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I. Introduction 
The navigation system of a mobile robot must handle numerous well separable subtasks for proper 
operation. One of these tasks is motion planning, which is divided into at least two separate parts, the 
path planning and the movement itself. The first is the procedure, which designs the path from the 
current location to the end point, of which the robot will have to go through. The movement is the 
procedure of keeping the robot on this path. The motion could be complex [1], because the 
movement of the robot must meet various physical constraints, like the momentum of the car. 

The motion planning could be carried out in other ways too. Using soft computing methods, the 
path planning and the movement can be carried out simultaneously [2]. In this paper we will present 
an artificial neural network based robot navigation solution, which could avoid moving obstacles.  

II. Navigation method 
In our motion planning solution the mobile robot is controlled by an artificial neural network (ANN). 
It is trained with the backpropagation through time method (BPTT) [3], which is a well known 
training algorithm of dynamic feedback ANNs. Its use for robot navigation has been already shown 
by D. Nguyen and B. Widrow [4]. The main idea behind this is to open the feedback control loop and 
unfold it through many iteration steps, thus making a simple feed-forward system, which can be 
trained with the usual backpropagation algorithm (Fig. 1. a). 

 
Figure 1: (a.) BPTT in use of training in a control loop (b.) Regularizing the BPTT 

This method is able to navigate a mobile robot from any starting point on the working area to any 
target point. The path and the motion planning are done simultaneously, as the constraints of the 
robot are taken into account during the backpropagation through the system model. This way the 
controller is trained to follow a path, with the robot controlling commands calculated. This method 
however is not able to avoid obstacles, especially not moving obstacles.  

III. Obstacles 
To make the BPTT method able to handle obstacles, we have elaborated the following solution. 
Based on the location and the size of the obstacles, a potential function can be defined (Eq. (1) left), 
which is used to repel the robot away from the obstacles. This function must be used to extend the 
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cost function of the Delta-rule. The cost function is regularized with the potential field (Eq. (1) right 
and Fig. 1. b), so the goal of the weight modification is not only to minimize the error at the end of 
the simulation chain, but also to minimize the potential of the path, to get the robot the farthest from 
the obstacles. This way the obstacles could be avoided. The potential field and the regularization of 
the cost function are defined as follows: 
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where Ui(y) is the potential field of the ith obstacle, di(y) is the distance from the centre of the 
obstacle, ri is the radius of the obstacle, y is the position of the robot, and  is a small positive 
constant. CR(t,y) is the regularized cost function, t is the position of the target, n is the number of 
iteration steps during BPTT, and k is the number of obstacles.  

To use this method to navigate among moving or previously unknown obstacles, further 
modifications must be made. Till this point, we did not specify, whether the ANN is to be trained 
offline or online. Offline training could be used, if the obstacles were previously known and static. In 
such cases the training could be carried out from multiple starting points. In case of moving, or 
previously unknown obstacles, the use of online training seems to be the only option, despite its 
trivial drawback: the increased need of computational power.   

Online training brings the ability to adapt to changing environment, e.g. avoid moving or to 
previously unknown obstacles [5]. It has also many advantages. There is no need for training the 
ANN from multiple starting points, only the current location of the robot should be used, which 
makes the training much faster. Using the online training makes the method to an anytime algorithm 
between reasonable limits, because the navigation result is degraded only in quality with the 
decreasing time limit until the ANN training becomes insufficient. On the other hand this makes the 
algorithm well-scalable; using a faster CPU can increase the quality of the result of the algorithm.  

IV. Conclusion 
In this paper we have shown how the classical BPTT training approach can be extended using 
regularization, to take additional constraint into consideration, like obstacles. Simulations and real 
robot experiments have proved that using real-time online training, this method is able to handle 
moving obstacles as well. 
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