05 03*</td>
<td>Büzelzárból származó iszaposok</td>
</tr>
<tr>
<td>13 05 06*</td>
<td>Olaj-víz szeparátorkókból származó olaj</td>
</tr>
<tr>
<td>13 05 07*</td>
<td>Olaj-víz szeparátorkókból származó olajos víz</td>
</tr>
<tr>
<td>13 05 08*</td>
<td>Homokfogóból és olaj-víz szeparátorkókból származó hulladék keverék</td>
</tr>
<tr>
<td>13 07</td>
<td>Folyékony üzemanyagok hulladékai</td>
</tr>
<tr>
<td>13 07 01*</td>
<td>Tüzelőolaj és dizelolaj</td>
</tr>
<tr>
<td>13 07 02*</td>
<td>Benzín</td>
</tr>
<tr>
<td>13 07 03*</td>
<td>Egyéb üzemanyagok (ide értve a keverékeket is)</td>
</tr>
<tr>
<td>15 02</td>
<td>Abszorbens anyagok, szűrőanyagok, törlőkendők és védőruházat</td>
</tr>
<tr>
<td>15 02 02*</td>
<td>Veszélyes anyagokkal szennyezett abszorbens anyagok, szűrőanyagok (ide értve a közledebbıl nem meghatározott olajszüüröket), törlőkendők, védőruházat</td>
</tr>
<tr>
<td>15 02 03*</td>
<td>Abszorbens anyagok, szűrőanyagok, törlőkendők, védőruházat, amelyek különböznek a 15 02 02-től</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 01</th>
<th>Jegyzéken kőzelebbbról nem meghatározott hulladékok</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 01 03</td>
<td>Kiselejtett gumisraibonsok</td>
</tr>
<tr>
<td>16 01 04*</td>
<td>Kiselejtett járművek</td>
</tr>
<tr>
<td>Betűs jelölések</td>
<td>Mellékleti anyagcsoportok</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>16 01 06</td>
<td>Kiselejezett járművek, amelyekből a veszélyes anyagokat és a folyadékokat eltávolították</td>
</tr>
<tr>
<td>16 01 07*</td>
<td>Olajszűrők</td>
</tr>
<tr>
<td>16 01 08*</td>
<td>Higant tartalmazó anyagok</td>
</tr>
<tr>
<td>16 01 09*</td>
<td>PCB-k tartalmazó anyagok</td>
</tr>
<tr>
<td>16 01 10*</td>
<td>Robbanó sajátosságú anyagok (pl. légzsák)</td>
</tr>
<tr>
<td>16 01 11*</td>
<td>Azbeszult tartalmazó fékbetétek</td>
</tr>
<tr>
<td>16 01 12</td>
<td>Fékbetétek, amelyek különböznek a 16 01 11-től</td>
</tr>
<tr>
<td>16 01 13*</td>
<td>Fékfolyadékok</td>
</tr>
<tr>
<td>16 01 14*</td>
<td>Veszélyes anyagokat tartalmazó fagyálló folyadékok</td>
</tr>
<tr>
<td>16 01 15</td>
<td>Fagyálló folyadékok, amelyek különböznek 16 01 14-től</td>
</tr>
<tr>
<td>16 01 16</td>
<td>Cseppfolyósított gáz tartályai</td>
</tr>
<tr>
<td>16 01 17</td>
<td>Vasfémek</td>
</tr>
<tr>
<td>16 01 18</td>
<td>Színesfémek</td>
</tr>
<tr>
<td>16 01 19</td>
<td>Műanyagok</td>
</tr>
<tr>
<td>16 01 20</td>
<td>Üveg</td>
</tr>
<tr>
<td>16 01 21*</td>
<td>Veszélyes anyagok, amelyek különböznek a 16 01 07-től 16 01 11-ig tartó, és a 16 01 13 és 16 01 14 tételektől</td>
</tr>
<tr>
<td>16 01 22</td>
<td>Közelebből nem meghatározott anyagok</td>
</tr>
<tr>
<td>16 01 99</td>
<td>Közelebből nem meghatározott hulladékok</td>
</tr>
<tr>
<td>16 06</td>
<td>Élekek és akkumulátorok</td>
</tr>
<tr>
<td>16 06 01*</td>
<td>Ölomakkumulátorok</td>
</tr>
<tr>
<td>16 06 04</td>
<td>Lúgos akkumulátorok (kivéve 16 06 03)</td>
</tr>
<tr>
<td>16 06 06*</td>
<td>Elemekből és akkumulátorokból származó, elkülönítve gyűjtött elektrolit</td>
</tr>
<tr>
<td>16 08</td>
<td>Elhasznált katalizátorok</td>
</tr>
<tr>
<td>16 08 07*</td>
<td>Veszélyes anyagokkal szennyezett katalizátorok</td>
</tr>
<tr>
<td>17 04</td>
<td>Fémek (beleértve azok ötvözetét is)</td>
</tr>
<tr>
<td>17 04 09*</td>
<td>Veszélyes anyagokkal szennyezett fémhulladékok</td>
</tr>
<tr>
<td>17 04 10*</td>
<td>Olajjal, szénkátárnyal vagy egyéb veszélyes anyaggal szennyezett kábelek</td>
</tr>
<tr>
<td>17 04 11</td>
<td>Kábelek, amelyek különböznek 17 04 10-től</td>
</tr>
<tr>
<td>19 08</td>
<td>Közelebből nem meghatározott szennyvíztestüttő művekből származó hulladékok</td>
</tr>
<tr>
<td>19 08 10*</td>
<td>Olaj-víz elválasztásából származó zsír-olaj keverék, amely különbözik a 19 08 09-től</td>
</tr>
<tr>
<td>19 10</td>
<td>Fémtartalmú hulladék felaprításából (shredderezésből) származó hulladékok</td>
</tr>
<tr>
<td>19 10 01</td>
<td>Vas és acélhulladék</td>
</tr>
<tr>
<td>19 10 02</td>
<td>Színesfém hulladék</td>
</tr>
<tr>
<td>19 10 03*</td>
<td>Veszélyes anyagokat tartalmazó könnyűfrakció és por</td>
</tr>
<tr>
<td>19 10 04</td>
<td>Könnyűfrakció és por, amely különbözik 19 10 03-tól</td>
</tr>
<tr>
<td>19 10 05*</td>
<td>Veszélyes anyagokat tartalmazó más frakciók</td>
</tr>
<tr>
<td>19 10 06</td>
<td>Más frakciók, amelyek különböznek 19 1005-től</td>
</tr>
</tbody>
</table>
Az egyes években az (1) oszlop a darabszámot, a (2) oszlop az átlagéletkort jelenti években kifejezve:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>Összesen</td>
<td>1.944.553</td>
<td>2.245.395</td>
<td>2.297.964</td>
<td>2.218.010</td>
<td>2255500</td>
<td>2364700</td>
<td>2482800</td>
</tr>
<tr>
<td>ebből:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audi</td>
<td>4.800</td>
<td>31.966</td>
<td>35.761</td>
<td>36.828</td>
<td>37.300</td>
<td>38.800</td>
<td>40.800</td>
</tr>
<tr>
<td>BMW</td>
<td>5.100</td>
<td>21.401</td>
<td>23.334</td>
<td>23.623</td>
<td>23.300</td>
<td>23.900</td>
<td>25.300</td>
</tr>
<tr>
<td>Citroën</td>
<td>3.600</td>
<td>22.219</td>
<td>25.353</td>
<td>27.864</td>
<td>30.400</td>
<td>35.400</td>
<td>42.600</td>
</tr>
<tr>
<td>Dacia</td>
<td>199.000</td>
<td>80.486</td>
<td>58.775</td>
<td>38.385</td>
<td>35.100</td>
<td>33.600</td>
<td>30.500</td>
</tr>
<tr>
<td>Daewoo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.200</td>
<td>33.800</td>
<td>41.400</td>
</tr>
<tr>
<td>Fiat</td>
<td>19.400</td>
<td>73.010</td>
<td>82.481</td>
<td>86.951</td>
<td>92.900</td>
<td>101.500</td>
<td>111.500</td>
</tr>
<tr>
<td>Ford</td>
<td>17.500</td>
<td>86.663</td>
<td>102.216</td>
<td>110.663</td>
<td>118.700</td>
<td>125.300</td>
<td>134.700</td>
</tr>
<tr>
<td>Honda</td>
<td>2.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lada (Zsiguli)</td>
<td>572.500</td>
<td>451.488</td>
<td>400.503</td>
<td>354.664</td>
<td>327.200</td>
<td>322.000</td>
<td>309.200</td>
</tr>
<tr>
<td>Mercedes</td>
<td>6.700</td>
<td>30.873</td>
<td>33.775</td>
<td>34.406</td>
<td>34.400</td>
<td>35.300</td>
<td>37.300</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>2.400</td>
<td>20.709</td>
<td>24.100</td>
<td>25.474</td>
<td>26.400</td>
<td>27.000</td>
<td>27.300</td>
</tr>
<tr>
<td>Nissan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opel</td>
<td>21.400</td>
<td>137.001</td>
<td>173.332</td>
<td>191.101</td>
<td>210.900</td>
<td>233.900</td>
<td>267.100</td>
</tr>
<tr>
<td>Peugeot</td>
<td>4.400</td>
<td>26.497</td>
<td>32.535</td>
<td>36.291</td>
<td>41.500</td>
<td>49.400</td>
<td>60.200</td>
</tr>
<tr>
<td>Polski Fiat</td>
<td>126.000</td>
<td>111.351</td>
<td>104.785</td>
<td>92.653</td>
<td>85.500</td>
<td>82.800</td>
<td>78.400</td>
</tr>
<tr>
<td>Renault</td>
<td>8.700</td>
<td>50.611</td>
<td>63.483</td>
<td>68.587</td>
<td>75.800</td>
<td>86.500</td>
<td>104.400</td>
</tr>
<tr>
<td>Seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.600</td>
<td>25.900</td>
<td>31.100</td>
</tr>
<tr>
<td>Skoda</td>
<td>216.800</td>
<td>187.459</td>
<td>179.107</td>
<td>159.986</td>
<td>154.000</td>
<td>156.500</td>
<td>157.800</td>
</tr>
<tr>
<td>Suzuki</td>
<td>1.400</td>
<td>42.371</td>
<td>72.542</td>
<td>97.349</td>
<td>127.900</td>
<td>155.400</td>
<td>183.500</td>
</tr>
<tr>
<td>Toyota</td>
<td>3.800</td>
<td>36.800</td>
<td>42.300</td>
<td>47.800</td>
<td>42.800</td>
<td>47.800</td>
<td>51.800</td>
</tr>
<tr>
<td>Trabant</td>
<td>376.400</td>
<td>313.364</td>
<td>290.722</td>
<td>248.363</td>
<td>230.900</td>
<td>223.400</td>
<td>209.900</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>23.700</td>
<td>125.469</td>
<td>144.829</td>
<td>152.743</td>
<td>161.800</td>
<td>172.800</td>
<td>187.300</td>
</tr>
<tr>
<td>Warburg</td>
<td>224.800</td>
<td>198.355</td>
<td>182.426</td>
<td>155.885</td>
<td>142.300</td>
<td>136.300</td>
<td>126.800</td>
</tr>
</tbody>
</table>

M.9. táblázat A magyar járműállomány típus- és életkor szerinti összetételének változása 1990-től 2002-ig
Forrás: Központi Statisztikai Hivatal (KSH) gépjárműállomány összesítője 1995-től 2001-ig
<table>
<thead>
<tr>
<th>MÁRKA</th>
<th>2000</th>
<th>piaci részesedés %-ban</th>
<th>2001</th>
<th>piaci részesedés %-ban</th>
<th>előző évhez képest</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFA ROMEO</td>
<td>688</td>
<td>0,7</td>
<td>987</td>
<td>0,7</td>
<td>143,5</td>
</tr>
<tr>
<td>AUDI</td>
<td>1 200</td>
<td>1,1</td>
<td>1 250</td>
<td>0,8</td>
<td>104,2</td>
</tr>
<tr>
<td>BMW</td>
<td>590</td>
<td>0,6</td>
<td>605</td>
<td>0,4</td>
<td>102,5</td>
</tr>
<tr>
<td>CHRYSLER</td>
<td>160</td>
<td>0,2</td>
<td>152</td>
<td>0,1</td>
<td>95,0</td>
</tr>
<tr>
<td>CITROEN</td>
<td>4 788</td>
<td>4,6</td>
<td>6 566</td>
<td>4,4</td>
<td>137,1</td>
</tr>
<tr>
<td>DAEWOO</td>
<td>6 623</td>
<td>6,3</td>
<td>5 732</td>
<td>3,9</td>
<td>86,5</td>
</tr>
<tr>
<td>FIAT</td>
<td>8 463</td>
<td>8,0</td>
<td>7 392</td>
<td>5,0</td>
<td>87,3</td>
</tr>
<tr>
<td>FORD</td>
<td>5 316</td>
<td>5,1</td>
<td>6 112</td>
<td>4,1</td>
<td>115,0</td>
</tr>
<tr>
<td>HONDA</td>
<td>1 573</td>
<td>1,5</td>
<td>1 457</td>
<td>1,0</td>
<td>92,6</td>
</tr>
<tr>
<td>HYUNDAI</td>
<td>199</td>
<td>0,2</td>
<td>184</td>
<td>0,2</td>
<td>279,4</td>
</tr>
<tr>
<td>JAGUAR</td>
<td>48</td>
<td>0,0</td>
<td>84</td>
<td>0,1</td>
<td>175,0</td>
</tr>
<tr>
<td>KIA</td>
<td>861</td>
<td>0,8</td>
<td>267</td>
<td>0,2</td>
<td>31,0</td>
</tr>
<tr>
<td>LADA</td>
<td>731</td>
<td>0,7</td>
<td>571</td>
<td>0,4</td>
<td>78,1</td>
</tr>
<tr>
<td>LANCIA</td>
<td>141</td>
<td>0,1</td>
<td>96</td>
<td>0,1</td>
<td>68,1</td>
</tr>
<tr>
<td>LAND-ROVER</td>
<td>194</td>
<td>0,2</td>
<td>226</td>
<td>0,2</td>
<td>116,5</td>
</tr>
<tr>
<td>MASERATI</td>
<td>1</td>
<td>0,0</td>
<td>0</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>MAZDA</td>
<td>675</td>
<td>0,6</td>
<td>665</td>
<td>0,4</td>
<td>98,5</td>
</tr>
<tr>
<td>MERCEDES</td>
<td>657</td>
<td>0,6</td>
<td>746</td>
<td>0,5</td>
<td>113,5</td>
</tr>
<tr>
<td>MINI</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>MITSUBISHI</td>
<td>788</td>
<td>0,7</td>
<td>605</td>
<td>0,4</td>
<td>76,8</td>
</tr>
<tr>
<td>NISSAN</td>
<td>2 776</td>
<td>2,6</td>
<td>2 317</td>
<td>1,6</td>
<td>83,5</td>
</tr>
<tr>
<td>OPEL</td>
<td>20 559</td>
<td>19,5</td>
<td>22 627</td>
<td>15,3</td>
<td>110,1</td>
</tr>
<tr>
<td>PEUGEOT</td>
<td>7 845</td>
<td>7,5</td>
<td>10 235</td>
<td>6,9</td>
<td>130,5</td>
</tr>
<tr>
<td>PORSCHE</td>
<td>7</td>
<td>0,0</td>
<td>15</td>
<td>0,0</td>
<td>214,3</td>
</tr>
<tr>
<td>PROTON</td>
<td>109</td>
<td>0,1</td>
<td>52</td>
<td>0,0</td>
<td>47,7</td>
</tr>
<tr>
<td>RENAULT</td>
<td>10 139</td>
<td>9,6</td>
<td>16 059</td>
<td>10,8</td>
<td>158,4</td>
</tr>
<tr>
<td>ROVER</td>
<td>365</td>
<td>0,3</td>
<td>302</td>
<td>0,2</td>
<td>82,7</td>
</tr>
<tr>
<td>SAAB</td>
<td>270</td>
<td>0,3</td>
<td>301</td>
<td>0,2</td>
<td>111,5</td>
</tr>
<tr>
<td>SEAT</td>
<td>4 391</td>
<td>4,2</td>
<td>4 686</td>
<td>3,2</td>
<td>106,7</td>
</tr>
<tr>
<td>SKODA</td>
<td>7 064</td>
<td>6,7</td>
<td>8 195</td>
<td>5,5</td>
<td>116,0</td>
</tr>
<tr>
<td>SUBARU</td>
<td>68</td>
<td>0,1</td>
<td>50</td>
<td>0,0</td>
<td>73,5</td>
</tr>
<tr>
<td>SUZUKI*</td>
<td>n.a.</td>
<td>-</td>
<td>28 916</td>
<td>19,5</td>
<td>-</td>
</tr>
<tr>
<td>TOYOTA</td>
<td>5 695</td>
<td>5,4</td>
<td>6 093</td>
<td>4,1</td>
<td>106,9</td>
</tr>
<tr>
<td>VOLKSWAGEN</td>
<td>11 201</td>
<td>10,7</td>
<td>13 211</td>
<td>8,9</td>
<td>117,9</td>
</tr>
<tr>
<td>VOLVO</td>
<td>976</td>
<td>0,9</td>
<td>1 135</td>
<td>0,8</td>
<td>116,3</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>105 164</td>
<td>100,0</td>
<td>148 293</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

M.10. táblázat A Magyarországon kereskedelmi forgalomban értékesített járművek típusösszetétele 2001-ben
(referenciaév 2000)
Forrás Magyar Gépjárműimportőrök Egyesülete (megjegyzés a Magyar Suzuki csak 2001-től tag az MGE-nél, így adatai csak 2001-től szerepelnek a kimutatásban)
M.11. táblázat Személygépkocsi forgalomba helyezése Magyarországon 2001-ben, a gyártási év szerint

Marka	20 év felett	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	Összesen	
Audi	1																				3026		
BMW	4	1	3	2	5	3	5	10	15	83	100	150	161	204	250	247	200	127	499	2069			
Citroën	2									2	9	40	103	182	245	240	156	107	63	53	40	783	7935
Dacia	1																		2	1	2	9	
Daewoo		7	17	23	24	16	30	828	4726	5671													
Fiat	3	1			5	86	323	929	841	708	422	323	181	177	130	96	136	1414	6048	11823			
Ford	4	1	3	1	1	4	2	62	176	590	627	617	529	452	358	402	319	138	691	5743	10720		
Honda	1		2	9	14	30	58	106	73	71	62	54	62	40	39	70	1312	2003					
Lada (Zsiguli)	7	2			12	47	9	20	2	3	2	2	1	4	176	405	704						
Mazda	2	4	7	11	50	68	106	85	39	38	42	34	40	43	109	592	1270						
Mercedes	10	2	3	6	11	20	43	59	76	100	118	101	127	132	160	179	207	212	350	765	2681		
Mitsubishi	2	4	14	20	27	44	29	32	43	52	39	73	53	488	904								
Nissan	2	1	1	1	1	5	18	89	117	86	72	51	42	36	43	20	77	1738	2400				
Opel	8	2	1	6	70	203	903	1738	2092	2636	1444	942	794	605	622	416	183	255	22372	35292			
Peugeot	1	1	1	5	12	155	164	253	156	127	93	83	58	49	1011	9255	11505						
Polski Fiat	2			2	1																		
Renault	1			1		50	145	692	602	323	268	205	191	195	130	95	1279	14725	18902				
Seat	3			23	38	132	150	101	68	52	44	27	19	31	87	4611	5386						
Skoda	5	2		3		1	1	7	3	10	7	9	11	4	9	126	7976	8192					
Suzuki	1		2	1	1	35	69	68	77	42	31	16	20	30	17	28	740	27380	28558				
Toyota	1		2	1	7	16	23	31	47	41	60	43	48	42	56	1016	4209	5643					
Trabant	4	1	1	1	2	1	4														15		
Volkswagen	9		1	2	3	7	13	4	16	47	302	780	430	386	291	330	219	313	238	220	13563	17175	
Wartburg	4		1		2																7		
Zastava																						1	
Összesen	106	13	16	16	30	38	155	401	1614	3656	5572	7006	4827	3887	3334	3057	2992	2850	2206	10336	137214	189173	

Átlagéletkor a 2001-ben forgalomba helyezett járművek esetén 22 év átlagéletkorral számolva a 20 év feletti járművek kategóriájában:

\[
106*22 + 13*19 + 16*18 + 16*17 + 30*16 + 38*15 + 155*14 + 401*13 + 1614*12 + 3656*11 + 5572*10 + 7006*9 + 4827*8 + 3887*7 + 3334*6 + 3057*5 + 2992*4 + 2850*3 + 2206*2 + 10336*1 + 137214*0 / 189173 = 1,724929 \text{ év}
\]
Korábbi szocialista gyártmányok fogyási trendje

\[y = 567304x^{-0.32} \]
\[y = 384606x^{-0.3053} \]
\[y = 236566x^{-0.3035} \]
\[y = 130264x^{-0.2499} \]
\[y = 174695x^{-0.9675} \]
\[y = 23421x^{-0.07} \]
(Forrás: KSH ill. saját kalkuláció)
Melléklet

M.12. táblázat

Volt szocialista gyártású személygépkocsik darabszámának változása 2002-ig, illetve a változás várható trendje 2007-ig

(Forrás: KSH ill. saját kalkuláció)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacia</td>
<td>199000</td>
<td>80486</td>
<td>58775</td>
<td>38385</td>
<td>35100</td>
<td>33600</td>
<td>30500</td>
<td>23363</td>
<td>20847</td>
<td>18827</td>
<td>17168</td>
<td>15782</td>
<td>14606</td>
</tr>
<tr>
<td>Lada</td>
<td>572500</td>
<td>451488</td>
<td>400503</td>
<td>354664</td>
<td>327200</td>
<td>322000</td>
<td>309200</td>
<td>289331</td>
<td>278504</td>
<td>269163</td>
<td>260983</td>
<td>253733</td>
<td>247241</td>
</tr>
<tr>
<td>Polski Fiat</td>
<td>126000</td>
<td>111351</td>
<td>104785</td>
<td>92653</td>
<td>85500</td>
<td>82800</td>
<td>78400</td>
<td>77470</td>
<td>75223</td>
<td>73268</td>
<td>71544</td>
<td>70056</td>
<td>68618</td>
</tr>
<tr>
<td>Trabant</td>
<td>376400</td>
<td>313364</td>
<td>290722</td>
<td>248363</td>
<td>230900</td>
<td>223400</td>
<td>209900</td>
<td>203837</td>
<td>196638</td>
<td>190413</td>
<td>184952</td>
<td>180104</td>
<td>175756</td>
</tr>
<tr>
<td>Wartburg</td>
<td>224800</td>
<td>198355</td>
<td>182426</td>
<td>155885</td>
<td>142300</td>
<td>136300</td>
<td>126800</td>
<td>125859</td>
<td>121439</td>
<td>117618</td>
<td>114264</td>
<td>111286</td>
<td>108615</td>
</tr>
<tr>
<td>Zastava</td>
<td>22700</td>
<td>22650</td>
<td>22606</td>
<td>21487</td>
<td>21000</td>
<td>20600</td>
<td>19700</td>
<td>20248</td>
<td>20082</td>
<td>19335</td>
<td>19802</td>
<td>19682</td>
<td>19572</td>
</tr>
<tr>
<td>Összesen</td>
<td>1521400</td>
<td>1177694</td>
<td>1059817</td>
<td>911437</td>
<td>842000</td>
<td>774500</td>
<td>740109</td>
<td>712733</td>
<td>689223</td>
<td>668714</td>
<td>650591</td>
<td>634409</td>
<td></td>
</tr>
</tbody>
</table>

M.13. táblázat

Volt szocialista gyártású tehergépjárművek darabszámának változása 2002-ig, illetve a változás várható trendje 2007-ig

(Forrás: KSH ill. saját kalkuláció)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARO</td>
<td>22705</td>
<td>12478</td>
<td>8697</td>
<td>6579</td>
<td>6159</td>
<td>5828</td>
<td>5136</td>
<td>4352</td>
<td>3977</td>
<td>3669</td>
<td>3411</td>
<td>3191</td>
<td>3002</td>
</tr>
<tr>
<td>Avia</td>
<td>n.a.</td>
<td>0</td>
<td>5972</td>
<td>5938</td>
<td>5813</td>
<td>5601</td>
<td>5224</td>
<td>5292</td>
<td>5202</td>
<td>5122</td>
<td>5052</td>
<td>4988</td>
<td>4930</td>
</tr>
<tr>
<td>Barkas</td>
<td>28106</td>
<td>26640</td>
<td>25147</td>
<td>21631</td>
<td>19015</td>
<td>17625</td>
<td>15974</td>
<td>16713</td>
<td>16139</td>
<td>15643</td>
<td>15207</td>
<td>14819</td>
<td>14471</td>
</tr>
<tr>
<td>IFA</td>
<td>55899</td>
<td>51588</td>
<td>47177</td>
<td>41371</td>
<td>37644</td>
<td>35727</td>
<td>32853</td>
<td>33365</td>
<td>32283</td>
<td>31346</td>
<td>30521</td>
<td>29787</td>
<td>29128</td>
</tr>
<tr>
<td>Izs</td>
<td>13189</td>
<td>9228</td>
<td>6491</td>
<td>4440</td>
<td>3441</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2568</td>
<td>2328</td>
<td>2132</td>
<td>1969</td>
<td>1831</td>
<td>1712</td>
</tr>
<tr>
<td>Kamaz</td>
<td>n.a.</td>
<td>4358</td>
<td>4119</td>
<td>3634</td>
<td>3551</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3152</td>
<td>3064</td>
<td>2987</td>
<td>2919</td>
<td>2858</td>
<td>2803</td>
</tr>
<tr>
<td>Nysa</td>
<td>8444</td>
<td>4807</td>
<td>3226</td>
<td>1942</td>
<td>1506</td>
<td>n.a.</td>
<td>n.a.</td>
<td>981</td>
<td>864</td>
<td>771</td>
<td>696</td>
<td>633</td>
<td>581</td>
</tr>
<tr>
<td>Robur</td>
<td>7945</td>
<td>5751</td>
<td>4618</td>
<td>3520</td>
<td>3040</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2394</td>
<td>2232</td>
<td>2095</td>
<td>1979</td>
<td>1879</td>
<td>1791</td>
</tr>
<tr>
<td>Skoda</td>
<td>n.a.</td>
<td>0</td>
<td>10253</td>
<td>7249</td>
<td>7853</td>
<td>7926</td>
<td>7663</td>
<td>7104</td>
<td>6888</td>
<td>6700</td>
<td>6534</td>
<td>6387</td>
<td>6254</td>
</tr>
<tr>
<td>UAZ</td>
<td>13050</td>
<td>9482</td>
<td>7946</td>
<td>6502</td>
<td>5747</td>
<td>5453</td>
<td>5014</td>
<td>4678</td>
<td>4410</td>
<td>4184</td>
<td>3989</td>
<td>3819</td>
<td>3669</td>
</tr>
<tr>
<td>Zuk</td>
<td>28472</td>
<td>24265</td>
<td>20906</td>
<td>16676</td>
<td>14274</td>
<td>13124</td>
<td>11732</td>
<td>11735</td>
<td>11099</td>
<td>10560</td>
<td>10095</td>
<td>9689</td>
<td>9329</td>
</tr>
<tr>
<td>Összesen</td>
<td>177810</td>
<td>148597</td>
<td>144552</td>
<td>119482</td>
<td>108043</td>
<td>91284</td>
<td>83596</td>
<td>92334</td>
<td>88486</td>
<td>85209</td>
<td>82372</td>
<td>79881</td>
<td>77670</td>
</tr>
</tbody>
</table>
JELMAGYARÁZAT

Z - shredder
F₁ - ciklon, F₂ - 2-fokozatú venturi mosó, cseppleválasztó ciklon
F₃ - vízelőkészítő berendezés
H₁ - szállítószalagok
S₁ - adagoló torok
S₂ - mágnesdob
V - ventillátor
A - szivattyú
VX₁₁ - szabályozó szelep
VX₁₂ - hangtomító

- **Emisszió:** (por, Pb, Cd, Ni, Cr): normaérték alatt
 Porkonzentráció < 50 mg/m³

- **Porleválasztás:** (Aszódi tárolóba)
 6 -9 év

- **MINTAVÉTEL:** 12 - 14 év

A SHREDDER TECHNOLOGIA FOLYAMATÁBRÁJA

![Diagram of Shredder Technology Process](image-url)

- **H₂₁**
 Egyéb fémek

- **H₂₂**
 Aprított minőségi acélhulladék (kohászati alapanyag)
 62 - 64 év

- **H₂₃**
 Szinesfém (Cu, Al)
 0,6 - 0,9 év
 kohászati alapanyag

M.4. ábra Shredder technológia folyamatábrája
(forrás: ERECO Rt.)
Feladat
1. A feladatmegfogalmazás pontosítása
2. A funkciók és ezek struktúráinak meghatározása
3. A megoldások és ezek struktúráinak keresése
4. A realizálható elemek tagolása
5. A mértékkedő elemek kialakítása
6. Az egész termék kialakítása
7. A kivitelőzési- és használati paraméterek kidolgozása

A munka eredménye

Fázisok
1. fázis
Követelményjegyzék

2. fázis
Funkcióstruktúra

3. fázis
Elvi megoldás

4. fázis
Elemi struktúra

5. fázis
Előzetes tervek

6. fázis
Végleges tervek

7. fázis
Gyártási dokumentáció

További realizáció

Példák

Reciklálás-orientáltság

Műszaki és gazdasági követelmények lértékelése a tervezett reciklációs folyamatból pl.
- a feldolgozás technológiák és -stratégiák
- az előkészítési technológiák és -stratégiák

Követelményjegyzék

FW
Főbemenő tárgy

F fokozat

V előkészítés

M1, M2

Vezet

Átvált

M1

Megváltoztat

Mt1

Mt2

ω1

ω2

Tengelyok

Tengely elrendező, átmérő

Üzemeltetés

Figyelembe kell venni a feldolgozás és előkészítési kritériumokat:
- bonthatóság és újraszerelhetőség
- utamunklációs lehetőség
- anyagmegváltoztatás (korrózió, összeférhetőség)
- általhatóság, haszthatóság

A tervezett reciklációs stratégia és technológia megjelölése

M.5. ábra Az általános terméktervezés reciklálási szempontokkal kiegészített folyamatábrája
M.10. ábra Példák összeszerelés-helyes konstrukciókra
M.11. ábra Példa az IDIS (International Dismantling System) rendszerben történő jármű-típus kiválasztásra

M.12. ábra Üzemanyagok elhelyezkedésének szemléltetése adott jármű-típusban az IDIS rendszerében

M.13. ábra Üzemanyagok eltávolítási útmutatója az IDIS-ben

M.14. ábra Műanyag-alkatrészek összetételének szemléltetése az IDIS-ben