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1 Introduction

Disordered-induced metal-insulator transition -also called Anderson-localization- is in
the forefront of condensed matter physics since the middle of the XX. century. The
Anderson transition - apart from few exceptions - happens in three-dimensional systems,
in one- or two-dimensional systems arbitrarily small disorder causes localization. Disorder
can be introduced in various forms, e.g. crystal defects, randomly placed impurities
or a random potential which shifts atomic energy levels. Because of the universality
principle many physical quantities behave independently of the speci�c form of disorder.
A perfect crystal is a perfect conductor, electrons propagate ballistically. Adding some
disorder to the system electrons scatter a few times, electrons propagate di�usively and
the overall behavior is still metallic. Increasing disorder further multiple scattering can
trap (Anderson-localize) electrons, and the system turns into an insulator.

Investigating the wave-functions of the electrons in the metallic regime one can see
that they extend over the whole lattice, they are e�ectively three-dimensional. In the
insulating phase e�ectively zero-dimensional, exponentially localized wave-functions are
present. Since the metal-insulator transition is a second order phase transition, approach-
ing the transition point -which is a true critical point- from the metallic (insulating) side
the correlation (localization) length diverges, the system is scale-free. This induces the
self-similarity of the system, which is a property of fractals, therefore one would expect
similar behavior to fractals. As it turns out, the wave-functions of the electrons show mul-
tifractal properties. Multifractals are generalizations of fractals. They have very strong
�uctuations, therefore - instead of one fractal dimension - they can be described through
in�nitely many fractal dimensions, Dq or αq, depending on the continuous parameter,
q. Beside Dq or αq other generalized fractal dimensions - in other words multifractal
exponents - can be de�ned.

2 Objectives

The main goal of my research was to show that multifractals are present in various dis-
ordered systems, and to extract critical parameters of these models using multifractals.
Disordered systems belong to di�erent universality classes depending on the presence
or absence of time-reversal and spin-rotational symmetry. I investigated that how the
presence or absence of these symmetries a�ect the critical point, critical exponent (which
describes the divergence of the correlation/localization length) and the multifractal ex-
ponents in an Anderson-model which introduces disorder through a random potential.
Disorder can be introduced through defects in the crystal for which percolation is a ba-
sic model. Considering nearest-neighbor hopping on a percolated lattice leads to the
quantum percolation model. Examining the wave-functions of this model I experienced
very similar behavior to the Anderson model, therefore my goal was to show the pres-
ence of multifractals at the transition point, pQ

c , and to extract the critical parameters
for this model also. The previously used methods assumed that the lattice is regular
three-dimensional crystal, therefore my further goal was to improve the methods to be
applicable for irregular lattices with missing sites. Anderson localization of the quark
wave-functions in a Quantum chromodynamics model at large temperature was also ob-
served. With increasing energy the quark wave-functions turns from localized into ex-
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tended states, which was investigated through spectral statistics. Our goal with the group
who discovered the transition was to examine the transition through wave-functions and
to show their multifractality at the transition point.

3 Methods

I investigated the disordered systems described above numerically. I considered only near-
est neighbor hopping for the Anderson model and for the quantum percolation model,
therefore the corresponding Hamiltonian is very sparse. The mathematical task was to
�nd an eigenvector inside the spectrum which describes the wave-function of an electron.
To this end I used Jacobi-Davidson iteration (PRIMME library) with ILU precondition-
ing (ILUPACK library). Since the Hamiltonian is very sparse, I could investigate systems
containing up to a million sites, which led to very accurate results. To the computations
I used the cluster of the Department of Theoretical Physics of BUTE and the supercom-
puter of BUTE. To simulate the quark-gluon system we used an already existing GPU
code. From the eigenvectors I computed the �nite-size version of the multifractal expo-
nents near the transition point, called generalized multifractal exponents. Since on the
metallic side of the transition Dq ≡ 3, and on the insulating side Dq ≡ 0 holds for q > 0
and Dq ≡ ∞ holds for q < 0, one can use the generalized multifractal exponents as order
parameter. I measured these quantities at di�erent system sizes and at di�erent values of
disorder, then I performed �nite-size scaling: I �tted a scaling function to the raw data
of the generalized multifractal exponents. Before computing the generalized multifractal
exponents one can coarse grain the wave-function, by adding the wave-function values in
a box much smaller than the system size. After that one can use two methods: �xing λ,
which is the ratio of the box size and the system size, results in a single-varable scaling
function, while allowing various values of λ leads to a two-variable scaling function. The
�nite-size scaling procedure resulted the critical point, the critical exponent and other
physically interesting quantities.

4 New scienti�c results

In this Section I list the thesis statements.

1. I examined the three-dimensional Anderson models belonging to the conventional
Wigner-Dyson symmetry classes with the help of multifractal �nite-size scaling.
With the �xed λ and varying λ methods I con�rmed the presence of multifractality
in all three Wigner-Dyson symmetry classes. I obtained the critical point, critical
exponent and irrelevant exponent for each symmetry class. These parameters were
in agreement with each other for the di�erent methods, and with previous results
known from the literature. The varying λ method provided signi�cantly di�erent
critical exponents for the di�erent symmetry classes. I computed the multifractal
exponents also for every symmetry class. Multifractal exponents of di�erent sym-
metry classes were very close to each other for �xed q, but signi�cantly di�erent for
most of the values of q.
Publication [a] is related to this thesis point.
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2. I investigated numerically the quantum percolation model in 3D. In order to de-
scribe the localization transition I used multifractal �nite-size scaling. I determined
the mobility edge of the system, con�rming previous calculations. For the critical
exponent I obtained energy-independent values within 95% con�dence level. The
average of these values is the same as the critical exponent of the orthogonal An-
derson model, implying that quantum percolation belongs to the chiral orthogonal
Anderson universality class. I also determined the multifractal exponents Dq and
αq along the mobility edge, and for larger values of pQ

c I found no signi�cant di�er-
ence from the Anderson model con�rming the statement of the universality class
further.
Publication [b] is related to this thesis point.

3. I have shown that the Anderson model at strong localization shows non-trivial
behavior especially approaching the band-edge. I showed that only a 2-site or a
3-site model can describe qualitatively well the system.
Publication [c] is related to this thesis point.

4. I investigated the Anderson transition in the spectrum of the Dirac operator of
Quantum chromodynamics at high temperature. I found similar correlations be-
tween the eigenvectors of the Dirac operator of QCD and the Hamiltonian of the
unitary Anderson model. Multifractal �nite-size scaling with the �xed λ method
resulted matching results with previous works for the critical point, and with my
results for the critical exponent for the unitary Anderson model. The approxi-
mate values of the multifractal exponents were compatible with the multifractal
exponents of the unitary Anderson model. My work con�rms that there is a metal-
insulator phase transition in the spectrum of the Dirac operator of QCD, and it
belongs to the chiral-unitary Anderson class.
Publication [d] and [e] are related to this thesis point.
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