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1 Introduction

Disordered-induced metal-insulator transition -also called Anderson-localization- is in
the forefront of condensed matter physics since the middle of the XX. century. The
Anderson transition - apart from few exceptions - happens in three-dimensional systems,
in one- or two-dimensional systems arbitrarily small disorder causes localization. Disorder
can be introduced in various forms, e.g. crystal defects, randomly placed impurities
or a random potential which shifts atomic energy levels. Because of the universality
principle many physical quantities behave independently of the specific form of disorder.
A perfect crystal is a perfect conductor, electrons propagate ballistically. Adding some
disorder to the system electrons scatter a few times, electrons propagate diffusively and
the overall behavior is still metallic. Increasing disorder further multiple scattering can
trap (Anderson-localize) electrons, and the system turns into an insulator.

Investigating the wave-functions of the electrons in the metallic regime one can see
that they extend over the whole lattice, they are effectively three-dimensional. In the
insulating phase effectively zero-dimensional, exponentially localized wave-functions are
present. Since the metal-insulator transition is a second order phase transition, approach-
ing the transition point -which is a true critical point- from the metallic (insulating) side
the correlation (localization) length diverges, the system is scale-free. This induces the
self-similarity of the system, which is a property of fractals, therefore one would expect
similar behavior to fractals. As it turns out, the wave-functions of the electrons show mul-
tifractal properties. Multifractals are generalizations of fractals. They have very strong
fluctuations, therefore - instead of one fractal dimension - they can be described through
infinitely many fractal dimensions, D, or a4, depending on the continuous parameter,
g. Beside D, or o, other generalized fractal dimensions - in other words multifractal
exponents - can be defined.

2 Objectives

The main goal of my research was to show that multifractals are present in various dis-
ordered systems, and to extract critical parameters of these models using multifractals.
Disordered systems belong to different universality classes depending on the presence
or absence of time-reversal and spin-rotational symmetry. I investigated that how the
presence or absence of these symmetries affect the critical point, critical exponent (which
describes the divergence of the correlation/localization length) and the multifractal ex-
ponents in an Anderson-model which introduces disorder through a random potential.
Disorder can be introduced through defects in the crystal for which percolation is a ba-
sic model. Considering nearest-neighbor hopping on a percolated lattice leads to the
quantum percolation model. Examining the wave-functions of this model T experienced
very similar behavior to the Anderson model, therefore my goal was to show the pres-
ence of multifractals at the transition point, p?, and to extract the critical parameters
for this model also. The previously used methods assumed that the lattice is regular
three-dimensional crystal, therefore my further goal was to improve the methods to be
applicable for irregular lattices with missing sites. Anderson localization of the quark
wave-functions in a Quantum chromodynamics model at large temperature was also ob-
served. With increasing energy the quark wave-functions turns from localized into ex-



tended states, which was investigated through spectral statistics. Our goal with the group
who discovered the transition was to examine the transition through wave-functions and
to show their multifractality at the transition point.

3 Methods

[ investigated the disordered systems described above numerically. I considered only near-
est neighbor hopping for the Anderson model and for the quantum percolation model,
therefore the corresponding Hamiltonian is very sparse. The mathematical task was to
find an eigenvector inside the spectrum which describes the wave-function of an electron.
To this end I used Jacobi-Davidson iteration (PRIMME library) with ILU precondition-
ing (ILUPACK library). Since the Hamiltonian is very sparse, I could investigate systems
containing up to a million sites, which led to very accurate results. To the computations
I used the cluster of the Department of Theoretical Physics of BUTE and the supercom-
puter of BUTE. To simulate the quark-gluon system we used an already existing GPU
code. From the eigenvectors I computed the finite-size version of the multifractal expo-
nents near the transition point, called generalized multifractal exponents. Since on the
metallic side of the transition D, = 3, and on the insulating side D, = 0 holds for ¢ > 0
and D, = oo holds for ¢ < 0, one can use the generalized multifractal exponents as order
parameter. I measured these quantities at different system sizes and at different values of
disorder, then I performed finite-size scaling: I fitted a scaling function to the raw data
of the generalized multifractal exponents. Before computing the generalized multifractal
exponents one can coarse grain the wave-function, by adding the wave-function values in
a box much smaller than the system size. After that one can use two methods: fixing A,
which is the ratio of the box size and the system size, results in a single-varable scaling
function, while allowing various values of A leads to a two-variable scaling function. The
finite-size scaling procedure resulted the critical point, the critical exponent and other
physically interesting quantities.

4 New scientific results
In this Section I list the thesis statements.

1. T examined the three-dimensional Anderson models belonging to the conventional
Wigner-Dyson symmetry classes with the help of multifractal finite-size scaling.
With the fixed A and varying A methods I confirmed the presence of multifractality
in all three Wigner-Dyson symmetry classes. 1 obtained the critical point, critical
exponent and irrelevant exponent for each symmetry class. These parameters were
in agreement with each other for the different methods, and with previous results
known from the literature. The varying A method provided significantly different
critical exponents for the different symmetry classes. I computed the multifractal
exponents also for every symmetry class. Multifractal exponents of different sym-
metry classes were very close to each other for fixed ¢, but significantly different for
most of the values of q.

Publication [a] is related to this thesis point.



2. I investigated numerically the quantum percolation model in 3D. In order to de-
scribe the localization transition I used multifractal finite-size scaling. I determined
the mobility edge of the system, confirming previous calculations. For the critical
exponent I obtained energy-independent values within 95% confidence level. The
average of these values is the same as the critical exponent of the orthogonal An-
derson model, implying that quantum percolation belongs to the chiral orthogonal
Anderson universality class. I also determined the multifractal exponents D, and
o, along the mobility edge, and for larger values of p? I found no significant differ-
ence from the Anderson model confirming the statement of the universality class
further.

Publication [b] is related to this thesis point.

3. T have shown that the Anderson model at strong localization shows non-trivial
behavior especially approaching the band-edge. I showed that only a 2-site or a
3-site model can describe qualitatively well the system.

Publication [c] is related to this thesis point.

4. I investigated the Anderson transition in the spectrum of the Dirac operator of
Quantum chromodynamics at high temperature. I found similar correlations be-
tween the eigenvectors of the Dirac operator of QCD and the Hamiltonian of the
unitary Anderson model. Multifractal finite-size scaling with the fixed A method
resulted matching results with previous works for the critical point, and with my
results for the critical exponent for the unitary Anderson model. The approxi-
mate values of the multifractal exponents were compatible with the multifractal
exponents of the unitary Anderson model. My work confirms that there is a metal-
insulator phase transition in the spectrum of the Dirac operator of QCD, and it
belongs to the chiral-unitary Anderson class.

Publication [d] and [e] are related to this thesis point.
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