Elektromobilitási szolgáltatások fejlesztése

Ph.D. értekezés

Szerző:

Csonka Bálint
okleveles közlekedésmérnök

Témavezető:

Dr. Csiszár Csaba, Ph.D.
eyetemi docens

Budapest, 2019.
Nyilatkozat

Alulírott Csonka Bálint kijelentem, hogy ezen Ph.D. értekezést magam készítettem, csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen a forrás megadásával megjelöltem.

Budapest, 2019.11.07.

...
Csonka Bálint
Tartalomjegyzék

1. Bevezetés ... 1
2. Kutatási téma .. 2
 2.1 Téma aktualitása, fogalmak definiálása ... 2
 2.2 Célkitűzés .. 6
 2.3 Alkalmazott kutatási módszerek .. 7
3. Irodalmi áttekintés ... 9
 3.1 Integrált információs rendszer .. 9
 3.2 Töltőinfrastruktúra telepítés .. 10
 3.3 Carsharing szolgáltatások minősége ... 13
 3.4 Töltési terv optimalizálás .. 15
 3.5 Kutatási rések .. 17
4. Elektromos személygépkocsi használatát támogató integrált információs rendszer 19
 4.1 Funkciók .. 19
 4.2 Szerkezeti modell .. 22
 4.3 Működési modell ... 26
5. Országos átjárhatóságot biztosító elektromos villámtöltő-állomások helyszinét értékelő és kiválasztó módszer .. 34
 5.1 Módszer .. 34
 5.2 Módszer alkalmazása ... 38
6. Városi elektromos töltőállomások helyszinét kijelölő módszer 47
 6.1 Módszer .. 47
 6.2 Módszer alkalmazása ... 54
7. Carsharing szolgáltatások minőségét értékelő módszer ... 58
 7.1 Módszer .. 58
 7.2 Módszer alkalmazása ... 66
8. Töltési költség minimalizáló módszer ... 69
 8.1 Módszer .. 69
 8.2 Módszer alkalmazása ... 75
9. Új tudományos eredmények összefoglalása – tézisek ... 81
 9.1 Tézisek ... 81
 9.2 Tudományos eredmények hasznosíthatósága ... 87
 9.3 Kutatás folytatása .. 89
10. Fogalomtár .. 91
Irodalomjegyzék ... 93
 Felhasznált irodalom .. 93
 Tézisekhez kapcsolódó saját publikációk .. 102
 Ábrajegyzék .. 104
 Táblázatjegyzék ... 106
Függelék .. 107
 1. Függelék: Kérdőív - Elektromobilitás .. 107
 2. Függelék: Eredmény - Elektromobilitás ... 113
 3. Függelék: Úrlapok - Integrált információs rendszer ... 123
 4. Függelék: Kérdőív - Carsharing ... 126
 5. Függelék: Eredmények - Carsharing .. 129
1 Bevezetés

A környezetvédelem és a károsanyag kibocsátás egyre nagyobb figyelmet kap a közlekedéstervezés és -üzemeltetés során. Az Európai Unióban a hagyományos üzemű személygépjárművek CO₂ kibocsátását a jelenlegi 130 g/km-ről 2020-ra 95 g/km, 2025-re 68-78 g/km alá kell csökkenteni. Ennek megfelelően a környezetbarát hajtásláncok és alternatív üzemanyagok széleskörű elterjedése várható a következő évtizedekben. Cél a fosszilis tüzelőanyag részarányának csökkentése, a megújuló energiaforrások arányának növelése a közlekedésben, és a lokális károsanyag kibocsátás minimalizálása a sűrűn lakott övezetekben.

Az alternatív megoldások közül az elektromos hajtásra irányul a legnagyobb figyelem, annak kedvező tulajdonságai (például egyszerűbb hajtáslánc) miatt. Jelenleg is számos országban támogatják a közúti elektromobilitást, azaz az elektromos járművek használatát, a járműhasználatot kizsolgált infrastruktúra kiépítését, valamint az információs és kommunikációs technológiák alkalmazását. Ezen intézkedésekkel több európai országban sikeresen csökkentették a károsanyag kibocsátást (Canals et al., 2016, Skrucany et al., 2017).

Az előrejelzések szerint 2030-ra az elektromos személygépkocsik száma a világon 3 és 4 millió közé várható. Az elektromos hajtás részben megoldást jelenthet a közlekedés okozta környezetszennyezésre, azonban újabb problémákat is felvet. Az eltérő üzemeltetési jellemzők miatt az új technológiától való idegenkedés alakulhat ki (Büscher et al., 2009), ami intelligens és személyre szabott információs szolgáltatásokkal csökkenthető. Az elektromos járművek nemcsak a közúti, hanem a villamos hálózaton is „megjelennek”. Ahogy a közúton a közlekedési igények az intelligens közlekedési rendszerekkel kezelhetők, úgy a villamos hálózat többletherhelésének a kezeléséhez is szükséges az intelligens információs rendszerek fejlesztése. A két hálózat között a töltőinfrastruktúra teremt kapcsolatot. Az elektromos járművek számának növekedésével egyidejűleg egyre több töltőállomás szolgálja ki a növekvő energiaigényt. A töltőállomások helyszínkijelölésének különösképp az elektromobilitás kezdeti időszakában van jelentős szerepe, amíg tisztán piaci alapon nem működhető az infrastruktúra. Emiatt a kezdeti időszakban a töltőállomások jellemzői (például helyszín, töltési teljesítmény) jelentősen befolyásolják az elektromobilitás terjedését. Az elektromos járművek nem csak az egyéni, hanem a megosztáson alapuló közösségi közlekedésben (például carsharing, magyar szóhasználatban közautó) is megjelenhetnek. Így sokak számára elérhetővé vált az új technológia. Összességében megállapítható, hogy az elektromobilitás egy komplex rendszer, aminek bár az egyik legfontosabb összetevője a jármű, a hatékony üzemeltetéshez számos összetevő összehangolt működése szükséges.

A közlekedés-fejlesztés során cél olyan megoldások alkalmazása, melyek az erőforrásokkal hatékonyan gazdálkodnak, ugyanakkor az utazók preferenciáikat kielégítik, használatuk egyszerű és kevés erófeszítésbe telik (Monigl és Berki, 2010). Ennek megfelelően, kutatásom során arra kerestem a választ, hogy hogyan lehet elősegíteni a válást a hagyományosról az elektromos személygépjárművekre úgy, hogy az illeszkedjen a meglévő közlekedési és villamos hálózati infrastruktúrához. Üzemeltetést támogató módszereket dolgoztam ki újszerű elektromobilitási szolgáltatásokhoz, figyelembe véve a felhasználói és az üzemeltetői oldalt, valamint a közúthálózat jellemzőit. Kutatásom rendszer- és folyamatszemléletben végeztem. Az eredményeim hozzájárulnak a közlekedési rendszerben bekövetkező változások elősegítéséhez és a változásokra való felkészüléshez.
2 Kutatási téma

A fejezetben kifejtem a kutatási téma aktualitását. Ismertetem a kutatás megfogalmazott céljait, tématerületeit, valamint a tématerületekhez tartozó lehátrólásokat.

2.1 Téma aktualitása, fogalmak definiálása

A világon a fosszilis üzemanyagok felhasználásából származó CO₂ kibocsátás 75%-a a közúti közlekedésből származik, ezért a zéró lokális károsanyag kibocsátású elektromos járművek jelentős előrelépést jelentenek a fenntartható közlekedés felé. Emiatt az elektromos járművek a következő évtizedekben a városi közlekedés meghatározó szereplői lesznek (Wang et al., 2019). Ugyanakkor önmagában az elektromos hajtás nem elegendő a fenntartható közlekedéshez.

Többek között, továbbra is szükségesek a közlekedési igények kiszolgálását támogató intelligens közlekedési rendszerek.

Számos országban az energiahatékonyság növelése, a károsanyag kibocsátás és a járművek üzemeltetési költségének csökkentése érdekében jelentős erőfeszítéseket tesznek az elektromobilitás népszerűsítésében. Azonban az elektromos közúti járművek széleskörű elterjedését jelenleg még több tényező gátolja, melyek közül a leginkább meghatározó az akkumulátor magas beszerzési ára, a hosszú töltési idő, valamint az alacsony és nehezen előrejelezhető hatótáv. Továbbá, az elektromos járműveknek a meglévő közlekedési rendszerbe történő integrálásához új üzemeltetési és infrastruktúra fejlesztési módszerek is szükségesek. Ezen adottságok megoldása jelentős kihívást jelent a kutatók számára, és meghatározza a kutatás és fejlesztés irányát a következő években.

A széleskörű irodalomkutatás és az elektromos járművek üzemeltetésével kapcsolatban szerzett saját tapasztalatok alapján azonosítottam a közúti elektromos személygépkocsik elterjedését gátoló jellemzőket, amikből levezettem a kutatási területem fő pilléreit. A kutatási területeket és azok kapcsolatát a 2.1. ábrán mutatom be.

1. INTEGRÁLT INFORMÁCIÓS RENDSZER

2. ORSZÁGOS ÁTJÁRHATÓSÁG - VILLÁMTÖLTŐ HÁLÓZAT

3. RÖVIDTÁVÚ UTAZÁSOK - VÁROSI TÖLTŐÁLLOMÁSOK

4. MEGOSZTÁSON ALAPULÓ ELEKTROMOS JÁRMŰ HASZNÁLAT

5. TÖLTÉSI TERV OPTIMALIZÁLÁS

TÖLTÖINFRASTRUKTÚRA

3. RÖVIDTÁVÚ UTAZÁSOK - VÁROSI TÖLTŐÁLLOMÁSOK

2.1. ábra Kutatási témakörök kapcsolatai

Az elektromos járműveknek a hagyományostól eltérő üzemeltetési jellemzői új döntési helyzeteket teremtenek a felhasználók számára, ami idegenkedést okozhat az új technológiával szemben, és lassítja annak terjedését. Az új döntési helyzetekben személyre szabott információs
szolgáltatások segíthetik a felhasználót. Az új mobilitási szolgáltatások üzemeltetése nagymennyiségű információit igényel a különböző résztvevőktől. A résztvevők nagy száma és az információk sokfélesége miatt már a kezdeti fázisban szükség van egy integrált információs rendszerre, ami keretrendszt ad az elektromobilitáshoz kapcsolódó szolgáltatásoknak és lehetővé teszi, hogy egy platformon keresztül érhessek el a felhasználók az elektromos járműhasználattal kapcsolatos információkat. Az innovatív elektromobilitás szolgáltatások a következők:

- jármű újratöltése publikus töltőállomáson,
- elektromos jármű megosztó szolgáltatások,
- töltéstervezés és -befolyásolás.

Amíg hiányoznak a publikus töltőállomások vagy alacsony a számuk, addig csak azok tudnak elektromos járművet használni, akik otthon vagy a munkahelyen tudnak tölni. Így a járművek használhatósága általában csak a privát töltőállomások környezetére korlátozódik. Ezért a megfelelő publikus töltőinfrastruktúra az elektromobilitás alapfeltétele, és a töltőállomások telepítése jelentősen befolyásolja az elektromos járművek terjedését, különösen a jelenlegi ún. korai fázisban. Az egyéni gépjárműves utazások során kétféle töltési igényt különböztettet meg, attól függően, hogy hol és mikor jelentkezik. A kétféle töltési igényt a 2.2. ábrán mutatom be.

![Inter-city töltési igény](image)

![Intra-city töltési igény](image)

Inter-city töltési igény

Intra-city töltési igény

Jelmagyarázat:

- Töltési igény

2.2. ábra Töltési igény típusok

Az igény típusok között a fő különbség a motiváció. Az **inter-city töltési igény** jellemzően hosszútávú, távolsági utazások során jelentkezik, elsősorban gyorsforgalmi utak mentén. A töltési folyamat motivációja az, hogy az elektromos jármű hatótávja nem elégséges ahhoz, hogy az utazó a jármű újratöltése nélkül elérje célállomását. Ebben az esetben a töltés időveszteséget okoz, aminek időtartamát csökkenteni kell. Európában számos töltőállomást telepítettek az autópályák és országutak mentén, azonban ezek jelentős része nem villámtöltő, és továbbra is magas a kiszolgálhatlan útszakaszok aránya. A töltőállomás hálózat kiépítése alapfeltétele egy
töltőállomás helyszín kijelölő módszer, ami figyelembe veszi a töltési- és közlekedési igényeket, jellemzőket.

Az intra-city töltési igény jellemzően a rövidtávú utazások végén keletkezik, elsősorban lakott területen belül. A töltési folyamat motivációja, hogy bár a jármű hatótávolsága elegendő ahhoz, hogy az utazó eljusson a célállomásra, azonban továbbutazás előtt szükséges a jármű töltése. Ebben az esetben a töltési folyamat kiegészíti a parkolást, és annak hasznosságát növeli. Jelenleg számos településen találhatók töltőállomások. Azonban a töltőállomások telepítésénél gyakran nem vették figyelembe a közlekedési szempontokat, hanem például kizárólag az elektromos hálózat szabad kapacitása volt a meghatározó. Tehát egy olyan töltőállomás helyszín kijelölő módszer szükséges, ami figyelembe veszi a közlekedési szempontokat is, és támogatja egy egységes töltőállomás hálózat telepítését. A töltőinfrastruktúra kiépítése Magyarországon is kiemelt kormányzati figyelmet kap.

Megfelelő töltőinfrastruktúra esetén az elektromos jármű alternatívát jelent a hagyományos járműhöz képest. Azonban a magas beszerzési ár továbbra is jelentősen gátolja azt, hogy sokak számára elérhető legyen a technológia. Erre jelent megoldást a megosztáson alapuló elektromos járműhasználat, aminek módjait a 2.3. ábrán mutatom be.

![Diagram](image.png)

2.3. ábra Megosztáson alapuló járműhasználat módok jellemzői

A carsharing és ride-sharing (magyar szóhasználatban telekocsi) között a fő különbség a jármű kapacitáskihasználtság növelésének a módja. A **férfihely-kihasználtság fokozását célzó szolgáltatások** (ride-sharing) jellemzően a közép- és hosszútávú utazásokat szolgálják ki. A szolgáltatás regisztrált felhasználói a saját járművüket osztják meg a többi felhasználóval egy adott utazás esetében. A **futási idő kihasználtságát fokozó megoldások** (carsharing) jellemzően rövidtávú utazások kiszolgálására alkalmasak az elterjedt díjszabások miatt. Ebben az esetben is közösen használnak a felhasználók egy járművet, de nem egyidőben. A két mód ötvözése egyelőre még nem jellemző. A jelenlegi elektromos járművek karakterisztikájuk alapján (korlátozott hatótáv) elsősorban a carsharing típusú szolgáltatások keretében használhatók jól.
Bár a carsharing szolgáltatások már a 20. század közepétől elérhetők, a szolgáltatás elterjedésének az elektromos járművek megjelenése újabb lökést adott. Ennek okai a következők:

- számos országban ösztönzik a környezetbarát járművek használatát,
- az elektromos jármű a hagyományos üzemű járművekkel összehasonlitva kevesebb karbantartást igényel és alacsonyabb az üzemeltetési költsége,
- kedvezőbb vezetési élmény,
- a hagyományos üzemű járművek számára kedvezőtlen a rövidtávú városi használat, amikor a hideg katalizátor miatt a károsanyag kibocsátás magas, és a hajtásrendszer is nagyobb terhelésnek van kitevé.

Magyarországon 2013-ban jelent meg az első carsharing szolgáltató (Avalon Carsharing) hagyományos üzemű járművekkel. Az első elektromos járműveket üzemeltető carsharing szolgáltató, a GreenGo, 2016-tól működik Budapesten, azóta pedig elérhető a MOL Limo és a DriveNow is, amelyek tisztán elektromos járműveket is kínálnak.

Egy új carsharing rendszer és szolgáltatás bevezetése, vagy egy meglévő bővítése, a következő rendszertervezési lépésekkel alapozható meg:

- utazási igények modellezése,
- állomások telepítési helyszíneinek megválasztása,
- járműpark jellemzőinek meghatározása,
- szolgáltatási jellemzők meghatározása.

Bár a hagyományos közforgalmú közlekedés minőségi kérdéseivel számos tanulmány foglalkozik (dell’Olio et al., 2011; Redman et al., 2013), a módszerek adaptálása a carsharing szolgáltatásokra még nem történt meg. Egy multikritériumos minőség elemző módszer az említett tervezési lépéseket támogatja, összességében pedig a carsharing szolgáltatások sikerességét segíti elő.

Az elektromos járműveket kiszolgáló villamos hálózat stabil működésének alapfeltétele a kereslet és a kínálat egyensúlya (Tchawou et al., 2019). Ezt az egyensúlyt nehéz elérni, melynek okai:

- kereslet oldalon: az igény (részben) sztochasztikusan változik,
- kínálat oldalon: a megújuló, de nehezen tervezhető energiaforrások egyre nagyobb mértékű alkalmazása.

A stabilitás a tartalék kapacitás növelésével és az igények befolyásolásával segíthető elő. A nagy számban megjelenő elektromos járművek jelentős, sztochasztikus többletterhelést jelentenek a villamos hálózaton, továbbá az akkumulátoros elektromos járművek egy mozgó energiatárolónak tekinthetők a villamos hálózat szempontjából, ami hatékony eszköze a terhelés ingadozás csökkentésének (Hernandez et al., 2012; Cowan, 2013).
Tehát olyan intelligens töltésütemező megoldások szükségesek, amik figyelembe veszik az elektromos jármű használó és a villamos hálózat jellemzőit, valamint támogatják a kétirányú energiaáramot.

2.2 Célkitűzés

Kutatási területenként a következő célokat fogalmaztam meg:

1. **Integrált információs rendszer**: a rendszer szerkezetének és működésének modellezése, ami megkönnyíti az új technológiák (például Smart Grid, magyar szóhasználatban okos hálózat) bevezetését. Célom volt a rendszer összetevőinek azonosítása, továbbá az üzemeltetői és a felhasználói szempontok figyelembevételével az elektromos járművásárlást és a járműhasználatot támogató innovatív funkciók kidolgozása.

2. **Országos átjárhatóságot biztosító elektromos villámtöltő-állomások helyszínének értékelése és ki választása**: célom volt egy módszer fejlesztése, ami olyan esetben is használható, amikor nem állnak rendelkezésre részletes adatok a közlekedési igényekről, továbbá amely figyelembe veszi a potenciális helyszínek szolgáltatási színvonalát is.

3. **Városi elektromos töltőállomások helyszínének kijelölése**: olyan helyszínkijelölő módszer fejlesztése, aminek az alkalmazásával a jármű használók parkolási szokásai alapján jelölhetők ki a töltőállomás helyszínek. Ennek megfelelően célom volt a parkolást befolyásoló jellemzők meghatározása (pl.: szolgáltatások, népesség, beépítettség jellemzői) is.

4. **Carsharing szolgáltatások minőségének értékelése**: multikritériumos módszer kidolgozása, ami alapján értékelhetők és összehasonlíthatók a carsharing szolgáltatások, valamint meghatározhatók a fejlesztési irányok. Ennek megfelelően célom volt azoknak a jellemzőknek az azonosítása, amelyek befolyásolják a felhasználó által érzékelt minőséget. Továbbá célem volt a jellemzők, és a felhasználói elvárások közötti kapcsolatok erősségeinek a meghatározása.

5. **Töltési terv optimalizálás**: elektromos jármű töltési költség minimalizáló módszer fejlesztése, ami figyelembe veszi a felhasználó, a jármű és a villamos hálózat jellemzőit, és támogatja a kétirányú energiaáramot. A töltési terv tartalmazza, hogy a felhasználónak hol és mennyi ideig érdemes töltene a járművét. A villamos hálózat jellemzőinek a figyelembevételével közvetett módon az optimalizáló módszer a villamos hálózat terhelés ingadozás csökkentésének a hatékony eszköze. Továbbá
célom volt az eltérő töltési stratégiák összehasonlítása, és a visszatáplálást ösztönző változó dijítételek paramétereinek meghatározása.

2.3 Alkalmazott kutatási módszerek

A kutatási céloknak, és a definíált feladatoknak megfelelően a szakirodalomból jól ismert általános módszereket is alkalmaztam, melyek az alábbiak:

- rendszertervezés módszertana,
- relációs adatmodellezés,
- multikritériumos módszer,
- súlyozott összeg modell,
- kérdőíves kutatás,
- mohó algoritmus.

A közlekedési rendszertervezés alaposszefüggéseit használtam az elektromobilitást támogató információs rendszer összetevőinek, a kapcsolatoknak és a funkcióknak a meghatározásakor.

Az összetett közlekedési rendszerek értékeléséhez multikritériumos módszert alkalmaztam, amely lehetővé teszi a többszempontú értékelést, összehasonlítást és a döntéstámogatást. A módszer előnye, hogy nem csak alternatíva párok összehasonlítására alkalmas, hanem abszolút skálán is értékeli újok vele a vizsgált objektumok. A módszerrel nagy mennyiségi adat vehető figyelembe. További előnye, hogy az alig, vagy egyáltalán nem számszerűsíthető tényezők hatása is értékelhető. A különböző multikritériumos módszerek fejlődését Bragge és szerzőtársai (2010) mutatták be.

Multikritériumos értékelés során az egyes szempontok eltérő súlyakkal történő figyelembevételéhez súlyozott összeg modellt (Weighted Sum Model = WSM) alkottam. A modellező eljárás lényege, hogy az azonos skálán (jellemzően 1-5) értékelés szempontokhoz súlyozások rendelhetők, amivel az egyes szempontok fontossága, vagy a kimenetre gyakorolt hatásának az erősége fejezhető ki. A súlyok megválasztásánál az adott cél let kell minden esetben figyelembe venni. Az egyes alternatívák értékeléséhez használt általános formulát a 2.1 egyenlet mutatja be.
\[Q = \frac{\sum g_i x_i}{\sum g_i} \]

2.1

Ahol:

- \(Q \) aggregált értékelő szám,
- \(g_i \) az \(i \)-ik szempont súlyszáma,
- \(x_i \) az \(i \)-ik szempont értékelő száma.

Súlyozott összeg modellt dolgoztam ki és alkalmaztam a lehetséges töltési helyszínek értékeléséhez, a terület egységek értékeléséhez, és a carsharing szolgáltatások értékeléséhez.

A felhasználói szokások és igények felmérésére alkalmas a:
- revealed preference (feltárt preferencia), és a
- stated preference (kinyilvánított preferencia) vizsgálat.

A töltőállomás helyszínek optimalizálásához és a töltési költség minimalizálásához a mohó algoritmust használtam. A mohó algoritmus egy kiválasztó függvény, amely az adott lépésben előhívó legjobb jelölőt kiválasztásával közélti a globális optimumot. Az algoritmus előnye, hogy alacsony a számítás igénye.

3 Irodalmi áttekintés

A fejezetben az irodalomkutatás eredményeit kutatási téma területenként foglalom össze. A 2. és 3. kutatási téma terület hasonlósága miatt az ehez tartozó irodalom eredményeit együtt mutatom be (3.2. alfejezet).

3.1 Integrált információs rendszer

A jelenlegi elektromos járműveket gyakrabban és hosszabb ideig kell tölteni, mint a hagyományos járműveket. Ezen tényezők együttesesen befolyásolják az útvonal választást (Wanga et al., 2016, Yang et al., 2016), és okoznak aggodalmat a hatótáv miatt. Ennek eredményeképp az elektromos jármű használók részletesebben megtervezik az utazásaiakat (Yang et al., 2016), ami miatt jelentősen megnő az igény az értékenő információs szolgáltatások iránt, amivel a negatív hatások jelentősen csökkenhetők. A plug-in hibrid járművek a hagyományos és elektromos hajtás előnyeit ötvözik, így a hatótáv csökkénés nem jelentős egy hagyományos járműhöz képest, de az információs szolgáltatás előnyeit az utazók ugyanúgy élvezhetik, hiszen egy plug-in hibrid jármű akkor használható hatékonyan, ha minél többet közlekedik tisztán elektromos üzemben.

Számos tanulmány vizsgálta, hogy mi befolyásolja a közlekedéssel kapcsolatos információ értékét. Az információt, mint terméket, a sajátosságai ellenére, érdemes hagyományos áruként kezelni (Wydro, 2010), bár az értéke lehet negatív is (Herrala, 2007). Mivel az információs szolgáltatás jelentősen befolyásolja az útvonaltervezést és az utazás időpontját, az információs rendszerek alkalmazása elősegíti az optimális forgalomfolyást a közlekedési hálózaton (Piet, 2011). A felhasználó jellemzően és a döntési szituáció tűl (Lawrence, 1999), számos egyéb tényező is befolyásolja az információ értékét, ami térben és időben egyaránt változik (Wydro 2010). Herrala (2007) a releváns szakirodalom összegzése után 16 tényezőt határozott meg, amelyek jelentősen befolyásolják az információ értékét. Ezek közül a tanulmányokban leggyakrabban megjelenő jellemző a megbízhatóság, az időszerűség, a relevancia és a teljesség volt. Továbbá Parasuraman és szerzőtársai (1985) megállapították, hogy a szolgáltatásról előzetesen szerzett információ jelentősen befolyásolja az érzékelőt minőséget. Az első benyomás minden új technológia esetén kiemelten fontos, tehát a szolgáltatott információ jelentősége is nagy.

Ezen túlmenően a kommunikációs csatorna és a kommunikációs felület is befolyásolja az információ értékét. Az elmúlt években jelentősen megváltoztak az utazók információszerzési szokásai a megjelenő új technológiák hatására. Egy okostelefonok felhasználási szokásait vizsgáló tanulmány megállapította, hogy a felhasználók 75%-a használja navigációra vagy közlekedéssel kapcsolatos információszerzésre készülékét, és a legnépszerűbb alkalmazások között megtalálhatók a térkép és útvonaltervező alkalmazások is. Esztergár-Kiss és Csiszár (2016) az útvonaltervező alkalmazások fejlődését vizsgálták felhasználói szemszögéből, és megállapították, hogy a funkcionális integráció, a crowdsourcing (magyar szóhasználatban közösségi ötletbörze) és a valósidejű információk szolgáltatása a legjelentősebb újítások. Khoo és Asitha (2016) a felhasználói elvárásokat vizsgálva megállapították, hogy a valósidejű

2 Sutherland, E. Forrester: the iPhone is Still Most-Used Smartphone, 2013. URL: http://www.idownloadblog.com/2013/08/01/iphone-most-used-smartphone/
információknak van a legnagyobb értéke. Továbbá a felhasználók által leginkább kedvelt kommunikációs felület az okostelefonos alkalmazás, bár más felületek, mint például a weboldal, szintén népszerűek.

Jelenleg is elérhetők az elektromobilitáshoz kapcsolódó információs rendszerek és szolgáltatások, azonban ezek jellemzően egy folyamatra fókuszálnak, nem pedig le a teljes járműhasználatot és általában hiányzik az érintett összetevők közötti infokommunikációs kapcsolat.

3.2 Töltőinfrastruktúra telepítés

A szakirodalom alapján a leginkább kiemelkedő különbségek a hagyományos és elektromos üzemű járművek között a korlátozott hatótáv, a jármű újratöltése és a magas beszerzési ár (Dagsvike et al., 2002, Hidrue et al., 2011, Krupa et al., 2014). Ezek közül a jármű újratöltése jelenti a legnagyobb negatívumot (Hidrue et al., 2011, Caparello és Kurani, 2012, Krupa et al., 2014). Ennek oka, hogy egy elektromos járművet gyakrabban, és hosszabb ideig szükséges tölteni energiával, mint egy hagyományos járművet.

Számos tanulmány foglalkozik az elektromos járművek töltésével, többségük a töltőinfrastruktúra telepítésére fókuszálva. A helyszínek kijelölését meghatározzák:

- az utazói szokásokból levezetett töltési igények térbeli jellemzői, valamint
- a rendelkezésre álló villamos hálózati kapacitás, vagy annak gazdaságos bővítési lehetősége.

Ennek megfelelően jellemzően közlekedési vagy villamos hálózat alapú megközelítéseket alkalmaznak a vizsgálatok során, bár léteznek például a szemantikus modelleredálásra is (például Gong et al., 2016).

A közlekedési igényt vizsgáló munkák további csoportokra oszthatók, aszerint, hogy a töltőállomásokkal szembeni felhasználói igényeket és töltési keresletet általánosan vizsgálják, és abból vezetik le az ideális töltőállomás helyszín jellemezőit, vagy a forgalmat léíró jellemzőkből vezetik le külön az inter-city és intra-city töltési igényeket kiszolgáló töltőállomások helyszíneit. Ugyanakkor a két eltérő töltési igényt együttesen kezelő tanulmányok is megtalálhatók (például Wang és Wang, 2010).

A legtöbb tanulmány a töltési igények becsülésével kezdődik. Lokowska és szerzőtársai (2011) Monte Carlo szimulációt dolgoztak ki az otthoni töltés modellezéséhez. A töltési kereslet időbeli változását vizsgálták a töltés kezdő és befejező időpontja, valamint az utazások átlagos hossza alapján. Liang és szerzőtársai (2014) a töltési keresletet meghatározó modelljükben a jármű jellemzőket és a villamos energia tarifát is figyelembe vették. Számos tanulmányban a „Big Data” technológiát alkalmazva becsülik meg a töltési keresletet historikus forgalmi és

Távolsági utazásoknál a töltőhelyszínek fontos a megfelelő kiegyensúlyozott szolgáltatások biztosítása, mivel a felhasználók elvárása, hogy ezt a töltési időt hasznosan töltthessék el (Philipsen et al., 2015). Megállapították, hogy a felhasználók különböző elképzeléseken alapuló töltőállomásokat megítélésétől a legfontosabb jellelemzők a szolgáltatások színvonal, megbízhatósága és hozzáférhetősége (Philipsen et al., 2016).

Más tanulmányok elsősorban közlekedési szempontokat vettek figyelembe. Ezen munkák további két csoportba sorolhatók:

- szakaszorientált (Hodgson 1990) és
- pontorientált (Hakimi, 1964) telepítési koncepciók.

Szakaszorientált modellek (FCLM – Flow Capturing Facility Location Models – vonalmenti igényt kiszolgáló létesítmények elhelyezésének modellje) a regionális igények kielégítéséhez használtak (Upchurch és Kuby, 2010). Szemben a tradicionális pontorientált modelljeivel, a szakaszorientált modellek az igényeket honnan-hová (OD) irányokkal adják meg, és a cél a lehető legtöbb honnan-hová mozgás kiszolgálása (Xi et al., 2013, Huang et al., 2016).

megbízhatóságát javíthatja az új kritériumok bevezetése, de a megnövekedett adatigény csökkentheti a módszer gyakorlati alkalmazhatóságát.

Az irodalomkutatás alapján megállapítottam, hogy a főutak mentén számos tényező befolyásolja a töltésigényt, amelyek közül a forgalommagyság, a hatótávolság, és az elektromos járművek száma a legmeghatározóbb. **Kiemelten fontos a kiegészítő szolgáltatások biztosítása, ami jelentősen befolyásolja a felhasználói élményt.**

Városi környezetben a legtöbb tanulmány a jármű hely adatait, elsősorban a parkolási jellemzőket veszi alapul a töltőállomások telepítési helyszíneinek a meghatározásához. A parkoló forgalom nagysága a területi egység jellemzőiből is levezethető. Számos megközelítésben már figyelembe veszik a területi egység jellemzőit, elsősorban az elérhető szolgáltatásokat. Más jellemzőket (például lakosszám) gyakran figyelmen kívül hagynak.

A töltőinfrastruktúra telepítéshez kapcsolódó irodalomkutatást a 3.1. ábrán foglaltam össze.

KÖZLEKEDÉSI IGÉNY OLDALI MEGKÖZELÍTÉS

<table>
<thead>
<tr>
<th>Általános felhasználói igények</th>
<th>Inter-city töltési igényt kiszolgáló töltőállomás helyszín kijelölés</th>
<th>Intra-city töltési igényt kiszolgáló töltőállomás helyszín kijelölés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokowska et al., 2011; Liang et al., 2014; Philipsen et al., 2015; Zhang et al., 2015; Arias és Bae, 2016; Philipson et al., 2016; Sun et al., 2016; Arias et al., 2017; Dorcec et al., 2019</td>
<td>Kuby és Lim, 2005; Kuby és Lim, 2007; Lim és Kuby, 2010; Upchurch és Kuby, 2010; Xi et al., 2013; Tan és Lin, 2014; Lin és Hua, 2015; Huang et al., 2016; Davidov és Pantos, 2017; Wang et al., 2018, He et al., 2019</td>
<td>Ip et al., 2010; Cromley et al., 2011; Frade et al., 2011; Ge et al., 2011; Hess et al., 2012; Chen et al., 2013, Cai et al., 2014; Gavranovic et al., 2014; Wei és Murray, 2014; Yao et al., 2014; He et al., 2015; Shahraki et al., 2015; Andrenacci et al., 2016; Bauer 2016; Yin és Zao, 2016; Alegre et al., 2017; Alhazmi et al., 2017; Shirmohammadli és Vallée, 2017; Rominger és Farkas, 2017</td>
</tr>
<tr>
<td>Gong et al., 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VILLAMOS HÁLÓZAT KAPACITÁS OLDALI MEGKÖZELÍTÉS

3.3 Carsharing szolgáltatások minősége

Mannan (2001) megállapította, hogy a carsharing rendszerek alkalmazása, különösen az elektromos járművek üzemeltetése, több tekintetben is kedvező a teljes társadalom számára. Egy rugalmas, könnyen hozzáférhető szolgáltatás jelentősen csökkentheti a saját járművek...
számát. A carsharing szolgáltatás a közösségi közlekedési rendszer részét képezi, emiatt megvizsgáltam a hagyományos közösségi közlekedés értékelésére alkalmas módszerek adaptálási lehetőségeit az elektromos járműveket is üzemeltető carsharing rendszerekre.

A minőség egy összetett jellemző, amit a szolgáltatás és a felhasználó tulajdonságai együttesen határoznak meg. A minőség leírására szolgáló jellemzők lehetnek objektív (könnyen számszerűsíthető) és szubjektív jellemzők (Kövesné és Debreczeni, 2010). A szubjektív jellemzők és a folyamatosan változó környezet miatt a közösségi közlekedés minőségének értékelésére számos eltérő módszer megtalálható a hazai és nemzetközi szakirodalomban (Fáskerty et al., 2012), illetve léteznek rá ajánlások az Európai Unióban (például Európai Szabványügyi Bizottság, 2006). A minőségét értékelő módszerek két csoportba sorolhatók:

- relatív, vagy összehasonlító módszerek, és
- abszolút értékelő módszerek.

A jelenlegi közlekedési szokások és a csatlakozási hajlandóság kapcsolatát vizsgálta Burkhardt és Millard-Ball (2006). Megállapították, hogy a carsharing ügyfelek rendszeresen használnak

Millard-Ball (2005) a csatlakozási hajlandóság és a demográfiai jellemzők kapcsolatát vizsgálta. Megállapította, hogy a szolgáltatás regisztrálta felhasználói között kiemelkedően magas a felsőfokú végzettséggel rendelkezők aránya. Továbbá nem talált egyértelmű erős kapcsolatot a népsűrűség és a felhasználók száma között. Bár ennek az lehetett az oka, hogy egyes járművek az üzleti negyedben helyezkedtek el, ahol a napközbeni népességszám magas, de a bejelentett lakóhelyek alapján nincs népsűrűség alacsony. Egy másik tanulmány szerint a minimum népsűrűség, ahol a carsharing szolgáltatás működik*, lehet 4000 fő/km² (Celsor és Millard-Ball, 2007), és a csatlakozási hajlandóságot körülbelül 50%-kal növeli, ha 250 méteren belül elérhető a járművek (Coll et al., 2014).

Az irodalom kutatás alapján megállapítottam, hogy a meglevő, a közlekedésben alkalmazott minőség elemzési módszereket még nem adaptálták carsharing rendszerekre. A carsharing szolgáltatás minőségét meghatározó jellemzők vizsgálatával csak részlegesen foglalkoznak a szakirodalomban, a teljességre törekvés nélkül.

3.4 Töltési terv optimalizálás

Ennek a részterületnek a kutatása során a töltőinfrastruktúrát adottnak tekintettem, így ehelyütt nem foglalkoztam azokkal a töltés optimalizálására fókuszáló tanulmányokkal, amelyek a töltőállomások helyszínét a villamos hálózat jellemzői alapján jelölik ki (például Aljanad et al., 2018).

A töltési folyamat időbeli optimalizálásával foglalkozó tanulmányok jellemzően két csoportra oszthatók:

- **Centralizált irányítás:** a teljes villamos hálózat terhelés ingadozás minimalizálása a cél. Egy központi vezérlőegység irányítja a hálózathoz csatlakozó elektromos járművek töltését és úgy befolyásolja azt, hogy az aggregált töltési igény a lehető legkisebb terhelésingadozást okozza a hálózaton.

- **Decentralizált irányítás:** az egyes járművek töltésének optimalizálása a cél. A célfüggvény lehet a költség vagy a töltési idő minimalizálása. A járművek egymástól független töltési terv alapján töltődnek.

A centralizált és decentralizált töltési stratégiák jellemzőit a 3.1. táblázatban foglaltam össze. A centralizált irányítással megvalósítható az egyenletes terhelés a villamos hálózaton, így azonban az egyes járművek töltésében jelentkezhetnek csúcsidőszakok, amik jelentősen
megnövelik a töltési költséget és csökkenthetik az akkumulátor élettartamát. Ezzel szemben a decentralizált irányítás a jármű számára biztosít egyenletes töltést, és nem garantálja az egyenletes terhelést a villamos hálózat számára.

3.1. táblázat Centralizált és decentralizált töltés ütemezés jellemzői

<table>
<thead>
<tr>
<th>Centralizált irányítás</th>
<th>Decentralizált irányítás</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Villamos hálózati optimum</td>
<td>• Egyéni felhasználói optimum</td>
</tr>
<tr>
<td>• Az elektromos jármű használók igényeit részben veszi figyelembe</td>
<td>• A villamos hálózat jellemzőit részben veszi figyelembe</td>
</tr>
<tr>
<td>• A villamos hálózat terhelés becslése központilag történik</td>
<td>• A villamos hálózat terhelés becslése központilag történik</td>
</tr>
<tr>
<td>• A töltés ütemezés a becsült terhelés alapján központilag megy végbe, az ehhez szükséges alkalmazás a villamos hálózat üzemeltetőnél van</td>
<td>• A töltés ütemezés a becsült terhelés alapján megosztva megy végbe, az ehhez szükséges alkalmazás a felhasználónál van</td>
</tr>
</tbody>
</table>

A megújuló energiaforrások alkalmazhatóságát vizsgálta Forrest és szerzőtársai (2016). Megállapították, hogy az elektromos járművek töltésének optimális ütemezésével a megújuló

3.5 Kutatási rések
Kutatási tárgy területenként a következő kutatási tételeket azonosítottam az irodalom kutatás alapján:

Integrált információs rendszer:
- A meglevő információs rendszerek jellemzően egy funkcióra fókuszálnak, hiányzik az integráció.
- A teljes integrációhoz szükséges összetevők és az összetevők közötti kapcsolatok jellemzőinek meghatározása nem történt meg.
- Hiányoznak az integrációt segítő rendszer- és folyamatszemléletű modellek.

Országos átjárhatóságot biztosító elektromos villámtöltő-állomások helyszínének kijelölése:
- A töltőállomás helyszínek kijelölésénél gyakran az utazások honnan-hová adatait használják. Azonban a szükséges adatok nem minden esetben állnak rendelkezésre, így ezen módszerek nem alkalmazhatók általánosan.
- Az egyéb szolgáltatások megléte fontos a töltési idő hasznoseltöltésének szempontjából; azonban ezeket a szempontokat nem, vagy csak részben vették ezidáig figyelembbe.

Városi elektromos töltőállomások helyszínének kijelölése:
- Hiányzik a területegységeket az intra-city töltési igények nagysága alapján értékelő makró szintű eljárás.
Hiányzik egy olyan értékelő eljárás, ami a helyszín típusokat a parkolási jellemzők alapján rangsorolja (súlyozza). Ugyanis a parkolási jellemzők jelentősen befolyásolják a töltési igényt lakott területen belül.

Carsharing szolgáltatások értékelése:

- Hiányzik a carsharing szolgáltatások jellemzői, és a felhasználói elvárások közötti kapcsolatok vizsgálata.
- A kifejezetten a carsharing szolgáltatások minőség értékelésére alkalmassáé modalità kidolgozása még nem történt meg.

Töltési terv optimalizálás:

- A töltés optimalizáló eljárásokban nem történt meg az egyes járművek töltési igényének a részletes modellezése.
- Hiányzik a változó díjtétel és az előrelátó felhasználói magatartásnak a töltési költségre gyakorolt hatásának a vizsgálata.
4 Elektromos személygépkocsi használatát támogató integrált információs rendszer

Az információs rendszer koncepciójának kidolgozásakor azonosítottam az elektromos jármű használatot támogató funkciókat, majd ez alapján meghatároztam a szerkezetet (összevétőket és az adatkapcsolatokat), végül modelleztem a működési folyamatokat.

A fejezetben használt rövidítéseket a 4.1. táblázatban foglaltam össze.

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>összevétő ($i=1..5$)</td>
</tr>
<tr>
<td>$D_{j,k}$</td>
<td>adat kategória ($j=1..5$) és adatcsoport</td>
</tr>
<tr>
<td>$F_{p,q}$</td>
<td>funkció ($p=1..4$) és alfunkció</td>
</tr>
<tr>
<td>N_r</td>
<td>negatívum ($r=1..6$)</td>
</tr>
<tr>
<td>T_s</td>
<td>végberendezés ($s=1..4$)</td>
</tr>
</tbody>
</table>

4.1 Funkciók

Az információs rendszer elsődleges célja, hogy elősegítse az elektromos személygépkocsik és a hozzá kapcsolódó elektromos infrastruktúra hatékony üzemeltetését. A másodlagos cél, hogy az információs rendszerbe bevont szereplők működési folyamatait támogassuk és így érdekeltek legyenek az információ megosztásában és az együttműködésben.

Az irodalom kutatás és saját tapasztalataim alapján az elektromos járművek esetében 6 jellegzetes negatívumot (N_r) azonosítottam, amelyek jelentősen befolyásolják az elektromos személygépkocsik elterjedését. A funkciókat (F_p) a negatívumokból vezettem le. A 4.1. ábra a negatívumok és funkciók közötti kapcsolatot mutatja be, vagyis, hogy az egyes negatív tulajdonságok kedvezőtlen hatását mely funkciók enyhítik.

4.1. ábra Az információs rendszer funkciói az elektromos járművek negatívumaiból levezetve
Az új személygépkocsi választás támogatása (F_1) funkció személyre szabott döntéstámogatást nyújt a felhasználó számára vásárlás előtt, ami figyelembe véve az elvárásait, közlekedési szokásait, a jármű jellemzőit és más felhasználók tapasztalatait (például jármű hatótávja valós körülmények között). Így a járművek magas beszerzési árának kedvezőtlen hatása mérsékeltethető, ugyanis a felhasználók a számukra leginkább kedvező járművet választhatják, ami növeli a vásárlói elégedettséget. A funkció továbbá csökkenti az új technológiától való félelemet, azáltal, hogy információt közöl a járművek jellemzőiról.

Az utazástervezés/ navigáció (F_2) funkcióknak több fejlődési fokozata van, melyek a következők:

- Személyre szabott információs szolgáltatás a közlekedési hálózatról és töltőinfrastruktúráról, valamint útvonaltervezés a megadott célponthoz statikus adatok alapján.
- Útvonaltervezés megadott célponthoz valós idejű adatok alapján, figyelembe véve a felhasználó és jármű jellemzőit, valamint a közlekedési hálózat és a töltőinfrastruktúra állapotát. Az útvonal mentén a megfelelő töltőállomások előzetes lefoglalása a rendszer által számított idősávra.
- Az úticélok meghatározása a felhasználó tevékenységei alapján, majd útvonaltervezés a kiválasztott célponthoz. Az útvonal mentén a megfelelő töltőállomások előzetes lefoglalása a rendszer által számított idősávra.

A funkció a korlátozott hatótáv negatív hatásait enyhíti, ugyanis lokális és személyre szabott információs szolgáltatással akár 10%-kal is csökkenthető a jármű energiafogyasztása (Zheng et al., 2015). Mivel az útvonaltervezés során a jármű hatótávját és a töltőállomások elhelyezkedését is figyelembe veszi a rendszer, a kevés töltőállomás kedvezőtlen hatásai csökkenhetők.

A töltési folyamatok két kategóriába sorolhatók:

- rendszeres töltések a felhasználó által jól ismert helyszíneken, és
- alkalmankénti töltések.

Az első csoportba tartoznak például az otthoni, munkahelyi vagy gyakran látogatott helyszínek végzett töltési folyamatok. Ebben az esetben a parkolás motivációja nem a jármű töltése, így a töltési folyamat a parkolási idő hasznosságát növeli. A második csoportba ezzel szemben jellemzően azok a töltések tartoznak, amikor a felhasználó a töltési igény miatt szakítja meg az utazást és biztosítani kell szárnámára a hasznos időtöltést. Ezért az útvonaltervezés/ navigáció funkció úgy csökkenti a hosszú töltési idő kedvezőtlen hatásait, hogy amikor lehetséges, villámítőt javasol a lassabb normál töltők helyett, és tájékoztat arról, hogy hogyan lehet hasznosan eltölteni az időt egy töltőállomás közeliében. A korlátozott hatótáv miatti aggodalom és az új technológiától való idegenkedés hatásai a tájékoztatás következtében kialakult magabiztosáig érzésével csökkenthetők.

A töltés támogatás (F_3) segít a töltési folyamat elindításában, leállításában. A töltési folyamat közben a felhasználó valósidejű információt kap a töltés állapotáról, ami alapján eldöntethet,
hogy mikor fejezze be a töltési folyamatot. Így a töltésre fordított idő a valósidejű tájékoztatás következtében csökkenhet. A funkció támogatja a fizetési folyamatot is. A töltés automatikus is leállítható, ha előtte a felhasználó beállított egy leállási feltételt (pl.: hatótáv, költség). Ily módon a töltési idő és az új technológiától való idegenkedés is csökkenhető.

A **töltési terv optimalizálás** \((F_4)\) funkció az előző funkció kiegészítése. Célja a töltési igények és az elektromos hálózat szabad kapacitásának összerendezése úgy, hogy a terhelés ingadozás alacsony legyen. A felhasználó számára a leginkább kedvező (például a legalacsonyabb költségű) töltési terv az érintett összetevőktől származó információk alapján készül. Azáltal, hogy az \(F_4\) funkció olyan töltési tervet javasol, ami figyelembe veszi a felhasználó közlekedési szokásait, a hosszú töltési idő negatív hatásai csökkenhetők, hiszen akkor fog töltődni a jármű, amikor az amúgy is parkolna. A töltési terv meghatározásakor a jármű akkumulátorának élettartamának befolyásoló jellemzők is figyelembe vehetők (például töltési teljesítmény, töltöttségi szint), amivel az akkumulátor élettartama növelhető.

A 4.2. táblázat bemutatja, hogy az egyes funkciók a járműhasználat mely fázisait fedik le. Az integrálás célja, hogy a felhasználók egy információs szolgáltatásban elérjék a leginkább fontos funkciókat, és megvalósítható legyen a tevékenység-alkalmazású utazástervezés, ahol az alkalmazás tervezi meg az utat a felhasználó, a jármű és a közlekedési hálózat jellemzői alapján. Az önvezető járművek megjelenésével együtt megjövő a tevékenység-alkalmazású utazástervezők jelentősége, ezáltal az információs rendszer támogatja az autonóm járművek elterjedését is.

4.2. táblázat Azinformációs rendszer funkciói által támogatott elektromos járműhasználati fázisok

<table>
<thead>
<tr>
<th>Funkciók</th>
<th>Jármű kiválasztás (vásárlás)</th>
<th>Útvonal-és töltés tervezés</th>
<th>Ténytesség hely-változtatás</th>
<th>Töltés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Új személy-gépkocsi választás támogatása</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utazástervezés/ navigáció</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Töltés támogatás</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Töltési terv optimalizálás</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Az alfunkciókat folyamatelemzéssel azonosítottam (4.3. táblázat).

4.3. táblázat Alfunkciók

<table>
<thead>
<tr>
<th>Funkció</th>
<th>Alfunkció</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(F_{1,1}) Járműhasználati adatok megadása/-rögzítése</td>
</tr>
<tr>
<td>(F_{1,2}) Elektromos személygépkocsik értékelése</td>
<td></td>
</tr>
<tr>
<td>(F_2)</td>
<td>(F_{2,1}) Megfelelő helyszínek keresése (tevékenység alapján)</td>
</tr>
<tr>
<td>(F_{2,2}) Útvonaltervezés</td>
<td></td>
</tr>
<tr>
<td>(F_{2,3}) Töltőpont foglalás</td>
<td></td>
</tr>
<tr>
<td>(F_3)</td>
<td>(F_{3,1}) Felhasználó azonosítása és töltés indítása</td>
</tr>
<tr>
<td>(F_{3,2}) Töltési idő becsles és töltőpont foglalás módosítás</td>
<td></td>
</tr>
<tr>
<td>(F_{3,3}) Okos töltés és dijszámtársítás</td>
<td></td>
</tr>
<tr>
<td>(F_{3,4}) Töltési folyamat automatikus leállítása</td>
<td></td>
</tr>
<tr>
<td>(F_{3,5}) Fizetés</td>
<td></td>
</tr>
<tr>
<td>(F_4)</td>
<td>(F_{4,1}) Töltés tervezés</td>
</tr>
<tr>
<td>(F_{4,2}) Visszatáplálás tervezés</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Szerkezeti modell

Az alfunkciók figyelembevételével meghatároztam az integrált információs rendszer által kezelt adatcsoportokat. Az adatcsoportokat kategóriákba rendeztem (4.4. táblázat). A rendszer eltérő érvényességi idejű adatokat kezel; ennek megfelelően statikus és dinamikus adatcsoportokat különböztettek meg. A statikus adatok érvényességi ideje hosszú, és az adatok frissítési gyakorisága nem befolyásolja jelentősen a szolgáltatás minőségét. A dinamikus adatok a folyamatok valós idejű és minél pontosabb leképezésével szolgálnak, ami növeli az információs szolgáltatás minőségét és megbízhatóságát.

4.4. táblázat Adat kategóriák és adatcsoportok

<table>
<thead>
<tr>
<th>Adat kategória</th>
<th>Jelölés</th>
<th>Adatcsoport megnevezés</th>
<th>Érvényesség</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁ Személygépkocsi használati adatok</td>
<td>D₁₁</td>
<td>általános vezetési stílus (és személyes azonosító)</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₁₂</td>
<td>gyakori úticélok (pl. munkahely) és útvonalak</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₁₃</td>
<td>kedvenc töltőállomások</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₁₄</td>
<td>tervezett útvonal</td>
<td>dinamikus</td>
</tr>
<tr>
<td>D₂ Személygépkocsi adatok</td>
<td>D₂₁</td>
<td>fajlagos energiafogyasztás</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₂₂</td>
<td>akkumulátor kapacitása</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₂₃</td>
<td>csatlakozó típusa és töltési teljesítménye</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₂₄</td>
<td>töltősségi szint</td>
<td>dinamikus</td>
</tr>
<tr>
<td>D₃ Töltőinfrastruktúra adatok</td>
<td>D₃₁</td>
<td>publikus töltőállomások adatai</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₃₂</td>
<td>privát töltőállomások adatai</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₃₃</td>
<td>villamos energia tarifa</td>
<td>dinamikus</td>
</tr>
<tr>
<td>D₄ Töltési folyamat adatok</td>
<td>D₄₁</td>
<td>tényleges töltés adatai</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₄₂</td>
<td>tervezett töltés adatai</td>
<td>dinamikus</td>
</tr>
<tr>
<td></td>
<td>D₄₃</td>
<td>töltési költség</td>
<td>dinamikus</td>
</tr>
<tr>
<td>D₅ Közlekedési hálózat adatok</td>
<td>D₅₁</td>
<td>úthálózat adatai</td>
<td>statikus</td>
</tr>
<tr>
<td></td>
<td>D₅₂</td>
<td>forgalmi adatok</td>
<td>dinamikus</td>
</tr>
</tbody>
</table>

Bár a jármű energiafogyasztása dinamikusan változik menet közben, az adatbázisban tárolt adat az eltérő átlagsebesség értékekhez és környezeti körülményekhez (például hidegben a fűtés miatt magasabb) tartozó fajlagos energiafogyasztásra vonatkozik, ami közel állandó. A villamos energia tarifa esetében változó díjtételt feltételeztem, ami egy napon belül is változhat, így dinamikus adatnak tekintem. A tervezett töltés adatait a valós használat és az aktuális körülmények alapján szükséges módosítani, egy napon belül akár többször is, ezért dinamikus adatnak tekintem.

A funkciók és az adatcsoportok közötti kapcsolatrendszer modellezéséhez adatcsoport - funkció (D-F) kapcsolati mátrixot dolgoztam ki (4.5. táblázat).
4.5. táblázat Adatcsoport - funkció (D-F) kapcsolati mátrix

<table>
<thead>
<tr>
<th>Adatok</th>
<th>$F_{1,1}$</th>
<th>$F_{1,2}$</th>
<th>$F_{2,1}$</th>
<th>$F_{2,2}$</th>
<th>$F_{3,1}$</th>
<th>$F_{3,2}$</th>
<th>$F_{3,3}$</th>
<th>$F_{3,4}$</th>
<th>$F_{3,5}$</th>
<th>$F_{4,1}$</th>
<th>$F_{4,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{1,1}$</td>
<td>O</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>$D_{1,2}$</td>
<td>O</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$D_{1,3}$</td>
<td>O</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$D_{1,4}$</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>$D_{2,1}$</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>$D_{2,2}$</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$D_{2,3}$</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$D_{2,4}$</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>$D_{3,1}$</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$D_{3,2}$</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$D_{3,3}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$D_{4,1}$</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>O</td>
<td>1</td>
<td>I</td>
<td>X</td>
<td>O</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>$D_{4,2}$</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>O</td>
<td>-</td>
<td>O</td>
<td>I</td>
<td>I</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>$D_{4,3}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>O</td>
<td>I</td>
<td>I</td>
<td>O</td>
</tr>
<tr>
<td>$D_{5,1}$</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>$D_{5,2}$</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Jelmagyarázat:
I: bemenő adat O: kimenő adat X: be- és kimenő adat -: nincs kapcsolat

A személygépkocsi használati (D_1) és töltési folyamat (D_4) adat kategóriák tartalmaznak bemenő és kimenő adatcsoportot is. A kapcsolati mátrix alapján az $F_{1,2}$ és $F_{2,1}$ funkcióknak csak bemenő adata van. Az előbbi alfunkció kimenete az elektromos személyautók megfelelőségét leíró mutatók értéke, az utóbbi alfunkció kimenete pedig a tevékenység alapján alkalmazott úticélok halmaza. Mindkét adatcsoport megismételhető számítás eredménye és egy adott pillanatban hordoz fontos információt a felhasználó számára, ezért nem indokolt az adatok tárolása adatbázisban. Mivel számos térképszolgáltató kínál hozzáférést fejlett közlekedési hálózat adatbázisokhoz, ezért nem szükséges külön térképes adatbázist létrehozni és azt az információs rendszer adatbázisában tárolni.

Az adatcsoportok alapján meghatározott az adatforrásokat, amelyek az integrált információs rendszer legfontosabb összetevői. Az összetevők a következők:

- **C₁**: egyéni felhasználó,
- **C₂**: elektromos személygépkocsi,
- **C₃**: járműgyártók,
- **C₄**: villamos hálózat -, publikus töltőállomás üzemeltetők és energia értékesítők,
- **C₅**: térképszolgáltatók.

A villamos hálózat -., töltőállomás üzemeltetőt, valamint az energia értékesítőt leegyszerűsítve, egy összetevőként vettem figyelembe.

Kidolgoztam az adatcsoportok és az összetevők közötti kapcsolatrendszert leíró mátrixot (4.6. táblázat).
4.6. táblázat Adatcsoport – összetevő (D-C) kapcsolati mátrix

<table>
<thead>
<tr>
<th>Adatok</th>
<th>Összetevők</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₁</td>
</tr>
<tr>
<td>D₁,₁</td>
<td>X</td>
</tr>
<tr>
<td>D₁,₂</td>
<td>X</td>
</tr>
<tr>
<td>D₁,₃</td>
<td>X</td>
</tr>
<tr>
<td>D₁,₄</td>
<td>X</td>
</tr>
<tr>
<td>D₂,₁</td>
<td>X</td>
</tr>
<tr>
<td>D₂,₂</td>
<td>X</td>
</tr>
<tr>
<td>D₂,₃</td>
<td>X</td>
</tr>
<tr>
<td>D₂,₄</td>
<td>X</td>
</tr>
<tr>
<td>D₃,₁</td>
<td>X</td>
</tr>
<tr>
<td>D₃,₂</td>
<td>X</td>
</tr>
<tr>
<td>D₃,₃</td>
<td>X</td>
</tr>
<tr>
<td>D₃,₄</td>
<td>X</td>
</tr>
<tr>
<td>D₄,₁</td>
<td>X</td>
</tr>
<tr>
<td>D₄,₂</td>
<td>X</td>
</tr>
<tr>
<td>D₅,₁</td>
<td>X</td>
</tr>
<tr>
<td>D₅,₂</td>
<td>X</td>
</tr>
</tbody>
</table>

Jelmagyarázat:
X: adatforrás

A $D_{1,1}$ és $D_{1,4}$ adatcsoportok egyik összetevővel sem állnak kapcsolatban, ami azt jelenti, hogy ezek az adatcsoportok kizárólag valamely funkció kimeneteként képződnek. Egyes adatcsoportok „bekérhetők” az összetevőktől, vagy azokat az információs rendszer is képezheti. Például a gyakori úticélokat ($D_{1,2}$) megadhatja a felhasználó, vagy az képezhető a járműhasználati adatok megadása/ -rögzítése ($F_{1,1}$) alfunkcióval. Az elektromos személygépkocsira vonatkozó adatoknak számos forrása lehetséges. Az egyéni felhasználók megoszthatják tapasztalataikat a járművel kapcsolatban (crowdsourcing), ha eltérés van a járműgyártó vagy jármű által közölt adatoktól.

Az információs rendszer szolgáltatásait a következő végberendezéseken keresztül javasolt elérhetővé tenni a felhasználók számára:

- T_{1}: felhasználói terminál (személyi számítógép),
- T_{2}: mobil eszköz,
- T_{3}: járműfedélzeti eszköz,
- T_{4}: töltőberendezés terminál.

Így például az utazó az okostelefonján tervezi meg az útvonalat, amit a rendszer továbbít a járműfedélzeti eszköz felé, és a navigáció már azon az eszközön történik.

A kapcsolati mátrixok alapján kidolgoztam az információs rendszer szerkezetét ábrázoló modellt, amit a 4.2. ábrán mutatok be. Bár minden résztvevő számára biztosítandó az információs szolgáltatásokhoz való hozzáférés, a szerkezet megalkotásakor az egyéni felhasználókról főkuszáltam, akik egy ember-gép interfészén keresztül kapcsolódnak a rendszerhez.
Az információs rendszer kiemelten fontos és érzékeny adatokat is tárol, ezért fontos, hogy a rendszer üzemeltetője garanciát nyújtson az adat biztonságára és megbízhatóságra vonatkozóan. A rendszer üzemeltetője szabályozza az adathozzáférési jogosultságokat, az összetevők közötti kommunikációt és ellenőrzi az adatok minőségét.

Az összetevők és az adatcsoportok alapján meghatároztam az integrált információs rendszer adatbázisának relációs adatmodelljét, amit a 4.3. ábrán mutatok be.

4.2. ábra Az integrált információs rendszer szerkezete
Az adatcsoportot 8 táblába rendeztem. A közlekedési hálózat adatokat (D2) nem ábrázoltam, mert azok az adatok fejlett külső adatbázisokban hozzáférhetők. A statikus és dinamikus adatok külön táblában vannak tárolva. Kivétel a töltési folyamat tábla, mert egy adott töltési folyamatot leíró dinamikus adatok esetében csak a „legfrissebb” adat tárolását is elégégesnek tartottam, amelyek felülírják a korábbiakat.

4.3 Működési modell

Meghatároztam és modellzem a működési folyamatokat a funkciókhoz rendelve. Az új jármű választás támogatása (F1) funkció a járműgyártó által nyilvánossá tett adatok és a többi felhasználó visszajelzése alapján tájékoztatást ad a felhasználó részére. A funkció lényege, hogy a vásárlási igény felmerülése után a felhasználó rögzíti az utazásait a mobil eszközével, például egy hónapon keresztül. A rögzített utazások alapján értékelni vagy rangsorolja a járműveket a rendszer. Ezután a felhasználónak lehetősége van manuálisan módosítani a rögzített utazásait és közlekedési szokásait. Így a funkció használatával az eltérő közlekedési szokások hatásáról is tájékoztatást kap a felhasználó. Például, nagyobb gyaloglási hajlandóság esetén az úticélból messzebb található töltőállomásokat is figyelembe veszi az értékelő eljárás, aminek következtében az elektromos járművek megfelelősége várhatóan emelkedni fog. A folyamatot a 4.4. ábra mutatja be. Az elektromos személygépkocsi értékelő eljárás az elektromos hajtásra fókuszálva dolgoztam ki. Ezért az olyan vásárlást befolyásoló tényezőket, mint a szállítható személyek száma vagy csomagtér mérete, nem vettem figyelembe.

Első lépésben a felhasználó a gyaloglási hajlandóságot állítja be, ami a legnagyobb távolság, amit az úti cél és a parkolóhely között hajlandó megtenni. A gyaloglási hajlandóságot töltőállomás kereséséhez használja az alkalmazás az értékelés során.

Ezután az alkalmazás rögzíti (F1,l) egy adott időintervallumban a hagyományos járművel megteott utazások utvonalát és a parkolási időket. Abban az esetben, ha nem rögzíthető a jelenlegi gépjárműves közlekedési igény, a felhasználó saját maga adhatja meg az útvonalakat és a becsült parkolási időket.
Az elektromos személygépkocsik értékeléséhez (\(F_{1,2}\)) a közlekedési igények ismeretén túl a következő adatok szükségesek:

- **Jármű adatai:** fajlagos energiafogyasztás (\(D_{2,1}\)), akkumulátor kapacitás (\(D_{2,2}\)), csatlakozó típusa és töltési teljesítménye (\(D_{2,3}\)).
- **Töltőinfrastruktúra adatai:** az útvonal mentén található és a rendszeresen látogatott helyszíneken a publikus (\(D_{3,1}\)) és privát töltőállomások adatai (\(D_{3,2}\)).
- **Úthálózat adatai (\(D_{5,1}\)).**

Az elektromos személygépkocsik értékeléséhez a következő szempontokat határoztam meg:

- elektromos -, hibrid üzemben teljesíthető és nem teljesíthető távolság aránya,
- fajlagos CO\(_2\) kibocsátás,
- fajlagos utazási költség.

A nem teljesíthető távolság aránya a teljes utazásnak az a hányada, ami elektromos személygépkocsi használata esetén nem valósulhatott volna meg. Fontos szempont a teljes költség (TCO), azonban már most is léteznek olyan módszerek, amivel a TCO értéke
számítható. A tisztán elektromos személygépkocsik a korlátozott hatótáv miatt elsősorban a kis távolságú utazások kiszolgálására alkalmasak. Továbbá a kérdőívès kutatásban megkérdezett személygépkocsi használók (1. függelék) átlagos napi futásteljesítménye 40 és 60 kilométer között van (2. függelék). Ennek megfelelően két csoportba soroltam az $F_{t,1}$ alfunkcióval rögzített utazásokat:

- környéki, és
- nagytávolságú utazások.

Az elektromos üzemben megtethető távolság arányának a számításánál csak azokat a töltoállomásokat vettem figyelembe, amelyek azoknak a helyszíneknek a gyaloglási távolságán belül vannak, ahol a jármű várakozik. Az eltérő üzemben megtethető távolság arányok számítása függ a járműtípushoz.

Tisztán elektromos személygépkocsi:

- Környéki utazás: csak az a szakasz nem teljesíthető, ahol elfogyott a hatótáv. Vagyis, ha egy utazás teljes távjának a harmadánál lemerül az akkumulátor, de a kétharmadánál újra fel lehet tölteni, ami elegendő az utazás befejezéséig, akkor az elektromos üzemben teljesíthető utazások aránya 2/3.
- Hosszútávú utazás: az elektromos üzemben megtethető távolság aránya 100%, ha az utazás alatt egyszer sem merülne le az akkumulátor és csak a figyelembe vehető töltoállomásoknál töltik. Ha az akkumulátor lemerülne az utazás közben, a teljes utazás nem teljesíthető.

Plug-in hibrid személygépkocsi:

- Környéki és hosszútávú utazás: csak az a szakasz nem teljesíthető elektromos üzemben, ahol elfogyott a hatótáv.

A tisztán elektromos járművek esetén a kétféle számítást az indokolja, hogy a környéki utazások célpontjai között alacsony a távolság, és az egyik célpontot kihagyva, a többi célpont elérhető lehet elektromos járművel. Míg nagytávolságú utazás esetén jellemzően egy távoli célpont van, vagy a távoli célpontok egymáshoz képest viszonylag közel helyezkednek el, így azt az utazást nem érdemes tovább bontani. Plug-in hibrid esetén a hagyományos belsőégésű motor miatt nincsen nem teljesíthető szakasz. A számítást a 4.5. ábrán mutatom be.
A fajlagos CO₂ kibocsátás és utazási költség az egyes üzemekhez tartozó CO₂ kibocsátás távolság értékekkel súlyozott átlaga. Ha a töltött energia előállításához tartozó CO₂ kibocsátás és/vagy energia költség töltőállomásonként eltérő és ismert a mértéke, akkor az elektromos üzem CO₂ kibocsátás és utazási költség értékét az egyes értékek átlaga a töltött energiamennyiséggel súlyozva.

A járművek értékelése után a felhasználó választhat, hogy módosítja-e a közlekedési jellemzőket, hogy növelje az elektromos üzem részarányát. A módosítási lehetőségek a következők:

- Nagyobb gyaloglási hajlandóságot állít be, így több töltőállomást is figyelembe vesz a módszer a várakozóhelyek közelében.
- Több időt tölt azokon a várakozóhelyeken, ahol megállt, van töltőállomás, de az indulásakor nem lett volna teljesen feltöltve a jármű akkumulátorá.
- Olyan töltőállomásoknál is megáll a felhasználó, ami az útvonal mentén található, de eddig nem állt meg.
- Alternatív útvonalat választ, ami mentén több töltőállomás található vagy alacsonyabb az energiafogyasztás.
- Másik célpontot választ. Például, ha a vásárlás helyszíne nem kötött, olyan helyszínt kínál fel a módszer, aminek a közelében van töltőállomás.
Módosítás esetén a módszer újra értékeli a járműveket. Az utolsó módosítás után a felhasználó az értékelt számok alapján választhatja ki az utazási szokásai alapján leginkább megfelelő járművet.

Az útvonaltervezés/ navigáció (F_2) folyamatát a 4.6. ábra mutatja be.

4.6. ábra Útvonaltervezés (F_2) folyamatábrája

Ha a tevékenység helyszínét nem definiálja a felhasználó, akkor a tevékenység jellege alapján a megfelelő helyszín keresése az első lépés ($F_{2,1}$). A célpont kiválasztása után következik az útvonaltervezés ($F_{2,2}$). Ha az útvonal nem megfelelő, az általános elvárásokon túl az adott útvonalra specifikusan definiálhatók „egyedi elvárások”, mint például:

- minimum hatótáv töltőponthoz érkezéskor (biztonságérzet növelése miatt),
- előnyben részesített töltőtípus (pl. csak villámtöltő),
- töltési folyamat maximális időtartama,
- útvonaltervezés célfüggvénye (leggyorsabb, legrövidebb, legkisebb energiafogyasztás),
- töltés tevékenység celfüggvénye (legkisebb töltési idő/ leginkább akkumulátor kimelő/ kiegyensúlyozott).
Sikeres ütvonaltervezés után a töltőpont foglalás ($F_{2,3}$) alfunkcióval lefoglalhatók az utazás teljesítéséhez szükséges töltőpontok. Mivel a várakozási idő a töltőállomáson jelentősen megnövelheti a teljes utazási időt, ezért az $F_{2,3}$ alfunkció jelentősége nagy.

A **töltés támogatása** (F_3) funkció a töltés indítása és leállítása mellett valós idejű információt szolgáltat a töltés állapotáról. A töltés támogatás folyamatábráját a 4.7. ábra mutatja be az adatáramok jelölésével együtt.

![Töltés támogatás folyamatábrája](image)

Jelmagyarázat:

- Belső adatáram alfunkció és belső adatbázis között

Felhasználói döntés

- Felhasználói tevékenység

Alfunkció

4.7. ábra Töltés támogatás (F_3) funkció folyamatábrája

Miután a jármű csatlakozott a töltőponthoz és a felhasználó azonosította magát, a töltés automatikusan megkezdődik. Az azonosítás ($F_{3,1}$) történhet okostelefonos alkalmazással, RFID kártyával vagy a jármű azonosító alapján. A töltési folyamatot kétféleképpen lehet leállítani az alkalmazással:

- manuálisan (felhasználó által),
- automatikusan, leállási feltétel alapján.
A leállási feltétel vonatkozhat a töltött energiamennyiségre [kWh], a töltési költségre [Ft], egy adott időpontra [--:-], töltöttségi állapotra [%] vagy hatótávra [km]. Ha a felhasználó nem állít be leállási feltételt, a becsült töltési időt a teljes feltöltéshez szükséges energiamennyiség alapján számítja az alkalmazás $(F_{3,2})$. A becsült töltési idő alapján a töltőpont foglalás módosításra kerül, ha szükséges $(F_{3,2})$. Az okos töltés és dijszámítás $(F_{3,3})$ alfunkció valós idejű tájékozatát ad a töltés állapotáról (pl. töltöttségi szint, töltött energiamennyiség, költség), frissítése periodikus. A töltés leállítása után $(F_{3,4})$ a fizetés $(F_{3,5})$ történhet:

- manuálisan: a felhasználó indítja a tranzakciót,
- automatikusan: az alkalmazás indítja a tranzakciót, és értesítést küld a felhasználónak.

Változó díjtétel esetén a töltési költség a **töltési terv optimalizálás** (F_4) funkcióval csökkenthető. A töltés tervezés és a változó díjtétel együtt alkalmazásával a töltési szokások befolyásolhatók és az elektromos hálózat terhelése hatékonyan szabályozható. A személyre szabott töltési terv a felhasználó közlekedési szokásai és a villamos hálózat jellemzői alapján készül. A töltési terv azt mondja meg a felhasználó számára, hogy hol és mennyi ideig szükséges tölteni a járművet, illetve, ha a visszatáplálás engedélyezett, akkor a visszatáplálás időintervallumait is tartalmazza. Ehhez meg kell adni, hogy mekkora hatótáv szükséges az egyes utazásokhoz, illetve, hogy mikor és hol tölthető a jármű, továbbá szükséges ismerni a villamos energia tarifát is.

„Manuális” tervezés esetén a felhasználó a töltési terv optimalizálás (F_4) funkcióval tájékozódik az időben változó díjtételről, ami alapján dönt a töltési folyamat kezdő és befejező időpontjáról. „Automatikus” tervezés esetén a töltési folyamat kezdő és befejező időpontja a funkcióval határozható meg. A funkció az előrebecsült tölthető energiamennyiség alapján a nem teljesíthető utakra figyelmezteti a felhasználót. Egy utazás nem teljesíthető, ha két töltőpont között akkora a távolság, aminek az energiaigénye nem fedezhető az indulás előtt felvethető energiamennyiséggel. A töltési terv optimalizálás lépései a 4.8. ábrán foglaltan össze.

Első lépésemben a felhasználó két töltés tervezés mód közül választhat:

- csak töltés, az energia visszatáplálása a hálózatra nem engedélyezett,
- töltés és visszatáplálás tervezés.

A töltés tervezés $(F_{4,1})$ esetén szükséges ismerni az útitervet $(D_{1,4})$, ami, ha nem szerepel az adatbázisban, a felhasználónak kell megadnia. Visszatáplálás tervezés $(F_{4,2})$ esetén kisebb a bemenő adatok köre, mert a jármű energiafogyasztását nem kell figyelembe venni, ugyanis a jármű energiaigényét az $F_{4,1}$ alfunkcióval meghatározott töltési időintervallumok szolgálják ki.
Meghatároztam a töltőpont foglalásához szükséges űrlapokat és az információs rendszer alkalmazásának a menürendszerét a funkciók alapján (3. függelék).

Összefoglalva, a modellezés során azonosítottam az elektromobilitást támogató integrált információs rendszer összetevőit, meghatároztam a kapcsolatukat; az elektromos jármű kedvezőtlen jellemezőiből levezetettem a legfontosabb funkciókat, ezekhez hozzárendelt a szükséges adatcsoportokat, majd kidolgoztam az integrált adatbázis relációs adatmodelljét. A modellezett információs rendszer egy keretet ad az elektromobilitással kapcsolatos szolgáltatásoknak, mint például az elektromos jármű töltése, elektromos carsharing szolgáltatás, és az intelligens töltés tervezés.

A téma területéhez kapcsolódó tézisemet a következőképp fogalmaztam meg:

Kidolgoztam az elektromobilitást támogató integrált információs rendszer szerkezeti és működési modelljét. A legfontosabb információkezelési funkciókat az elektromos jármű negatív jellemezőiből vezettem le. Modelleztem a szükséges adatbázist.

Kapcsolódó saját publikációk:

(Csonka és Csiszár, 2015a), (Csonka és Csiszár, 2015b), (Csonka és Csiszár, 2016a), (Csonka és Csiszár 2016c)
5 Országos átjárhatóságot biztosító elektromos villámtöltő-állomások helyszínét értékelő és kiválasztó módszer

Az elektromos járművek elterjedése töltőállomások telepítésével segíthető elő. Bár a kezdeti időszakban is van kereslet elektromos járművekre, azok használhatósága jelentősen korlátozott, ha hiányzik a hosszútávú utazásokat támogató töltőállomás hálózat. Ezért az információs rendszer fejlesztését követően az elektromos járművek elterjedését támogató intézkedések közül, a távolsági utazásokat támogató töltőállomások telepítésének támogatását határoztam meg, mint kutatási részterület.

Mivel a cél a távolsági utazások támogatása és az országos átjárhatóság biztosítása volt a kezdeti fázisban lévő országok esetén, ezért a főútvonalakra (autópályák, autóutak, egy- és kétszámmegyű főútak) és a környezetükre fókuszáltam. Mivel távolsági utazások esetén a töltési folyamat megszakítja az utazást, ezért a töltési időt minimalizáló villámtöltőkkel foglalkoztam.

Bár a töltőállomások gazdasági fenntarthatóságát nem vizsgáltam, de cél volt a minél nagyobb forgalom kiszolgálása egy töltőállamáson. Az energiaforrások környezeti fenntarthatóságát a feladat összetettessége miatt nem vizsgáltam.

A fejezetben használt rövidítéseket az 5.1. táblázatban foglaltam össze.

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, β</td>
<td>a kijelölés során a töltőállomások térbeli terjedését befolyásoló paraméterek</td>
</tr>
<tr>
<td>aᵢ</td>
<td>értékelő szempontok sülysáma (i=1..3)</td>
</tr>
<tr>
<td>dⱼ,₁,ₖ</td>
<td>a.ⱼ. helyszín és a legközelebbi meglévő (k) villámtöltő-állomás közötti távolság</td>
</tr>
<tr>
<td>IPⱼ</td>
<td>a.ⱼ. helyszín töltőtelepítési potenciál értéke</td>
</tr>
<tr>
<td>x₁,ⱼ</td>
<td>forgalmmagyság értékelő szám</td>
</tr>
<tr>
<td>x₂,ⱼ</td>
<td>közeli települések lakosságszámát értékelő szám</td>
</tr>
<tr>
<td>x₃,ⱼ</td>
<td>szolgáltatások értékelő száma</td>
</tr>
<tr>
<td>x₄,ⱼ</td>
<td>j. helyszín közélében lévő töltőállomások elvonzó negatív hatása</td>
</tr>
</tbody>
</table>

5.1 Módszer

Súlyozott összeg modellt dolgoztam ki a lehetséges helyszínek értékeléséhez, ami a helyszín kiválasztás alapja. A különböző útkategóriákat eltérő rétegeken vettem figyelembe, annak eredéktől, hogy a telepítési helyszínek rétegenként eltérő célokkal legyenek kiválaszthatók, az egyes útkategóriák preferálhatók legyenek, és a hosszútávú utazásoknál az útvonalválasztás befolyásolható legyen. Például az autópályák mentén sűrűn elhelyezett töltőállomás hálózat vonzóvá teheti a gyorsforgalmi úthálózatot az elsőrendű főutakkal szemben. A honnan-hová adatok alapján olyan töltőállomás hálózat alakítható ki, ami a lehető legjobban illeszkedik a töltési igényekhez. Azonban ezen adatok nem mindig állnak rendelkezésre, így az általam kidolgozott módszer annak hiányában is alkalmazható. Ennek megfelelően a területi lefedettségre fókuszáltam és nem az utazásokra. Az eljáráss lépéseit az 5.1. ábrán mutatom be.
Lehetséges helyszínek meghatározása

A figyelembe vett utak közvetlenül kapcsolódó, maximum 250 méterre található pihenőhelyeket vizsgáltam, mint lehetséges helyszínek, ugyanis így a kerülőutak mértéke csökkenthető.

Helyszínek kiválasztása

a., Lehetséges helyszínek értékelése: az értékeléséhez bevezettem a telepítési potenciált (IP). IP értéke térben változó aggregált mutató, ami az 5.1 képlet alapján számítható. A legnagyobb IP érték azt jelenti, hogy az a helyszín leginkább kedvező a villámtöltő-állomás telepítés szempontjából. IP értékét befolyásolja a:

- szomszédos utak forgalomnagysága,
- közeli települések lakosságszáma,
- helyszínen elérhető kiegészítő szolgáltatások köre,
- meglévő töltőállomások helyszíne.

$$IP_j = a_1 x_{1,j} + a_2 x_{2,j} + a_3 x_{3,j} + x_{4,j}$$ \hspace{1cm} \text{5.1}$$

Ahol:

j: helyszín azonosítója,
IP_j: a j. helyszínre számított potenciál,
$x_{1,j}$: forgalomnagyság értékelő szám,
$x_{2,j}$: közel települések lakosságszámát értékelő szám,
$x_{3,j}$: szolgáltatások értékelő száma,
$x_{4,j}$: j. helyszín közelében lévő legközelebbi villámtöltő-állomás hatása,
a_1, a_2, a_3: x_i ($i = 1..3$) értékelő szempontok súlyszáma, $a_1 + a_2 + a_3 = 1$ és $\forall q_i \geq 0$.

A változók értékelőszámai a következő alapelvek szerint határozhatók meg:

- **x_1 forgalomnagyság**: személygépkocsi (szgk) forgalomnagyság értéke a lehetséges helyszín 250 méteres körzetében a figyelembe vett utakon [szgk/nap]. Forgalom típusokat nem különböztettettem meg.
- **x_2 lakosságszám**: összkosságszám a lehetséges helyszín 10 kilométeres körzetében. Az x_2 paraméter latás szintjét jelenti meg, ugyanis feltételeztem, hogy a rövid töltési idő a rövidtávú városi forgalom számára is vonzó, ami miatt az utazók hajlandók kismértékű kitérőt tenni. Az elektromobilitás kezdeti fázisában a hosszútávú utazók számára megfelelő választás lehet egy olyan villámtöltő-állomás, ami nem közvetlenül az útvonal mentén található.
- **x_3 szolgáltatási szint**: a lehetséges helyszíneket a gyalog elérhető kiegészítő szolgáltatások alapján csoportosítottam:
 - alap pihenőhely: parkoló, WC,
 - minimum pihenőhely: alap pihenőhely szolgáltatásai + kisbolt (pl.: benzinkút shop),
 - médium pihenőhely: minimum pihenőhely szolgáltatásai + étkezési lehetőségek (pl. étterem, büfé) és további szolgáltatások (pl. gyógyszertár, szupermarket),
 - superior (komplex) pihenőhely: médium pihenőhely szolgáltatásai + szállás (pl. hotel).

- **x_4 legközelebbi villámtöltő-állomás hatása**: a hatás nagyságát a távolság függvényében határoztam meg (5.2). A hatást rétegenként vettem figyelembe. Vagyis a 2. rétegen található út mentén elhelyezkedő villámtöltő-állomásnak a hatását nem
vettem figyelembe az 1. rétegen. A valóságban, megfelelő díjszabás esetén egy másik rétegen (alacsonyabb rendű út mentén) található töltőállomás is kifejthet elvonzó hatást. Azonban a rétegek bevezetésénél éppen az a célja, hogy a jobban preferált útkategóriák vezessék el a hosszútávú utazásokat úgy, hogy ne legyen szükség kitérőkre.

\[
x_{i,j} = \begin{cases}
-5 \cdot \left(1 - \frac{d_{ij}^3}{\alpha^3}\right), & \text{if } d_{ij} \leq \alpha \\
4, & \text{if } \alpha < d_{ij} \leq \beta \\
0, & \text{if } d_{ij} > \beta
\end{cases}
\]

Ahol \(d_{ij}\) a lehetséges helyszín és a legközelebbi meglévő villámtöltő közötti távolság. A harmadik hatvány azért alkalmaztam, hogy jelentősen csökkentsem egy lehetséges helyszín \(IP\) értékét egy már meglévő villámtöltő közelében. A töltőhálózat térbeli terjedését az \(\alpha\) és \(\beta\) paraméterekkel lehet befolyásolni. Ezek határozzák meg, hogy a meglévő töltőállomások mekkora körzetében a következő töltő-állomások telepítése. Vagyis, az \(x_4\) változó csökkenti \(IP\) értékét, ha a legközelebbi villámtöltő-állomás \(\alpha\) távolságon belül van, és növeli \(IP\) értékét, ha \(\alpha\) és \(\beta\) távolság között van. Az \(\alpha\) és \(\beta\) paraméterek bevezetésével a töltőállomás hálózat terjedése a kiválasztási folyamatban egy olajfolthoz hasonlítható. Az \(x_4\) paraméter értékét a legközelebbi villámtöltő-állomástól mért távolság függvényében az 5.2. ábra mutatja be. Az olajfolt szerű terjedés miatt az elvonzó hatást csak a legközelebbi villámtöltő-állomás irányában vettem figyelembe. Ennek előnye az alacsony számítási igény, hátránya, hogy több, közeli olajfolt esetén is csak egy irány vehető figyelembe. Ennek megfelelően, a módszer elsősorban a monocentrikus területi egységekben alkalmazható.

5.2. ábra \(x_4\) paraméter értéke a legközelebbi villámtöltő-állomástól mért távolság függvényében (\(d_{ij}\))

Az értékelés megkezdése előtt a módszer felhasználója a következő paramétereket állítja be:

- Súly paraméterek, \(a_1, a_2, a_3\): a változók jelentései eltérők, ezért a súlyok az egyes szempontok fontosságát tükrözik. A súlyok értékei több lépésben, iterációval határozhatók meg. Például, ha a minél nagyobb forgalom kiszolgálása a cél, akkor \(a_1\) értéke a legmagasabb. Továbbá \(a_3\) magas értéke a magas szolgáltatási szintet biztosítja.
• α, β paraméterek: egy újonnan telepített töltőállomás a legközelebbi meglévő töltőállomástól minimum α, maximum β távolságra fog elhelyezkedni. Tehát a két paraméter változtatásával a szomszédos töltőállomások közötti átlagos távolság és annak szórása befolyásolható. Ha α és β értéke alacsony, sűrű töltőhálózat lesz az eredmény. Ha az α és β közötti különbség alacsony, a szórás is alacsony. Ha a közlekedési hálózaton a szomszédos töltőállomások közötti távolság egyenletes, akkor az növeli a hálózat megbizthatóságát az utazó számára. A magas α és β közötti különbség nagyobb szabadságot ad a helyszínkiválasztás során, így valószínűsíthető, hogy a kiválasztott helyszínek átlagos telepítési potenciálja magasabb lesz, vagyis a villámtöltő-állomások számára kedvezőbb helyszíneket választ ki az algoritmus.

• Telepítési kritérium: például a telepíteni villámtöltő-állomások száma, lefedni kívánt úthossz minimum nagysága, lefedett úthossz minimum növekménye újabb töltőállomás kiválasztásakor. A telepítési kritérium rétegenként eltérő lehet.

b., Legmagasabb telepítési potenciálal rendelkező helyszín hozzáadása a telepítési helyszínekhez: mohó algoritmust alkalmaztam, ami kiválasztja a legnagyobb IP értékű lehetséges helyszint és hozzáadjá a javasolt telepítési helyszínek halmazához.

c., Telepítési kritérium teljesítése?: a helyszín értékelő és kiválasztó módszer addig nem lép a következő rétegre, amíg az adott rétegen a telepítési kritérium nem teljesül. Ilyenkor ismét az a. lépés következik. Az utolsó réteg esetén, a telepítési kritérium teljesülésekor a helyszín kiválasztás véget ér.

5.2 Módszer alkalmazása

A módszert Magyarországra alkalmaztam. Jelenleg Magyarországon csak néhány elektromos töltőpont található a főutak mentén, a villámtöltők többségében városközpontokban vagy nem a főutak közvetlen közelében találhatók. Az eddig telepített elektromos töltőket egymástól függetlenül helyezték el, azonban van kormányzati törekvés a telepítés központi koordinálására, villámtöltők telepítésével a nagy távolságú utazások támogatására. A módszer implementálása QGIS szoftver környezetben valósult meg. A QGIS egy ingyenes és nyílt forráskódú térinformatikai rendszer, ami támogatja a térbeli adatok szerkesztését, feldolgozását és megjelenítését. Az OpenStreetMap adatbázisában megtalálható pihenőhelyeket határoztam meg, mint lehetséges telepítési helyszínek. A telepítési helyszínek kijelölését két rétegen végeztem el (5.3. ábra):

1. réteg: gyorsforgalmi úthálózat.
2. réteg: egy- és kétszámmegyű főutak.

A rétegeket úgy határoztam meg, hogy a gyorsforgalmi úthálózatot részesítettel előnyben. Bár az 1. rétegen figyelembe vett utak jelentős része fizetős, a nagy kapacitás miatt prioritást élveznek. Az 1. rétegen 134, a 2. rétegen 706 helyszint vettem figyelembe.

3 A módszer implementálásához és az eredmények megjelenítéséhez szükséges alkalmazásfejlesztésben Dr. Wirth Ervin, a Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Fotogrammetria és Térinformatikai Tanszék munkatársa segédezett.
A töltőállomás telepítésének célja az országos átjárhatóság biztosítása, és a lehető legnagyobb forgalom kiszolgálása volt. Ezek alapján x_1 változó súlyának állítottam be a legnagyobb értéket (5.2. táblázat). Mivel a kezdeti időszakban egy nagy lakosságszámú település községe jobban befolyásolja a töltőállomás kihasználtságát, mint az elérhető szolgáltatások köre, ezért x_2 változó súlyát nagyobbra állítottam be, mint x_3 változóét. Vagyis, amíg nincs alternatív választási lehetősége az utazóknak a töltőállomás megválasztásakor, a szolgáltatások köre enyhén befolyásolja a kihasználtságot. A súlyok a következő szempontok figyelembevételével módosíthatók (az eltérően megválasztott értékek hatását nem vizsgáltam):

- a_2 értéke csökkenthető, ha azotthoni vagy munkahelyi töltési lehetőség széleskörben elterjedt.
- a_3 értéke a töltési idő figyelembevételével változtatható: minél rövidebb a töltési idő, annál kisebb az elérhető szolgáltatások jelentősége, és fordítva.

5.3. ábra Útkategória rétegek

A leíró jellemzőket kategorizáltam, és minden kategóriához egy értékelő számt rendeltem, amit az 5.3., 5.4. és 5.5. táblázatok tartalmaznak. A forgalomnagyság- és lakosságszám-kategóriákat Magyarországra adaptálva határoztam meg. Az alkalmazás során az átlagos napi forgalomnagyság (ÁNF) értékét vettem figyelembe. Forgalomtípusokra (rövid vagy hosszútávú) lebontott adat nem volt elérhető, így figyelembe vettem a nagy távolságú és a környéki utazókat is. Feltételeztem, hogy a vizsgált utakon a nagyobb forgalomnagysághoz arányosan nagyobb hosszútávú forgalom tartozik.
A szolgáltatási szint kategóriák értékelő számának a meghatározásakor figyelembe vettem, hogy az elérhető szolgáltatások együttese milyen mértékben járulnak hozzá a körülbélül 30 perces töltési idő hasznos és kellemes eltöltéséhez.

5.3. táblázat Forgalomnagyság-kategóriák

<table>
<thead>
<tr>
<th>Forgalomnagyság [személygépjármű/nap]</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td><5000</td>
<td>1</td>
</tr>
<tr>
<td>5001-10000</td>
<td>2</td>
</tr>
<tr>
<td>10001-15000</td>
<td>3</td>
</tr>
<tr>
<td>15001-25000</td>
<td>4</td>
</tr>
<tr>
<td>>25000</td>
<td>5</td>
</tr>
</tbody>
</table>

5.4. táblázat Lakosságszám-kategóriák

<table>
<thead>
<tr>
<th>Település</th>
<th>Lakosságszám [fő]</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egyéb település</td>
<td><1000</td>
<td>1</td>
</tr>
<tr>
<td>Község</td>
<td>1000-19999</td>
<td>2</td>
</tr>
<tr>
<td>Kisváros</td>
<td>20000-299999</td>
<td>3</td>
</tr>
<tr>
<td>Nagyváros</td>
<td>300000 – 999999</td>
<td>4</td>
</tr>
<tr>
<td>Metropolisz</td>
<td>≥ 1 M</td>
<td>5</td>
</tr>
</tbody>
</table>

5.5. táblázat Szolgáltatási szint kategóriák

<table>
<thead>
<tr>
<th>Szolgáltatási szint</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alap pihenőhely</td>
<td>0</td>
</tr>
<tr>
<td>Minimum pihenőhely</td>
<td>1</td>
</tr>
<tr>
<td>Médiumpihenőhely</td>
<td>3</td>
</tr>
<tr>
<td>Superior pihenőhely</td>
<td>5</td>
</tr>
</tbody>
</table>

A módszer alkalmazása során az α és β paraméterek által kifejtett hatás elemzésére fektettem a hangsúlyt. Három telepítési tervet határoztam meg úgy, hogy eltérő α és β paraméterekkel végeztem el a helyszín kiválasztást. A helyszín kijelölés során az egy villámtöltő-állomással lefedett úthossz egy irányban $\beta/2$. Telepítési kritériumnak minden rétegen a lefedett úthossz növekményéhez állítottam be minimum értéket. Empirikus módon ennek az értékét $\beta/2$-nek vettem. A lefedett úthosszt minden lépésben számítja az alkalmazás, és a helyszín kijelölés leáll, ha egymást követő 2 lépésben a lefedett úthossz növekménye kisebb, mint $\beta/2$.

Az alkalmazás során minden távolság légvonalban mért távolság, ami csökkenti a módszer jóságát, de jelentősen egyszerűsíti a számítást.

1. telepítési terv

Az 1. telepítési terv meghatározásakor alacsony értékeket választottam az α és β paramétereknek (20 km és 40 km). Az eredmény sűrű töltőhálózat (5.4. ábra), ami a kezdeti fázisban alacsony villámtöltő-állomás kihasználtságot okozhat az elektromos járművek alacsony száma miatt.
5.4. ábra 1. telepítési terv ($\alpha=20$ km, $\beta=40$ km)

2. telepítési terv

5.5. ábra 2. telepítési terv ($\alpha=40$ km, $\beta=60$ km)
A 2. telepítési tervet $\alpha=40$ km és $\beta=60$ km beállítással határoztam meg. A várakozásoknak megfelelően kevesebb villámtöltő-állomás helyszín került kijelölésre (5.5. ábra). Budapestet követően az 1. rétegen Székesfehérvár közéleben a legnagyobb a forgalom, így ide került a következő töltőállomás, míg a legalacsonyabb forgalom az M6-os autópályán mutatkozott, így ide kerültek a rétegen utolsóként kiválasztott töltőállomások.

3. telepítési terv

A 3. telepítési tervet $\alpha=80$ km és $\beta=100$ km beállítással határoztam meg. A várakozásoknak megfelelően ebben az esetben a legritkább a javasolt töltőállomás hálózat (5.6. ábra). Jelenleg a tisztán elektromos személygépkocsik jellemző hatótávja autópályán nem haladja meg a 200 kilométert, ezért nem tartottam szükségesnek több telepítési tervváltozatot elkészítését nagyobb α és β paraméterrel.

5.6. ábra 3. telepítési terv ($\alpha=80$ km, $\beta=100$ km)

Tervváltozatok összehasonlítása

5.7. ábra A vizsgált hosszútávú utazások kezdő és célpontjai

Meghatároztam a szükséges elektromos jármű hatótávot mindhárom tervvélete esetén mindegyik körutazásra. A szükséges elektromos jármű hatótáv a legnagyobb távolság két villámtöltő-állomás között egy körutazás alatt. A vizsgálat során az eredetileg feltételezett útvonalnak 15%-a lehet a legnagyobb kitérő, ha így kisebb a szükséges elektromos jármű hatótáv. Az A→B és B→A utazásokat összevonva, párokban vizsgáltam. Csak azokat a párokat vizsgáltam, ahol a települések közötti távolság nagyobb, mint 50 kilométer, és az átlagos személygépkocsi forgalom nagyobb, mint 100 szgk/nap. Összesen 35 honnan-hová utazás párt vizsgáltam, ami a vizsgált települések közötti teljes forgalom 96%-át teszi ki. Az összehasonlítás szempontja a következők figyelembevételével határoztam meg:

- Használhatóság: a honnan-hová utazások mekkora hányada teljesíthető tisztán elektromos járművel.
- Szolgáltatási szint: a kijelölt villámtöltő-állomások helyszínén az átlagos szolgáltatási szint.
- Hatékonyság: egy töltőállomással mekkora forgalomnagyságot lehet kiszolgálni.

Ennek megfelelően a szempontok:

1. A villámtöltő-állomások száma.
3. A ki nem szolgált forgalomnagyság aránya.
4. Az átlagos szükséges elektromos jármű hatótáv.
5. A súlyozott átlagos szükséges elektromos jármű hatótáv: a súly a honnan-hová utazás párhoz tartozó forgalomnagyság.

6. A forgalomnagyság x_1, lakosságszám x_2, szolgáltatási szint x_3 változók átlaga a kiválasztott villámtöltő-állomásokon.

7. A kiszolgált forgalomnagyság aránya az elektromos jármű hatótáv jának függvényében: egy honnan-hová utazás pár forgalomnagysága akkor van kiszolgálva, ha a feltételezett elektromos jármű hatótáv nagyobb, mint a szükséges elektromos jármű hatótáv.

8. A kiszolgált forgalomnagyság és a kiválasztott villámtöltő-állomások számának a hányadosa az elektromos jármű hatótáv a függvényében.

Az 1-6. szempontok szerinti összehasonlítást az 5.6. táblázatban foglaltam össze.

5.6. táblázat

<table>
<thead>
<tr>
<th>Összehasonlítási szempontok</th>
<th>1. terv $a=20$, $\beta=40$</th>
<th>2. terv $a=40$, $\beta=60$</th>
<th>3. terv $a=80$, $\beta=100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Villám-töltő állomások száma</td>
<td>1. réteg</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2. réteg</td>
<td>98 (6*)</td>
<td>41 (5*)</td>
</tr>
<tr>
<td>2) Ki nem szolgált honnan-hová utazás párok</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3) Ki nem szolgált forgalomnagyság aránya</td>
<td>11%</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td>4) Átlagos szükséges elektromos jármű hatótáv</td>
<td>47 km</td>
<td>78 km</td>
<td>109 km</td>
</tr>
<tr>
<td>5) Súlyozott átlagos szükséges elektromos jármű hatótáv</td>
<td>42 km</td>
<td>73 km</td>
<td>93 km</td>
</tr>
</tbody>
</table>

x_1 átlag

1. réteg | 3,42 | 3,45 | 3,62 |
2. réteg | 1,88 | 2,29 | 2,90 |
1. réteg | 2,81 | 2,90 | 3,00 |
2. réteg | 2,69 | 2,71 | 2,85 |
1. réteg | 1,56 | 1,70 | 1,92 |
2. réteg | 2,53 | 2,80 | 3,50 |

x_2 átlag

1. réteg | 1,71 |
2. réteg | 1,92 |

x_3 átlag

1. réteg | 1,70 |
2. réteg | 1,92 |

*: azoknak a töltőállomás helyszíneknak a száma, amiket az 1. és 2. rétegen is figyelembe vettem. Ezek a helyszínek egyaránt közel vannak a gyorsforgalmi úthálózathoz, valamint az egy- és kétszámjegyű főútakhoz.

A várakozásoknak megfelelően a kiválasztott villámtöltő-állomások száma akkor a legmagasabb, ha az α és β paraméter értéke a legkisebb. Ennek valamelyest ellentmond, hogy a ki nem szolgált honnan-hová utazás párok száma a 2. tervváltozat esetén a legkisebb. Bár a legtöbb töltőállomás az 1. tervváltozatban került kijelölésre, a nagy forgalmú Nyíregyháza – Debrecen viszonylat mentén nem található egy sem. Ennek oka, hogy mindkét település közében több töltőállomás is található, és vélhetően ezek elvonzó hatása miatt nem került további töltőállomás kiválasztásra az útvonal mentén. A 2. és 3. tervváltozatban kevesebb villámtöltő-állomás került kijelölésre, de ezek a településekhöz és a fő kereszteződésekhöz közel találhatók, így nagyobb forgalomnagyságot szolgálnak ki. Ezt a hatást lehet fokozni az x_2 súlyának növelésével. Hasonló okok miatt a ki nem szolgált forgalomnagyság aránya is az 1. tervváltozat esetén a legmagasabb. A súlyozott átlag minden esetben nagyobb, mint az átlagos szükséges elektromos jármű hatótáv. Ez összhangban van a forgalomnagyság (x_1) magas súlyszámával. Azt is megfigyeltem, hogy a forgalomnagyságra vonatkozó adat hiányos. Például Nyíregyháza és Debrecen között a valóságban közel egyenletes a forgalomnagyság, ezzel szemben az 5.7. ábrán is látszódik, hogy nem ér össze a nagyobb forgalomnagyságot jelölő zöld.
kiemlés. Ez a jelenség szintén okozhatja, hogy az 1. tervváltozatban nem került villámtöltő-állomás erre az útvonalra.

Megfigyelhető, hogy a 2. rétegen magasabb az átlagos szolgáltatási színvonal \(x_3 \). Ennek oka, hogy az egy- és kétszámjegyű utak mentén több szolgáltatás érhető el a településekre közel. Az átlagos \(x_1 \) értéke egyértelműen magasabb az 1. rétegen, mint a 2. rétegen, vagyis a gyorsforgalmi úthálózaton jelentősen nagyobb a forgalom. Szintén megfigyelhető, hogy az \(\alpha \) és \(\beta \) paraméterek növelésével együtt nőnek az átlagos \(x_1, x_2 \) és \(x_3 \) értékek.

Arra kerestem a választ, hogy egy adott jármű hatótávnál a teljes forgalmonagyság mekkora hányada szolgálható ki egy adott tervváltozat esetében. Ezért meghatároztam a kiszolgált forgalmonagyság arányát (7. szempont) az elektromos jármű hatótávjának függvényében (5.8. ábra). Például, ha az elektromos járművek között 100 km a legkisebb hatótáv, akkor a forgalomnak legalább a 63%-a ki van szolgálva a 3. tervváltozat esetén.

![5.8. ábra 7) Kiszolgált forgalmonagyság aránya az elektromos jármű hatótávjának függvényében](image)

Megfigyelhető, hogy az 1. tervváltozat esetén alacsony hatótáv esetén is magas a kiszolgált forgalmonagyság aránya. Ennek ellenére az 1. tervváltatnak a legalacsonyabb a maximálisan kiszolgálható forgalmonagysága (89%), és 150 kilométeres elektromos jármű hatótáv felett a legkedvezőtlenebb a három tervváltozat közül. Az \(\alpha \) és \(\beta \) paraméter a 2. tervváltozatban kisebb a 3. tervváltathoz hasonlítva, mégis a 3. tervváltozat esetén nagyobb a kiszolgált forgalmonagyság aránya alacsony hatótáv (~50 km) esetén. Magasabb hatótáv esetén ez a sorrend megfordul. Mindhárom tervváltat esetén a kiszolgált forgalmonagyság monoton nő az elektromos jármű hatótáv függvényében, ugyanakkor a növekedés mértéke (meredekség) csökken. A növekmény mértéke elhanyagolható, ha a hatótáv nagyobb, mint 2\(\beta \). Az \(\alpha \) és \(\beta \) paraméter kedvező értéke több iterációs lépéssel határozható meg, azonban a következő formula (5.3) kedvező kezdeti értéket ad:

\[
\beta = \frac{\text{elektromos jármű hatótáv}}{2}
\]

5.3

Mivel a gazdasági fenntarthatóság fontos szempont a tervváltozatok kialakításánál, megvizsgáltam a három terv hatékonyságát. Ebben az esetben a hatékonyság (8. szempont) az átlagosan egy kijelölt villámtöltő-állomással kiszolgált forgalmonagyság (5.7. táblázat). Ez az érték nem egyezik meg a napi várható töltések számával, de feltételezhetően a nagyobb
kiszolgált forgalomnagyság nagyobb töltésszámot is jelent. A nagyobb hatékonyság a befektetők számára kedvező, hiszen így hamarabb megtérül a beruházás.

5.7. táblázat 8) A kiszolgált forgalomnagyság és a kijelölt villámtöltő-állomások számának a hányadosa [szgk/nap/tőltőállomás]

<table>
<thead>
<tr>
<th>Elektromos jármű hatótáv</th>
<th>1. terv $\alpha=20$, $\beta=40$</th>
<th>2. terv $\alpha=40$, $\beta=60$</th>
<th>3. terv $\alpha=80$, $\beta=100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 km</td>
<td>140,6</td>
<td>48,5</td>
<td>193,8</td>
</tr>
<tr>
<td>75 km</td>
<td>188,5</td>
<td>358,2</td>
<td>504,3</td>
</tr>
<tr>
<td>100 km</td>
<td>188,5</td>
<td>457,8</td>
<td>594,5</td>
</tr>
<tr>
<td>150 km</td>
<td>188,5</td>
<td>479,5</td>
<td>748,6</td>
</tr>
<tr>
<td>200 km</td>
<td>188,5</td>
<td>479,5</td>
<td>854,9</td>
</tr>
<tr>
<td>250 km</td>
<td>188,5</td>
<td>486,9</td>
<td>898,7</td>
</tr>
</tbody>
</table>

A 3. tervváltozat hatékonysága az elektromos jármű hatótávtól függetlenül a legmagasabb. Jelenleg egy átlagos elektromos személygépkocsi hatótávjára az autópályán 100 és 150 kilométer között van. Ebben a tartományban a 2. és 3. tervváltozat közötti hatékonyság különbség 30% és 56% között van. 200 kilométeres hatótáv felett a hatékonyság különbség közel kétszeres.

Az összehasonlítás alapján az 1. tervváltozat választása akkor javasolt, ha cél az országos átjárhatóság biztosítása az alacsony hatótávú elektromos járművek számára is. Mivel a közeljövőben az elektromos személygépkocsik hatótávjává várhatóan meghaladja a 150 kilométert, a 2. tervváltozatot érdemes választani az országos átjárhatóság biztosításához. Ha elsősorban a tőltőinfrastruktúra gazdasági fenntarthatósága a cél, akkor a 3. tervváltozat a leginkább kedvező.

Összefoglalva, kidolgoztam egy térinformatikai rendszer alapú villámtöltő-állomás kijelölő módszert. Ezzel meghatározható a tőltési igény befolyásoló jellemzők, melyek a kezdeti fejlődési fázisban a forgalomnagyság, a közelű település lakosságszámára és a legközelebbi tőltőállomás távolsága. Az elérhető szolgáltatások köre a tőltésre fordított idő minőségét befolyásolja. Így a villámtöltő-állomás számára leginkább kedvező helyszínnek az autópálya mentén találhatók, közel egy nagy településhez és különböző szolgáltatások (pl. étkezés lehetőségek) érhetők el környezetükben. A szakirodalomban megtalálható tőltőtelepítési módszerekhez képest a legnagyobb különbség, hogy honnan-hová utazások helyett a keresztmetszeti forgalomnagyság a bemenő adat, így ott is alkalmazható a módszer, ahol a járműmozgások térbeliségéről nem állnak rendelkezésre részletes adatok. Az eredmények jóságát a honnan-hová utazások figyelembevételével vizsgáltam. Bár a megfelelő villámtöltőhálózat jelentősen növeli az elektromos járművek használhatóságát, a technológia széleskörű elterjedéséhez a publikus tőltőállomások városi környezetben is szükségesek.

Ez alapján a téma területéhez kapcsolódó tézisemet a következőképp fogalmaztam meg:

Kidolgoztam az inter-city tőltési igények kiszolgálására alkalmaz villámtöltő-állomás helyszíneket értékelő és kiválasztó módszert. A tőltőállomások lehetséges helyszínei a meglévő pihenőhelyek, amelyek értékeléséhez súlyozott összeg modellt dolgoztam ki.

Kapcsolódó saját publikációk:

(Csonka és Csiszár, 2017a), (Csonka és Csiszár, 2017b), (Csiszár et al., 2018), (Csiszár et al., 2019b), (Csonka és Földes, 2019)
6 Városi elektromos töltőállomások helyszínét kijelölő módszer

Az integrált információs rendszerrel és az országos átjárhatóságot biztosító töltőállomásokkal az elektromos személyautók használatosága jelentősen javítható. Emellett a lakott területeken belül is szükségesek a publikus töltőállomások, hiszen több esetben nem oldható meg a töltés otthon a garázsban, vagy a munkahelyen a privát parkolókban. Ezért a rövid távolságú, helyi és környéki utazások is támogatandók publikus elektromos töltőkkel. Az elektromos járművek hatótávolsága jellemzően elégséges a rövid utazásokhoz, ezért nem szükséges megszakítani az utazást. A módszer kidolgozásakor azt az alapmegközelítést követtem, hogy azokon a helyszíneken érdemes töltőberendezést telepíteni, ahol a járművek rendszeresen és hosszabb ideig parkolnak.

A fejezetben használt rövidítéseket a 6.1. táblázatban foglaltam össze.

6.1. táblázat Nevezéktan – Városi töltőállomás helyszín kijelölő módszer

<table>
<thead>
<tr>
<th>Szint</th>
<th>Jelölés</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makró</td>
<td>a_1, a_2</td>
<td>a helyi és látogató forgalom súlya</td>
</tr>
<tr>
<td></td>
<td>IP</td>
<td>terület egység telepítési potenciálja</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>telepítendő töltőállomások száma adott terület egységében</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>telepíthető töltőállomások száma</td>
</tr>
<tr>
<td></td>
<td>x_1</td>
<td>regisztrált elektromos személygépjárművek száma adott területi egységében</td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>átlagos éves jövedelem személyenként az adott területi egységében</td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>turizmus fontosságát minősítő érték adott területi egységében</td>
</tr>
<tr>
<td>Mezo</td>
<td>b_1, b_2</td>
<td>nappali és éjszakai töltési igény súlya</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>forgalomvonzó helyszíntípuson jelentkező töltési igény</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>átlagos töltési gyakoriság</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>hatszög lakosságszáma</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>lakóterület kategória értékelő száma</td>
</tr>
<tr>
<td></td>
<td>t</td>
<td>átlagos töltési idő töltésenként</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>hatszög telepítési potenciálja</td>
</tr>
<tr>
<td></td>
<td>w_{2w}</td>
<td>gyaloglási hajlandóság</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>hatszögben jelentkező töltési igény</td>
</tr>
</tbody>
</table>

6.1 Módszer

Súlyozott összeg modellt (WSM – Weighted Sum Model) dolgoztam ki azon területek meghatározására, ahol városi töltési igények jelentkeznek és ahol, ennek megfelelően, töltőállomás telepítése javasolt.

A kifejlesztett módszer legjelentősebb újdonsága, hogy a bemeneti adatok publikusak és könnyen hozzáférhetők; nincs szükség a honnan-hová mozgások feltérképezésére. A töltőállomás helyszínek kijelölésének szintjei:

1. telepítendő töltőállomások szélesítése területi egységek között (makró szint),
2. töltőállomás helyszínek meghatározása a terület egységeken belül (mezo szint).

A két szint közötti kapcsolatot a 6.1. ábrán mutatom be. Makró szinten a nagyobb területi egységeket (járások, Budapest esetén kerületek) értékelem. Mezo szinten a nagyobb területi egységeket kisebb egységekre, szabályos hatszögekre bontom, majd értékelem azokat. Az
értékelés mind a két szinten a területi egységek elemzésén és összehasonlításán alapul. Makró szinten az elektromobilitás elterjedése alapján hasonlítottam össze a terület egységeket, vagyis, hogy hol fognak többet autózni elektromos autóval. Mezo szinten a parkolási jellemzőket hasonlítottam össze, vagyis, hogy hol fognak többet állni a járművek.

Makró szinten feltételeztem, hogy adott a területegységek között szétosztható töltőállomások száma \(N \). A városi területek a környékkel együtt tekinthetők egy egységnek. Ezen területi egységeket értékelem; az eredmény az ún. telepítési potenciál (IP – Installation Potential) (1). IP értéke ott nagyobb, ahol a becsült töltési kereslet is nagyobb. IP értéke a 6.1 alapjánszámítható.

\[
IP_i = a_1 \cdot \frac{5}{2} \left(\frac{x_{1,i}}{\max(x_1)} + \frac{x_{2,i}}{\max(x_2)} \right) + a_2 \cdot x_{3,i}
\]

Ahol:

- \(IP_i \) területi egység töltőtelepítési potenciálja,
- \(x_{1,i} \) regisztrált elektromos személygépjárművek száma az \(i \) területi egységben,
- \(x_{2,i} \) átlagos jövedelem személyenként az \(i \) területi egységben,
- \(max(...) \) legmagasabb értékű területi egységnél a váltózó értéke,
- \(x_{3,i} \) turizmus fontosságát minősítő érték az \(i \) területi egységben, értéke 0 és 5 között lehet,
- \(a_1, a_2 \) váltózók súlya. \(a_1 + a_2 = 1 \), \(a_1 \geq 0 \) és \(a_2 \geq 0 \)

A töltési keresletet a helyi és a látogatókból eredő forgalom együttesen határozza meg városi környezetben. A helyi töltési keresletet az \(x_1 \) és \(x_2 \) változók befolyásolják. Feltételeztem, hogy a magasabb jövedelem és a nagyobb elektromos járműszám nagyobb futásteljesítményt okoz, ami növeli a töltési keresletet is. A népszerű turisztikai desztinációk, amelyek elektromos személygépkocsi forgalmat generálnak, hasonlóan növelik a töltési keresletet. Az \(x_3 \) változó értékének meghatározásához a helyi adottságok és a turizmus szezonális jellegének ismerete is szükséges. Például: a kiemelkedő nyári turisztikai forgalom egyenértékű egy kisebb, de egész évben konstans turisztikai forgalommal. Az 5/2-del való szorzás biztosítja az eredmény 0-5 tartományú értékkészletet. A súlyszámok a helyi forgalom és a turisztikai forgalom töltési igény kiszolgálásának a fontosságát fejezik ki.

6.1. ábra Az értékelés tárgyai: területi egység makró szinten, hatszög mezo szinten

Makró szinten a területi egységek között szétosztható töltőállomások száma \(N \). A városi területek a környékkel együtt tekinthetők egy egységnek. Ezen területi egységeket értékelem; az eredmény az ún. telepítési potenciál (IP – Installation Potential) (1). IP értéke ott nagyobb, ahol a becsült töltési kereslet is nagyobb. IP értéke a 6.1 alapján számítható.

\[
IP_i = a_1 \cdot \frac{5}{2} \left(\frac{x_{1,i}}{\max(x_1)} + \frac{x_{2,i}}{\max(x_2)} \right) + a_2 \cdot x_{3,i}
\]

Ahol:

- \(IP_i \) területi egység töltőtelepítési potenciálja,
- \(x_{1,i} \) regisztrált elektromos személygépjárművek száma az \(i \) területi egységben,
- \(x_{2,i} \) átlagos jövedelem személyenként az \(i \) területi egységben,
- \(max(...) \) legmagasabb értékű területi egységnél a váltózó értéke,
- \(x_{3,i} \) turizmus fontosságát minősítő érték az \(i \) területi egységben, értéke 0 és 5 között lehet,
- \(a_1, a_2 \) váltózók súlya. \(a_1 + a_2 = 1 \), \(a_1 \geq 0 \) és \(a_2 \geq 0 \)

A töltési keresletet a helyi és a látogatókból eredő forgalom együttesen határozza meg városi környezetben. A helyi töltési keresletet az \(x_1 \) és \(x_2 \) változók befolyásolják. Feltételeztem, hogy a magasabb jövedelem és a nagyobb elektromos járműszám nagyobb futásteljesítményt okoz, ami növeli a töltési keresletet is. A népszerű turisztikai desztinációk, amelyek elektromos személygépkocsi forgalmat generálnak, hasonlóan növelik a töltési keresletet. Az \(x_3 \) változó értékének meghatározásához a helyi adottságok és a turizmus szezonális jellegének ismerete is szükséges. Például: a kiemelkedő nyári turisztikai forgalom egyenértékű egy kisebb, de egész évben konstans turisztikai forgalommal. Az 5/2-del való szorzás biztosítja az eredmény 0-5 tartományú értékkészletet. A súlyszámok a helyi forgalom és a turisztikai forgalom töltési igény kiszolgálásának a fontosságát fejezik ki.
A telepíthető töltőállomásokat a 6.2 szerint osztottam fel a területi egységek között.

\[
n_i = \text{round} \left(\frac{\sum IP_i \cdot N}{\sum IP_i} + 0.5 \right)
\]

Ahol \(n_i \) az \(i \) területi egységben javasolt töltőállomások száma. A szétosztás lehetséges kimenetelei a kerekítés szabályai miatt a következők lehetnek:

a) \(\sum n_i = N \) esetén a szétosztás véget ér,
b) \(\sum n_i < N \) esetén egy extra töltőállomás hozzáadása szükséges ahhoz a területi egységhez, ahol a különbség \(\frac{\sum IP_i \cdot N}{\sum IP_i} + 0.5 \) és \(\frac{\sum IP_i \cdot N}{\sum IP_i} + 0.5 \) között a legnagyobb,
c) \(\sum n_i > N \) esetén eggyel csökkentjük a töltőállomások számát azon területi egység esetén, ahol a különbség \(\frac{\sum IP_i \cdot N}{\sum IP_i} + 0.5 \) és \(\frac{\sum IP_i \cdot N}{\sum IP_i} + 0.5 \) között a legkisebb.

Amennyiben az eltérés kezdetben nagyobb, mint 1, akkor a b) és a c) esethez tartozó lépések ismétlődnek és mindig a legnagyobb/legkisebb eltérésű területi egységnél történik a módosítás.

Mezo szinten a területi egységeket hatszögekre bontottam, mivel a teljes területi egységet átfedés mentesen lefedő sokszögek közül ennek az alakja közeli leginkább a kör alakját. A párhuzamos oldalak közötti távolság 250 méter, ami a kényelmes gyaloglási távolság a parkolóhely és az úti cél között (Daniels és Mulley, 2013). A töltőállomásokat a legvonzóbb hatszögekhez rendelem hozzá. Egy hatszög akkor vonzó, ha magas az átlagosan a hatszögben parkoló járművek száma és a parkolási idő. Ezek az értékek akkor magasak, ha található a hatszögben szolgáltatás, vagy lakófunkció. Ennek megfelelően a forgalomvonzó létesítményeket, a terület jellemzőit és a lakosságszámot vettem figyelembe értékeléskor. A közlekedési szempontokon túl számos egyéb szempont is befolyásolja a töltőállomás pontos helyszínének kijelölését, például a terület tulajdonviszonya, vagy az elektromos hálózat hozzáférhetősége. A töltőállomás hatszögön belüli pontos helyszinének kijelölése nem része a módszernek.

Nemzetközi kérdőív kutatással vizsgáltam a városi utazásokat; meghatároztam a közterületi töltési igényt \((d)\) generáló helyszíntípusokat. Körülbelül 800 fő jelenlegi és potenciális elektromos járműhasználót kérdeztem meg, hogy hol, milyen gyakran és mennyi ideig tölténék/töltenének. Az alábbi kategóriákat határoztam meg:

- helyszíntípus: szupermarket; közhivatal/posta/bank; P+R létesítmény; vasútállomás/autóbuszállomás; benzinkút; turisztikai célpont/kulturális- vagy sportlétesítmény,
- gyakoriság \((f)\): soha; évente néhányszor; havonta néhányszor; hetente 2-3 alkalommal; hetente 4-5 alkalommal; mindennap,
időtartam (t): kb. 10 perc; kb. 30 perc; 2-4 óra; 6-8 óra. Az időtartam kategóriák megegyeznek a különböző töltőtípusok jellemző töltési idejével.

Az eredményeket, vagyis az átlagos töltési gyakoriságot, időtartamot és az ezekből számított töltési igényt helyszíntípusonként a 6.2 táblázat foglalja össze. Az átlagértékeket a kategóriák középértéke alapján számoltam. Feltételeztem, hogy az elektromos hajtás nem befolyásolja jelentősen a parkolási szokásokat. Ezért az értékek meghatározásakor az egyes meghajtási módú személygépkocsihoz tartozó válaszadókat azonos súllyal figyelembe.

6.2. táblázat Töltésjellemzők helyszíntípusonként

<table>
<thead>
<tr>
<th>Helyszíntípus</th>
<th>Átlagos töltési gyakoriság ((f)) [töltés/nap/jármű]</th>
<th>Átlagos töltési idő töltésenként ((t)) [óó:pp/töltés/jármű]</th>
<th>Töltési igény ((d=f\cdot t)) [óó:pp/nap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szupermarket</td>
<td>0,18</td>
<td>0:43</td>
<td>0:08</td>
</tr>
<tr>
<td>Közhivatal/posta/bank</td>
<td>0,09</td>
<td>0:21</td>
<td>0:02</td>
</tr>
<tr>
<td>P+R létesítmény</td>
<td>0,15</td>
<td>2:09</td>
<td>0:19</td>
</tr>
<tr>
<td>Vasútállomás/autóbuszállomás</td>
<td>0,08</td>
<td>1:21</td>
<td>0:06</td>
</tr>
<tr>
<td>Benzingút</td>
<td>0,25</td>
<td>0:21</td>
<td>0:05</td>
</tr>
<tr>
<td>Turisztikai célpont/kulturális-vagy sportlétesítmény</td>
<td>0,12</td>
<td>1:15</td>
<td>0:09</td>
</tr>
</tbody>
</table>

Közlekedési szempontból kétféle helyi töltéstípus különböztethető meg:

- Nappali töltés, ami a nappali tevékenységhez kötött (pl. vásárlás). A töltési keresletet a helyszín jellege és az elérhető szolgáltatások befolyásolják.
- Éjszakai töltés az otthonhoz közeli nyílvános parkolóban. A töltési keresletet a lakosságszám és a lakóterület jellemzői befolyásolják.

Mivel a módszer célja a nyílvános töltőállomások helyszínének kijelölése, figyelmen kívül hagytam a privát parkolóhelyi (pl. garázs) töltéseket (nappal munkahelyen, éjszaka otthon).

Egy hatszögben jelentkező töltési igény \((Y)\) a nappali és az éjszakai töltés különböző súllyal történő figyelembevételével számítható (6.3). A nappali töltési kereslet a különböző forgalomvonzó helyszíntípusokon jelentkező igényekből, míg az éjszakai otthonközeli töltési kereslet a lakosságszámából és a lakóterület kategóriájából vezethető le.

\[
Y = b_1 \cdot \frac{5}{\max} \left(\sum \frac{d}{\max} \right) + b_2 \cdot \frac{b}{2} \cdot \left(r + \frac{5 \cdot p}{\max(p)} \right) \tag{6.3}
\]

Ahol:

- \(Y\) hatszögben jelentkező töltési igény,
- \(\sum d\) forgalomvonzó helyszíntípusokon jelentkező összesített töltési igény [perc/nap],
- \(r\) lakóterület kategória [-],
- \(p\) hatszög lakosságszáma [fő],
- \(\max(...)\) legmagasabb értékű változó a hatszög területegységek közül,
\[b_1, b_2 \] töltéstípusok súlyai. \(b_1+b_2=1 \), \(b_1 \geq 0 \) és \(b_2 \geq 0 \).

A súlyszámokok, vagyis \(b_1 \) és \(b_2 \) paraméterek, a nappali és az éjszakai töltés fontosságát fejezik ki. Az éjszakai töltést többnyire csak helyiek veszik igénybe. Ezzel szemben a népszerű szolgáltatásokat, forgalomvonó helyszíneket távoli hatszögben élők is felkereshetnek. Ebből kifolyólag a nappali töltés előnyben részesítése javasolt a súlyok beállításánál.

A hatszögök töltötelepítési potenciál értékének \((W_q)\) meghatározásánál a gyaloglási hajlandóságot \((w_{2w})\) is figyelembe vettem. A \(w_{2w} \) paraméter azt előre értékel, hogy az elektromos járműhelyek használó hajlandó megtenni a töltőállomás és az utazási célja között, vagyis a hatszög vonzáskörzetét. Egy hatszög töltötelepítési potenciálja a töltési igények vonzáskörzetében \((w_{2w} \text{ sugár})\) belüli összesített értékének és azon igényeknek a különbsége, amelyeket a közeli, meglévő töltőállomások az elvonó hatásuk révén kiszolgálhatnak (6.4).

\[
W_q = P \left[Y_q + \sum_{s} Y_s - \sum_{t} \left(\frac{Y_t}{2Y_q} \sum_{q_{t,u}} Y_{q_{t,u}} \right) \right]
\]

Ahol:
\[
W_q \quad q \text{ hatszög töltötelepítési potenciálja},
\]
\[
P \quad \text{parkolási potenciál; } P=0, \text{ ha nincs nyilvános parkolóhely, vagy a töltötelepítés nem javasolt, minden más esetben } P=1,
\]
\[
Y_q \quad q \text{ hatszögben jelentkező töltési igény},
\]
\[
Y_s \quad \text{a vizsgált } q \text{ hatszög vonzáskörzetében lévő } s \text{ hatszögben jelentkező töltési igény (a vonzáskörzet sugara } w_{2w}),
\]
\[
Y_t \quad \text{a vizsgált } q \text{ hatszög kétszeres vonzáskörzetében lévő, töltőállomást tartalmazó } t \text{ hatszögben jelentkező töltési igény (a vonzáskörzet sugara } w_{2w}),
\]
\[
\sum_{q_{t,u}} Y_{q_{t,u}} \quad \text{töltési igények összesített értéke a vizsgált } q \text{ hatszög és a meglévő } t \text{ töltőállomás vonzáskörzetének metszetében lévő hatszögeknek (a vonzáskörzet sugara } w_{2w}).
\]

A \(\sum_{q_{t,u}} Y_{q_{t,u}} \) jelöli azon töltési igényt, amelyet meglévő \((t \text{ hatszögben lévő})\) töltőállomás is kiszolgálhat. Amennyiben több töltőállomás is található az úticélozás képest \(w_{2w} \) távolságon belül, a felhasználó a számára legvonóbbat választja. Bár \(Y_t \) a meglévő töltőállomást tartalmazó \(t \) hatszög töltési kereslete, egyúttal kifejezi a hatszög felhasználói attraktivitását is. Egy \(u \) hatszög töltési kereslete megoszlók a vizsgált \(q \) hatszög és a meglévő töltőállomást tartalmazó \(t \) hatszög között. A megosztást a \(\frac{Y_t}{2Y_q} \) hányság fejezi ki. Így például, ha \(q \) és \(t \) hatszög töltési kereslete megegyezik, az \(u \) hatszög töltési keresletének fele hozzáadódik a \(q \) hatszög töltötelepítési potenciál értékéhez.

A számítás logikáját a 6.2. ábrán egy példával szemléltettem. A példában a vizsgált hatszög a \(q \). A \(w_{2w} \) távolság, vagyis a hatszög összefoglaló vonzáskörzete 2 hatszög. A vizsgált hatszög vonzáskörzetében lévő hatszögek \(s=1..18 \). Feltételezve, hogy az elektromos jármű használók tölteni fogják a járművet, ha a célállomásuk nincs messzebb két hatszög nél. Ezáltal minden
ebbe a távolsága eső hatszög növeli, míg minden 5 hatszögnél közelebb lévő meglévő töltőállomás csökkenti a töltötelepítési potenciál (W_q) értékét. A példában t hatszögben található egy meglévő töltőállomás. A vizsgált q hatszög és a meglévő t töltőállomás vonzáskörzetének metszetében lévő hatszögek 16, 17 és 18, így $u=16..18$. Azon utazók, akiknek célpontja a 16..18 hatszögek egyikében található, a járművet a t és q hatszögben található töltőállomásnál is tölthetik. Ennek a megoszlásnak a mértékét fejezi ki a $\frac{Y_t}{2Y_q}$ hányados.

6.2. ábra Elvonzó hatás meglévő, közeli töltőállomás esetén

A töltőállomás helyszínek kijelölésére mohó algoritmust használtam. Abban az esetben, ha a vizsgált hatszögek egyikében sincs még töltőállomás, a lépések a következők:

A1. W_q meghatározása minden hatszögre.

A2. Töltőállomás hozzárendelése a legnagyobb W_q értékű hatszöghez.

Újabb töltőállomás helyszín a lépések megismétlésével jelölhető ki. Az első hatszög az első számítási ciklus szerinti legmagasabb W_q érték szerint, míg a második hatszög a második számítási ciklus szerinti legmagasabb W_q érték szerint kerül kiválasztásra. W_q értékek ciklusonként kerülnek újrászámolásra.

A módszer összetettebb, amennyiben a vizsgált hatszögek egyikében van már meglévő töltőállomás. Ebben az esetben a javasolt és a meglévő töltőállomásokhoz tartozó hatszögek W_q értékeit számítom külön-külön; majd összehasonlítást végzek. A folyamatot a 6.3. ábra foglalja össze.

s=1..18 u=16..18

\[\text{\textbullet} \quad \text{vizsgált hexagon} \]
\[\text{\textbullet} \quad \text{meglévő töltőállomás} \]
\[\text{\textbullet} \quad \text{vizsgált hexagon vonzáskörzete} \]
\[\text{\textbullet} \quad \text{meglévő töltőállomás vonzáskörzete} \]
6.3. ábra Töltőállomás helyszín meghatározása már meglévő töltőállomások esetében mező szinten

A lépések a következők:

B1. Javasolt töltőállomás helyszínek (hatszögek) kiválasztása a meglévő töltőállomás(ok) figyelmen kívül hagyásával (A1 és A2 lépés). Az **elméleti eredő töltőtelepítési potenciál** \(\sum W_q \) meghatározása a javasolt helyszínek \(W_q \) értékeinek összesítésével.

B2. A **gyakorlati eredő töltőtelepítési potenciál** \(\sum W_q' \) meghatározása: a meglévő töltőállomást tartalmazó hatszögek \(W_q \) értékeinek összesítésével. A számítást csak azon hatszögekre végezzük el, ahol van már meglévő töltőállomás.

B3. Amennyiben az elméleti eredő potenciál nagyobb, mint a gyakorlati, akkor új telepítési helyszín kiválasztása ajánlott, hiszen a meglévő állomások nem szolgálják ki megfelelő mértékben az igényeket. A további helyszín kiválasztása az A1 és A2 lépésel elvégzésével lehetséges figyelembe véve a meglévő helyszíneket. Ezt a lépést addig kell ismételni, amíg az elméleti eredő potenciál nagyobb, mint a létrejövő új töltőhálózat (meglévő és újonnan telepített töltőállomások együttesen) **gyakorlati eredő potenciálja** \(W_q' \).

B4. Amennyiben a gyakorlati eredő potenciál nagyobb, mint az elméleti, akkor új telepítési helyszín kiválasztása nem ajánlott, hiszen a meglévő állomások megfelelő mértékben kiszolgálják az igényeket. Hasonlóan, ha a létrejövő új töltőhálózat gyakorlati eredő potenciálja éppen meghaladja az elméletit, akkor további töltőállomások elhelyezése már nem javasolt. Mindkét esetben a „megmaradó” töltőállomásokat makró szinten lehet elosztani a többi területi egység között.
6.2 Módszer alkalmazása

Alkalmaztam a városi töltőállomás helyszín kijelölő módszert. Makró szinten Magyarországot, mezo szinten Budapest egy kerületét vizsgáltam meg.

Makró szinten a terület egységeknek a járásokat és a budapesti kerületeket tekintettem. Magyarország 164 járásra, míg Budapest 23 kerületre bontható. Az esettanulmányban, a cél összesen \(N = 300 \) töltőállomás telepítése volt, amelyek a rövid távú, jellemzően városi utazásokat szolgálnak ki. A módszer implementálása QGIS szoftver környezetben valósult meg.

Először makró szinten szétosztottam a 300 állomást a területi egységek között. Területi egységenként becsütem az elektromos személygépjárművek számát a járásonként, illetve kerületenkénti járműszám és az elektromos személygépjárművek országos aránya alapján (a konkrét adatok nem álltak rendelkezésre). A jövedelem adatok forrása a Központi Statisztikai Hivatal volt. A turizmus értékeléséhez 4 kategóriát határoztam meg, amihez értékelő számokat rendeltem (6.3. táblázat).

6.3. táblázat Turizmus kategóriák

<table>
<thead>
<tr>
<th>Turizmus kategória</th>
<th>(x_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elhanyagolható turizmus</td>
<td>0</td>
</tr>
<tr>
<td>Alacsony jelentőségű turizmus</td>
<td>1</td>
</tr>
<tr>
<td>Közepes jelentőségű turizmus</td>
<td>3</td>
</tr>
<tr>
<td>Jelentős turizmus</td>
<td>5</td>
</tr>
</tbody>
</table>

Az eltérő súlyszámok hatásának a vizsgálatához 3 esetet határoztam meg. Az esetekhez tartozó eredményeket a 6.4. ábra mutatja be. A terület egységekben telepítésre javasolt töltőállomások száma közötti különbségek mindhárom esetben egyértelműen megmutatják az egyes területek közötti különbségeket. Azonban, ha a turizmus súlya kellően nagy, az a többi szempont hatását jelentősen csökkenti, és a töltőállomások elosztása is kevésbé egyenletes. A további mezo szintű alkalmazáshoz a II. esetet választottam. Ennek oka, hogy:

- a városi töltőállomások rendszeres felhasználói a helyi lakosok, bár a turizmus is kiemelten fontos iparág Magyarországon.
- Minden terület egységben legalább egy töltőállomás telepítése javasolt, így megvalósítható egy alapszintű szolgáltatási színvonal.
- Az I. esettel összehasonlítva a terület egységek közötti különbségek hangsúlyosabbak.

4 A módszer implementálásához és az eredmények megjelenítéséhez szükséges alkalmazásfejlesztésben Dr. Wirth Ervin, a Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Fotogrammetria és Térinformatikai Tanszék munkatársa segédkezett.
Az eredmények alapján a Budapestet és környékét, valamint a nagyobb városokat (Miskolc, Győr, Debrecen, Szeged, Pécs, Székesfehérvár, Kecskemét, Nyíregyháza) tartalmazó területi egységek IP értéke a legmagasabb. A legnagyobb IP értékű területegységek jellemzően Budapest kerületei.

Mezo szinten biztosítandó, hogy a töltőállomások az igény gócpontokhoz közel helyezkedjenek el. A kérdőíves felmérés alapján az elektromos személygépkocsiit használók 93%-a hajlandó 500 métert gyalogolni a célpontja és egy töltőállomás között (2. függelék), ezért a w_2 távolságot 1 hatszögnek választottam. Vagyis egy hatszög a szomszédos hatszögekben jelentkező töltési igényt is ki tudja szolgálni. A forgalomvonzó létesítmények helyszínének adatforrásaként az OpenStreetMap nyílt forráskódú szoftvert használtam. A súlyokat a nappali és az éjszakai otthonközeli töltés fontossága alapján képeztem. Tapasztalatok szerint a nappali töltési igény fontosabb, így a súlyokat az alábbiak szerint határoztam meg: $b_1=0,6$ és $b_2=0,4$. A leginkább kedvező súlyszámok megválasztása egy többlépcsős kalibrációs folyamattal lehetséges. Az eltérő súlyszámok hatását nem vizsgáltam.

6.4. ábra Javasolt töltőállomások száma makró szinten eltérő súlyok esetén

Az eredmények alapján a Budapestet és környékét, valamint a nagyobb városokat (Miskolc, Győr, Debrecen, Szeged, Pécs, Székesfehérvár, Kecskemét, Nyíregyháza) tartalmazó területi egységek IP értéke a legmagasabb. A legnagyobb IP értékű területegységek jellemzően Budapest kerületei.
6.4. táblázat Lakóterület kategóriák minősítő értéke

<table>
<thead>
<tr>
<th>Lakóterület kategória</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kertesházas</td>
<td>1</td>
</tr>
<tr>
<td>Zöldövezeti társasházas</td>
<td>3</td>
</tr>
<tr>
<td>Zárt beépítésű (belvárosias), lakótelep</td>
<td>5</td>
</tr>
</tbody>
</table>

Kiszámoltam az elméleti eredő potenciál értékeket a legvonzóbb hatszögek esetében (6.5. táblázat).

6.5. táblázat A legnagyobb töltőtelepítési potenciálhal rendelkező hatszögek értéke

<table>
<thead>
<tr>
<th>q (hatszög azonosító)</th>
<th>W_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,11</td>
</tr>
<tr>
<td>2</td>
<td>3,38</td>
</tr>
<tr>
<td>3</td>
<td>3,19</td>
</tr>
<tr>
<td>4</td>
<td>3,12</td>
</tr>
<tr>
<td>∑</td>
<td>13,8</td>
</tr>
</tbody>
</table>

Majd meghatároztam a gyakorlati eredő potenciál értéket a meglévő 4 töltőállomásra (6.6. táblázat).

6.6. táblázat A meglévő töltőállomást tartalmazó hatszögek töltőtelepítés potenciál értéke

<table>
<thead>
<tr>
<th>q (hatszög azonosító)</th>
<th>W_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,44</td>
</tr>
<tr>
<td>6</td>
<td>2,94</td>
</tr>
<tr>
<td>7</td>
<td>2,57</td>
</tr>
<tr>
<td>8</td>
<td>1,73</td>
</tr>
<tr>
<td>∑</td>
<td>10,68</td>
</tr>
</tbody>
</table>

A már meglévő töltőállomások gyakorlati eredő potenciálja lényegesen alacsonyabb, mint a legvonzóbb hatszögek elméleti eredő potenciál értéke ($\sum W_q' \ll \sum W_q$). Megállapítottam, hogy a meglévő 4 töltőállomás nem szolgál ki annyi töltési igényt, mint amennyit kiszolgálna a legvonzóbb helyszínekre telepíthető 4 töltőállomás. Ezért további töltőállomás(ok) telepítése javasolt, amíg $\sum W_q''$ el nem éri, vagy meg nem haladja az elméleti eredő potenciál értékét, vagyis a 13,8-at. Ennek megfelelően értékeltem a még üres hatszögeket, figyelembe véve a meglévő töltőállomásokat. Ezek alapján további egy töltőállomás telepítése javasolt a $q=2$ hatszögben, a Móricz Zsigmond körtéren ($W_2=3,38$). Ezzel az új $W_q''=14,06$.

Mivel a makró szintű értékelés során eredetileg 4 töltőállomás telepítése ajánlott a kerületben, de valójában csak 1-re volt szükség, a maradék 3 töltőállomás újraosztható a többi területegység között.

A meglévő és ajánlott töltőállomás helyszíneket a 6.5. ábra szemlélheti. Megállapítottam, hogy mind a telepítendő ($q=1..4$), mind a meglévő ($q=5..8$) töltőállomások a kerület hasonló részein találhatók. Mivel a meglévő töltőállomások helyszíne befolyásolja a telepítési potenciált, a legkedvezőbb ($q=1$) helyszínen töltőállomás telepítése nem ajánlott. Megfigyelhető továbbá, hogy a 4 ajánlott helyszín eloszlása egyenletes. Végezetül, megállapítottam, hogy egyik ajánlott hatszög sem tartalmaz benzinikutat, ennek oka, hogy a benzinikutak közelében kevés az elérhető szolgáltatás és jellemzően alacsony a lakosságszám.
Összefoglalva, egy kétlépcsős multikritériumos módszert dolgoztam ki városi elektromos gyorstöltő állomások helyszíneinek kijelölésére. A módszer újszerűsége, hogy mezo szinten a helyszínek vonzerője a felhasználói elvárások alapján meghatározott töltési igények alapján számolható. A kidolgozott módszer legfőbb előnye, hogy nem igényel honnan-hová utazási adatokat, csak statikus, nyilvánosan elérhető területhasználati adatokat vesz figyelembe. A módszer használatával képzett eredmények alátámasztják, hogy a forgalom vonzó létesítményekhez, valamint nagy lakoságszámú területek közelébe (ahol az otthoni privát töltés nem lehetséges) telepített töltőállomások szolgálják ki leginkább a töltési igényeket.

Ez alapján a téma területéhez kapcsolódó tézisemet a következőképp fogalmaztam meg:

A városi és a környéki utazásokhoz tartozó töltési igényekhez kidolgoztam a publikus töltőállomások helyszínét kijelölő módszert. A módszer makró- és mezo szintű multikritériumos értékelésen alapul. Makrószinten az elektromos járműhasználatot értékeltem a járművek száma, a jövedelem nagysága és a vendég forgalom jelentősége alapján. Mezo szinten a parkolási szokásokat értékeltem a gyakran látogatott helyszínek, a lakosságszám és a beépítettség alapján.

Kapcsolódó saját publikációk:
(Csonka és Csiszár, 2017a), (Csonka és Csiszár, 2017b), (Csiszár et al., 2019a), (Csiszár et al., 2019b), (Csonka és Földes, 2019), (Csiszár et al., 2019)
7 Carsharing szolgáltatások minőségét értékelő módszer

Az integrált információs rendszer támogatásával, és a megfelelő publikus töltőhálózattal az elektromos járművek sokak számára könnyebben használhatóvá válnak. Azonban a magas beszerzési ár miatt egyelőre még nem várható a széleskörű elterjedésük. Erre a problémára is megoldást jelentenek az elektromos autót is kínáló carsharing szolgáltatások, ahol a regisztrált ügyfelek könnyen hozzáférhetnek a környezetbarát közlekedési módhoz, és így nő az elektromos személygépkocsival végrehajtott utazások száma. 2019-ben Magyarországon körülbelül 10000 zöldrendszámos elektromos autó közlekedik. A tisztán elektromos, valamint a hagyományos hajtást az elektromos hajtással kiegészítő hibrid járművek aránya körülbelül 65-35%. A GreenGo, Mol Limo és DriveNow carsharing szolgáltatók együttesen 340 db tisztán elektromos személygépkocsi üzemeltetnek, ami a tisztán elektromos járműállomány 5,2%-a. Egy carsharing szolgáltatásban működő személygépkocsi-üzemeltetés alternativáját lehetővé teszi az elektromos autót is kínáló carsharing szolgáltatások, ahol a regisztrált ügyfelek könnyen hozzáférhetnek a környezetbarát közlekedési módhoz, és így nő az elektromos személygépkocsi-üzemeltetési módok nézete.

2. Felhasználói elvárások (ei)
1. Szolgáltatás értékelése az ismérvek szerint (cj)
3. Felhasználói elvárások és minőségi ismérvek közötti kapcsolat meghatározása (ri,j)
4. Súlyszámok meghatározása (qj)
5. Aggregált minőség számítása (Q, q1, q2, q3, q4)

7.1. ábra Az elemző és értékelő módszer lépései

A szolgáltatás minőségét jellemző aggregált érték meghatározásához súlyozott multikritériumos módszert dolgoztam ki, ami lehetővé teszi a kritériumok eltérő fontosságának a figyelembevételét. A módszer lépéseit a 7.1. ábrán foglaltam össze.

7.1. táblázat Minőségi ismérvek és azok értékelő számai

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>csoport</td>
<td>c</td>
<td>megnevezés</td>
<td></td>
</tr>
<tr>
<td>rugalmasság</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c0</td>
<td>szolgáltatás típusa</td>
<td>round-trip</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one-way</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>free-floating</td>
<td>5</td>
</tr>
<tr>
<td>rendezésre állás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c11</td>
<td>legközelebbi szabad jármű átlagos távolsága*</td>
<td>d ≥ 800 m</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d ≤ 250 m</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>minimum és maximum használati időtartam*</td>
<td>UT=MIN+MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN≥ 1 óra</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN< 0,5 óra</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX< 4 óra</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX≥ 10 óra</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN, MAX: használati idő alsó és felső határértéke.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>üzemiód*</td>
<td>OT=0,7x+6,7z+2u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT=50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT=100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Üzemiódő óra</td>
<td>0 és 7 óra között</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 és 20 óra között</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 és 24 óra között</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>megfelelőség, rugalmasság</td>
<td>R=F+1/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nem lehet foglalni</td>
<td>F=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kötelező foglalni</td>
<td>F=3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nem kötelező foglalni</td>
<td>F=4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m: Folytonos értékkészlet. Amennyi órával az utazás megkezdése előtt médiázható a foglalás.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>járművek megközelíthetősége</td>
<td>A=1+0,5B+1,5T+4U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250 méteres körzetben a csatlakozási pontok száma: B: autóbusz, trolibusz, T: villamos, HEV, vasút</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>métró.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Felhasználók kikérdezésével.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>jármű belső megjelenése</td>
<td>Felhasználók kikérdezésével.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>jármű vezethetősége</td>
<td>Felhasználók kikérdezésével.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A táblázatban szereplő értékeket a szakirodalom, és egy carsharing szolgáltatónál töltött évek alatt szerzett saját tapasztalatok alapján határoztam meg. Az egységes pontozás érdekében az 1-től 5-ig terjedő skálát alkalmaztam, ahol az 1 a legrosszabb és 5 a legjobb értékelés. Az elemzési eljárásmegalkotása során cél volt a lehető legtöbb jellemzőnek a felhasználó szemszögből történő értékelése.

Például a **legközelebbi szabad jármű átlagos távolsága** (e11) ismertet a gyaloglási hajlandóság alapján értékeltem. Az ideális jármű jellemzője, hogy „kívül kicsi, belül nagy”. Az üzemidő (e13) esetén az egyes időintervallumok súlyszámát a kereslet egy napon belüli ingadozása alapján határoztam meg. Az időszakok súlyszáma a járműhasználat valószínűségének nagyságával egyenlően arányos; x, y, z mutatja az adott időintervallumba eső üzemidőket.

A **jármű vezethetősége** (e33) ismerv értékelőszámának a meghatározásakor a felhasználóknak a jármű menettulajdonságait és szabályozhatóságát kell értékelniük. Például alacsony pontszámmal értékelendő az a személygépkocsi, amelyik nehezen képes tartani a forgalom ritmusát, nehezen szabályozható a lassítása/gyorsítása, rosszak a kilátási lehetőségek.

Ezzel szemben magas pontszámmal értékelendő azok a járművek, amelyek jól szabályozhatók (például az elektromos hajtásúak), és egyik irányban sem takarja semmi a kilátást. A **férfi, csomagtér** (e34) minőségi ismerv esetén eltérő értékelést határoztam meg, aminek okai a szolgáltatás típusától függő hajlamosítási motivációk. Round-trip (magyar szóhasználatban körutazás) típusú szolgáltatás esetén elsősorban szabadidős tevékenység a fő motiváción, amit általában nagy kapacitású járművekkel lehet jól kiszolgálni. Az **energiával való feltöltés körülményei** (e35) ismerv értékelésnél azt vettem figyelembe, hogy milyen jellegű korlátozások érvényesülnek. Például, ha csak egy kevésbé elterjedt töltőkút hálózaton lehet tölteni, vagy az elektromos járműveket csak a kevés helyen elérhető publikus töltőpontoknál lehet tölteni, az jelentős megkötést jelent. Ezzel szemben, ha az üzemeltető végzi a járművek feltöltését, vagy nagy telepítési tűrődésű parkolóhelyeken is elérhetők az elektromos töltőállomások, az energiával való feltöltés nem jelent nehézséget a felhasználók számára. A **parkolás körülményei** (e36) ismerv értékelésénél figyelembe vettem a használat közbeni nyilvános parkolás költségét (C). Az ingyenes parkolás, például a zöldrendszámos személygépkocsik esetén, rugalmasságot jelent a felhasználó számára, ami növeli a szolgáltatás minőségét.

Az **egyéb teendők szükségessége** (e37) ismerv értékelő számának meghatározásakor a felhasználóknak a járműhasználathoz kapcsolódó egyéb tevékenységeket kell értékelnie. Például:

- hogyan nyitható és zárható a jármű számára fenntartott parkoló,
- hogyan nyitható és zárható a jármű,
- hogyan lehet bejelenteni a jármű sérüléseit,
- szükséges-e a használat megkezdése előtt és/vagy után lefényképezni a járművet,
- szükséges-e a járművet használat előtt és/vagy után töltőberendezésről lecsatlakoztatni/töltőberendezéshez csatlakoztatni.

A carsharing szolgáltatás értékelésének egyik ismervé a **CO₂ kibocsátás** (e44), amivel a járművek környezetterhelése értékelhető. A cél az alacsony károsanyag kibocsátású technológiák (például elektromos hajtás) előnyben részesítése. Azonban a módszer alkalmazásakor nem csak a járművek lokális CO₂ kibocsátást kell figyelembe venni. Például
Kínában, ahol nagy a szénenergia részaránya, a tisztán elektromos járművek globális CO₂ kibocsátása magasabb, mint a hagyományos járműveké. Emiatt az értékelő számok régióként eltérhetnek. A 7.1. táblázatban szereplő \(c_{44} \) ismérvt értékelő számait az Európai Unióban jellemző energia mix alapján határoztam meg. A CO₂ kibocsátásán túl a teljes ökológiai lábnyom vizsgálata (a feladat összetettsége miatt) nem része az értékelő módszernek.

A rendszer kezelhetősége (\(c_{51} \)) függ:

- a hálózat és tarifarendszer áttekinthetőségétől,
- a regisztrálás és díjfizetés körülményeitől,
- a jármű foglalás körülményeitől,
- a járműfedélzeti rendszerek kezelhetőségétől.

Az **információs rendszer (\(c_{61} \))** minőségét befolyásolják:

- a járművel kapcsolatos információk,
- a közúti közlekedéssel és parkolással kapcsolatos információk,
- a közösségi közlekedéssel kapcsolatos információk.

A 7.2. ábra mutatja be a carsharing szolgáltatás időben és/vagy térben változó ismérveinek csoportosítását. A többi ismérv állandónak tekinthető.

![7.2. ábra Térben és időben változó ismérvek](image-url)

A kereslet nagysága is eltér a egyes időszakokban (Costain et al., 2012), aminek következtében a legközelebbi szabad jármű távolsága (\(c_{11} \)) nem állandó, így a carsharing szolgáltatás minősége egy időben és térben változó dinamikus jellemző. A dinamikus tulajdonságot alapvetően a kereslet ingadozása okozza, de a jármű belső (\(c_{32} \)) és külső megjelenése (\(c_{41} \)) egyaránt dinamikus jellemző. Ennek oka, hogy a jármű külső és belső megjelenését befolyásolja a jármű tisztasága, ami egy napon belül jelentősen eltérhet, emiatt dinamikus jellemzőnek tekintettem.

Az egy járműre jutó felhasználó/lakosok száma minőségi ismérvet kihagytam az elemző módszertanból, ugyanis az arányszám és a szolgáltatás minősége között nem mutatható ki
egyértelmű kapcsolat. Ezt támasztják alá a tapasztalatok is, miszerint az egy járműre jutó felhasználók/lakosok száma széles skálán mozog (Loose, 2010).

A \(c_{11} \) (legközelebbi szabad jármű átlagos távolsága) ismerv értékelése nem egyértelmű bevezetés előtt álló rendszerek esetén. Ebben az esetben szükséges meghatározni egy kihasználtság mutatót az egyes időszakokra, valamint one-way (magyar szóhasználatban egyirányú) és free-floating (zóna alapú) típusú rendszereknél a járművek várható eloszlását is meg kell becsülni. Egyszerű becslési módszer alkalmazható, amelynek lényege: a várható szabad járművek számát a zónák között a zóna népességszáma és népsűrűsége alapján osztjuk el. Ez utóbbi két mutató összefügg a felhasználók számával. A zónák megválasztása tetszőleges. Az általam alkalmazott számításokban a járművek 50%-át népességszám, a másik 50%-ot pedig a népsűrűség szerint osztottam szét. Mindkét esetben az adott zóna jellemzőit viszonyítottam az összes zóna aggregált jellemzőjéhez.

Azok a minőségi ismervek, ahol a felhasználó bevonására nincs szükség, objektiven értékelhetők. Az értékeléshez szükséges adatoknak 3 bemeneti forrása van:

- felhasználói jellemzők (\(c_{11}, c_{32}, c_{33}, c_{37}, c_{41}, c_{51}, c_{61} \)),
- carsharing szolgáltatás jellemzői (mindegyik ismerv esetén),
- területi adottságok (\(c_{31} \)).

Az Európai Unióban használt, a közösségi közlekedés minőségére vonatkozó egységes minőségi szemléletmód alapján, a minőségi ismervből 4 kategóriát képzetem a carsharing rendszerekre vonatkozóan, amit a 7.2. táblázat mutat be.

7.2. táblázat Minőségi ismervek minőségi kategóriákba sorolva

<table>
<thead>
<tr>
<th>Minőségi kategóriák jelölés</th>
<th>Minőségi megnevezés</th>
<th>Minőségi ismervek</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>kiszolgálási minőség</td>
<td>(c_0) (c_{11}) (c_{12}) (c_{13}) (c_{21}) (c_{31}) (c_{41}) (c_{32}) (c_{33}) (c_{34}) (c_{35}) (c_{36}) (c_{37}) (c_{42}) (c_{43})</td>
</tr>
<tr>
<td>(q_2)</td>
<td>utazási minőség</td>
<td>(c_{51}) (c_{61}) (c_{44})</td>
</tr>
<tr>
<td>(q_3)</td>
<td>kezelhetőség</td>
<td>(c_{44})</td>
</tr>
<tr>
<td>(q_4)</td>
<td>környezetterhelés</td>
<td></td>
</tr>
</tbody>
</table>

A módszer 2. lépése a felhasználói elvárások preferenciáinak meghatározása, amiből az egyes ismervek súlyoszaimai vezethetők le. Egy közlekedő preferenciáit elsősorban a mobilitási szokásai határozzák meg, amelyek jellemzően felhasználóinként eltérők. Így az ebből levezetett
súlyszámok és a szolgáltatás minősége is egyénenként eltérő. Mivel a carsharing egy átmeneti közlekedési mód, ami a hagyományos közösségi közlekedés és a saját tulajdonú, egyéni gépjárműhasználat jellemzőit egyaránt magán viseli, ezért a felhasználói elvárásokat (7.3. táblázat) a két közlekedési móddal szemben támasztott elvárások alapján határoztam meg.

7.3. táblázat Felhasználói elvárások

<table>
<thead>
<tr>
<th>i</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Szabadság, függetlenség</td>
</tr>
<tr>
<td>2</td>
<td>Szabad parkolóhely</td>
</tr>
<tr>
<td>3</td>
<td>Közösségi közlekedéssel való kapcsolat</td>
</tr>
<tr>
<td>4</td>
<td>Megbizhatóság</td>
</tr>
<tr>
<td>5</td>
<td>Kényelem, könnyű kezelhetőség</td>
</tr>
<tr>
<td>6</td>
<td>Környezet védelme</td>
</tr>
<tr>
<td>7</td>
<td>Szolgáltatással kapcsolatos információk</td>
</tr>
<tr>
<td>8</td>
<td>Közösséghez tartozás</td>
</tr>
<tr>
<td>9</td>
<td>Biztonság</td>
</tr>
</tbody>
</table>

A felhasználók elvárásainak fontosságát az utazók kikérdezésével lehetséges meghatározni. Bár a méltányos utazási költség is felhasználói elvárás, a költség és a minőség összefüggésével nem foglalkoztam a jelen kutatásban. Abban az esetben, ha nem ismertek az egyes felhasználók preferenciái, akkor helyismeret alapján átlag preferencia értékek határozhatók meg. Átlag preferencia értékek például a népsűrűség alapján is képezhetők, ami jelentősen befolyásolja egy személy közlekedési szokásait (Headicar et al., 2009).

A felhasználói elvárások fontosságának ismerete és az elvárások teljesülését segítő minőségi ismérvek közötti kapcsolat erősségé alapján képezhetők a súlyszámok (g_j). Egy kapcsolat erőssége (r_{ij}) azt mutatja, hogy az adott j-ik ismérv milyen mértékben szolgálja ki az i-ik elvárást.

A minőségi jellemzők közül az „egyéb teendők szükségessége” esetén a kérdőívből származó kapcsolatok száma egy elvárás esetén sem érte el a 20%-ot. A visszajelzések alapján ennek elsősorban az az oka, hogy az ismérv a neve alapján nem egyértelmű. Tervezem, hogy a jövőben a visszajelzések beépítésével egy széles körben kitöltendő kérdőív eredményével növelem az eredmények megbízhatóságát.
A beérkezett válaszok között nem volt két azonos. Ebből következik, hogy a (tudatos) kapcsolatrendszer függ a személytől. Ennek ellenére nem javasolt egyénenként meghatározni a kapcsolatrendszert a minőségértékelő módszer használata során, aminek két oka van:

- a módszer megalkotásakor az egyszerű használhatóság volt a cél,
- a minőségértékelő szám elsősorban a felhasználó saját preferenciája alapján személyre szabott, nem pedig a kapcsolatrendszer miatt.

7.4. táblázat Minőségi ismérvek (c_i) és a felhasználói elvárások (i) közötti kapcsolati mátrix $(r_{i,j})$

<table>
<thead>
<tr>
<th>c_0</th>
<th>Szolgáltatás típusa</th>
<th>18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{11}</td>
<td>Legközelebbi szabad jármű átl. távolsága</td>
<td>10,7</td>
</tr>
<tr>
<td>c_{12}</td>
<td>Min. és max. használati időtartam</td>
<td>24,7</td>
</tr>
<tr>
<td>c_{13}</td>
<td>Üzemidő</td>
<td>18,1</td>
</tr>
<tr>
<td>c_{21}</td>
<td>Lefoglalhatóság, rugalmasság</td>
<td>27,7</td>
</tr>
<tr>
<td>c_{31}</td>
<td>Járművek megkölzeltíthetősége</td>
<td>65,5</td>
</tr>
<tr>
<td>c_{32}</td>
<td>Jármű megjelenése</td>
<td>17,8</td>
</tr>
<tr>
<td>c_{33}</td>
<td>Jármű vezethetősége</td>
<td>39,7</td>
</tr>
<tr>
<td>c_{34}</td>
<td>Férőhelykinálat, csomagtér</td>
<td>15,4</td>
</tr>
<tr>
<td>c_{35}</td>
<td>Energiával történő feltüntés körülményei</td>
<td>11,2</td>
</tr>
<tr>
<td>c_{36}</td>
<td>Parkolás körülményei</td>
<td>100</td>
</tr>
<tr>
<td>c_{37}</td>
<td>Egyéb teendők szükségessége</td>
<td>0</td>
</tr>
<tr>
<td>c_{41}</td>
<td>Jármű külső megjelenése</td>
<td>5,1</td>
</tr>
<tr>
<td>c_{42}</td>
<td>Jármű külső mérete</td>
<td>8</td>
</tr>
<tr>
<td>c_{43}</td>
<td>Jármű biztonság</td>
<td>69,9</td>
</tr>
<tr>
<td>c_{44}</td>
<td>CO₂ kibocsátás</td>
<td>100</td>
</tr>
<tr>
<td>c_{51}</td>
<td>Rendszer kezelhetősége</td>
<td>14,8</td>
</tr>
<tr>
<td>c_{61}</td>
<td>Információs rendszer</td>
<td>68,9</td>
</tr>
</tbody>
</table>

A súlyszámok képzése a 7.1 és 7.2 alapján lehetséges.

\[
g_{i,j} = r_{i,j} \frac{e_i}{\sum_i e_i} \quad 7.1
\]

\[
g_j = \sum_i g_{i,j} \quad 7.2
\]

Ahol:

- $g_{i,j}$ a j-ik ismérv i-ik elvárás szerinti részsúlyszáma,
- $r_{i,j}$ az i-ik elvárás és j-ik ismérv közötti kapcsolat erőssége (értéke adott, 7.4. táblázat)
Vagyis, ha egy minőségi ismérő több felhasználói elvárással van kapcsolatban, akkor az eredő súlyszám (g_i), az egyes elvárásokhoz tartozó részsúlyszámok összege ($g_{i,j}$). A tényleges és a lehetséges ügyfeleknek azonosak az elvárásaik, de a preferenciáik eltérő, ezért egy egységesen érvényes súlyszám rendszer nem alkotható. A súlyszám rendszer képezhető a tényleges és lehetséges felhasználók átlagos preferenciái alapján, vagy személyre szabottan. Az utóbbi esetben személyre szabott minőségi mutató számítható. A súlyszám rendszer értékei és az aggregált minőség (Q) értéke a 7.3.-7.7 alapján számítható.

A minőségi kategóriák (q_1, q_2, q_3, q_4) és az aggregált minőség (Q) értéke a 7.3.-7.7 alapján számítható.

$$q_i = \frac{\sum j g_j c_j}{\sum j g_j}, \forall j \in \{0,11,12,13,21,31,41\}$$

7.3

$$q_2 = \frac{\sum j g_j c_j}{\sum j g_j}, \forall j \in \{32..37,42,43\}$$

7.4

$$q_3 = \frac{\sum j g_j c_j}{\sum j g_j}, \forall j \in \{51,61\}$$

7.5

$$q_4 = \frac{\sum j g_j c_j}{\sum j g_j}, j = 44$$

7.6

$$Q = \frac{\sum j g_j c_j}{\sum j g_j}$$

7.7

A minőségi kategóriákat jellemző értékek és az aggregált minőségi mutatószám alapján összehasonlíthatók a carsharing rendszerek, ami egyaránt kedvező a potenciális felhasználók és az üzemeltetők számára. A potenciális felhasználókat az összehasonlítás alapján döntenek több szolgáltató esetén, míg az üzemeltető beazonosíthatja a szolgáltatás gyenge pontjait. Továbbá a minőség térbeli ábrázolásával azonosítható azok a területhezésre, ahol az alacsony járművagy állomássűrűség miatt alacsony a szolgáltatás minősége. Az idő függvényében változó szabad járművek eloszlásának valós idejű, dinamikus térképi ábrázolásából használati minták rajzolódnak ki. Megállapíthatók azok a területek, ahol a járművek száma alacsony. Az eredmények ismeretében a szolgáltatásfejlesztésre szoruló területeket meghatározhatók, valamint több fejlesztési lehetőség esetén sorrend állítható fel a tervek között az elérhető minőség javulás alapján.
7.2 Módszer alkalmazása

Jelenleg Európa számos országában működik carsharing szolgáltatás. A felhasználók száma meghaladja a 400 000 főt, a járművek száma pedig a 14 000 darabot. A módszert Bécs belvárosára alkalmaztam 2014-ben, ahol párhuzamosan egy round-trip és egy free-floating jellegű rendszer működött. A fő különbség, hogy a round-trip jellegű szolgáltatások esetében a járművek előre kijelölt állomásokon találhatók, és az utazás végén ugyanarra az állomásra kell visszavinni a járművet, míg a free-floating típusú rendszer esetén egy kijelölt zónán belül találhatók a járművek, és a használat végén a zónán belül bárhol ott hagyhatók a járművek.

Az értékelésnél két eltérő karakterisztikájú felhasználó elvárásait vettem figyelembe. Az egyes szempontok fontosságát a kérdőív eredményé (5. függelék) alapján képeztem. Az első felhasználó (1. eset) a saját gépjármű kiváltására használna a carsharinget, míg a második felhasználó (2. eset) elsősorban a közösségi közlekedést használja, és a carsharinget csak ritkán, kiegészítő jelleggel. A felhasználói elvárások fontossági sorrendjét a 7.5. táblázat tartalmazza.

7.5. táblázat Felhasználó elvárások fontossági sorrendje (1: legfontosabb, 9: legkevésbé fontos)

<table>
<thead>
<tr>
<th>Elvárás</th>
<th>1. eset</th>
<th>2. eset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szabadság, függetlenség</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Szabad parkolóhely</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Közösségi közlekedéssel való kapcsolat</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Megbizhatóság</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Kényelem, könnyű kezelhetőség</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Közösséghez tartozás</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Biztonság</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Környezet védelme</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Szolgáltatással kapcsolatos információ</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

A két szolgáltatáshoz tartozó \(c_j \) értékelő számokat a 7.6. táblázat tartalmazza.

7.6. táblázat A bécsi carsharing szolgáltatások értékelő számai

<table>
<thead>
<tr>
<th>(j)</th>
<th>Round-trip rendszer</th>
<th>Free-floating rendszer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jellemző tulajdonság</td>
<td>jellemző tulajdonság</td>
</tr>
<tr>
<td>0</td>
<td>Round-trip</td>
<td>Free-floating</td>
</tr>
<tr>
<td>11</td>
<td>> 50 db jármű</td>
<td>700 jármű</td>
</tr>
<tr>
<td>12</td>
<td>MIN= 1 óra, MAX>10 óra</td>
<td>2,5</td>
</tr>
<tr>
<td>13</td>
<td>0-24 működik</td>
<td>5-24 működik</td>
</tr>
<tr>
<td>21</td>
<td>Csak foglalás után vehető igénybe</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>Helyszíntől függ</td>
<td>Helyszíntől függ</td>
</tr>
<tr>
<td>32</td>
<td>Üj, esztétikus</td>
<td>Üj, esztétikus</td>
</tr>
<tr>
<td>33</td>
<td>Nincs információ</td>
<td>Nincs információ</td>
</tr>
<tr>
<td>34</td>
<td>Járműtől függ</td>
<td>P=2 fő</td>
</tr>
<tr>
<td>35</td>
<td>S>75%</td>
<td>Elsősorban szolgáltató végzi</td>
</tr>
<tr>
<td>36</td>
<td>Ph=P*n%</td>
<td>Nagyon kevés dedikált</td>
</tr>
<tr>
<td>37</td>
<td>Különféle teendő</td>
<td>Kevés teendő</td>
</tr>
<tr>
<td>41</td>
<td>Esztétikus</td>
<td>Esztétikus</td>
</tr>
<tr>
<td>42</td>
<td>Járműtől függ: 3546-4782 mm</td>
<td>1-3,7</td>
</tr>
<tr>
<td>43</td>
<td>Járműtől függ</td>
<td>4 csillagos törésteszt</td>
</tr>
<tr>
<td>44</td>
<td>Becslés</td>
<td>Becslés</td>
</tr>
<tr>
<td>51</td>
<td>Áttekinthető, egyszerű, könnyen kezelhető, gyors regisztráció</td>
<td>5</td>
</tr>
<tr>
<td>52</td>
<td>Megfelelő mennyiségű információ</td>
<td>4</td>
</tr>
<tr>
<td>61</td>
<td>Sok információ</td>
<td></td>
</tr>
</tbody>
</table>
A 7.5. és 7.6. táblázat értékei alapján számított eredményeket a 7.7. táblázat tartalmazza.

A round-trip és a free-floating típusú rendszerek minőségének különbségét a kiszolgálási minőség (q_1) és az utazási minőség (q_2) különbségei okozzák. A free-floating típusú szolgáltatás rugalmassága miatt a kiszolgálás minősége is magasabb, míg a round-trip utazási minősége elsősorban a kényelmes járművei miatt kedvezőbb.

7.7. táblázat Minőség értékelő számok kategóriánként

<table>
<thead>
<tr>
<th>Minőség</th>
<th>Round-trip</th>
<th>Free-floating</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>3,2-4,2</td>
<td>3,8-4,9</td>
</tr>
<tr>
<td>q_2</td>
<td>3,4</td>
<td>2,7</td>
</tr>
<tr>
<td>q_3</td>
<td>4,5</td>
<td>5</td>
</tr>
<tr>
<td>q_4</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>Q</td>
<td>3,3-3,9</td>
<td>3,6-4,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minőség</th>
<th>Round-trip</th>
<th>Free-floating</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>3,4-4,6</td>
<td>3,7-4,9</td>
</tr>
<tr>
<td>q_2</td>
<td>4,2</td>
<td>3,6</td>
</tr>
<tr>
<td>q_3</td>
<td>4,4</td>
<td>5</td>
</tr>
<tr>
<td>q_4</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>Q</td>
<td>3,3-3,8</td>
<td>3,4-3,9</td>
</tr>
</tbody>
</table>

A 2. esetben az utazási minőségben van jelentős javulás az 1. esethez képest mindkét carsharing szolgáltatónál. Ennek oka, hogy a 2. esetben a parkolási körülmények alacsony értékelő számához tartozó súlyszám jelentősen lecsökkent, míg a biztonság magas értékelő számához tartozó súlyszám megnőtt. A Q értékének térbeli változását a 7.3. ábra szemlélteti. A minőség időbeli változását nem vizsgáltam az utazások időbeliségére vonatkozó adatok hiányában.

![7.3. ábra](image-url) A Q értékének térbeli változása Bécs, Neubau városrészében, a két carsharing szolgáltató esetében eltérő felhasználói preferenciák mellett
A round-trip típusú rendszer esetén az állomás és szabad járműsűrűségtől eltekintve, a szolgáltatás gyenge pontjai: a szolgáltatás típusa (c_0, 1 pont), a CO$_2$ kibocsátás (c_{44}, 1,5 pont) és a parkolás körülményei (c_{36}, 2 pont). A súlyszámok figyelembevételével az 1. esetben a dedikált parkolóhelyek létesítésével, a 2. esetben a járművek CO$_2$ kibocsátásának csökkentésével növelhető leginkább a szolgáltatás minősége. Ez utóbbi cél elérése az elektromos járművek alkalmazásával jelentősen elősegíthető.

A free-floating rendszer gyenge pontjai a kevés dedikált parkolóhely (c_{16}, 1 pont), a CO$_2$ kibocsátás (c_{44}, 2 pont) és a férőhelykínálat (c_{34}, 3 pont). Figyelembe véve a súlyszámokat, ebben az esetben is a parkolóhelyek létesítésével és a járművek CO$_2$ kibocsátásának csökkentésével növelhető leginkább a szolgáltatás minősége. Azonban az utazási minőség jelentősen nőne, ha a flottát nem kizárólag kétszemélyes autók alkotnák.

Összefoglalva, a kidolgozott minőség értékelő módszer egyaránt hasznos a potenciális felhasználók és az üzemeltetők döntéseinek. A módszer alkalmazásával megállapítottuk, hogy a felhasználók számára a legfontosabb jellemzők a megbízható rendelkezésre állás és a parkolási lehetőségek. A carsharing rendszereket elsősorban sűrűn lakott, jó közösségi közlekedéssel rendelkező területek érdemes bevezetni.

A carsharing szolgáltatásban üzemeltetett elektromos autók csökkentik az új technológiától való félelmet, használatukkal több potenciális járművásárló szerez tapasztalatot, és emiatt várhatóan egyre több privát elektromos személygépkocsi vásárolnak. Ezzel párhuzamosan jelentősen megnő a villamos hálózat terhelése is, ami töltés menedzsment módszerekkel kezelhető hatékonyan.

A téma területéhez kapcsolódó tézisemet a következőképp fogalmaztam meg:

Kidolgoztam a carsharing szolgáltatások elemzésére és minőségértékelésére alkalmas módszert. Meghatároztam a felhasználói elvárások és szolgáltatás jellemzők közötti kapcsolatot, ami alapján személyre szabott értékelés végezhető. Az alkalmazás alapján megállapítottam, hogy a módszer az utazói és az üzemeltetői döntéseknél is jól használható részereedményeket szolgáltat.

Kapcsolódó saját publikációk:

(Csonka és Csiszár, 2015a), (Csonka és Csiszár, 2015b), (Csonka és Csiszár, 2016a), (Csonka és Csiszár 2016c)
8 Töltési költség minimalizáló módszer

A jövőben várhatóan nagyszámú jelennek meg a villamos hálózatról tölthető járművek. Az elektromos járművek által okozott villamos energia igény kezelésére többféle újszerű módszer vezethető be. Az elektromos jármű a villamos hálózat szempontjából egy energia tároló, amivel a terhelés ingadozás csökkenthető.

Ezért kidolgoztam egy decentralizált töltés optimalizáló módszert az integrált információs rendszerhez. A módszer egy töltési tervet határoz meg felhasználói optimumra törekedve. A töltési terv tartalmazza, hogy az utazás során érintett töltőállomásokon mennyi ideig érdemes tölteni úgy, hogy a töltési költség a lehető legkisebb legyen és elegendő hatótáv maradjon a következő utazáshoz. A töltési idő a töltési tervben nem haladhatja meg azt az időt, amit a jármű a töltési folyamattól függetlenül ír elő a töltésekre. Így a mobilitási igények változtatása nélkül csökkenthető a töltési költség, valamint a villamos hálózat terhelése. Bár a kidolgozott módszer működésének nem alapfeltétele a Smart Grid hálózat, mégis a bemenő adatok köre miatt érdemes azt Smart Grid hálózaton megvalósítani. Ellenkező esetben a felhasználónak szükséges megadnia az elektromos hálózatra vonatkozó adatokat is.

A fejezetben használt rövidítéseket a 8.1. táblázatban foglaltam össze.

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>villamos áram tarifa, amit a töltéskor fizet a felhasználó</td>
</tr>
<tr>
<td>$C_{p_{min}}$</td>
<td>változó díjtétel esetén a legkisebb villamos áram tarifa, amit a töltéskor fizethet a felhasználó</td>
</tr>
<tr>
<td>$C_{p_{max}}$</td>
<td>változó díjtétel esetén a legnagyobb villamos áram tarifa, amit a töltéskor fizethet a felhasználó</td>
</tr>
<tr>
<td>C_s</td>
<td>villamos áram tarifa, amit a visszatápláláskor kap a felhasználó</td>
</tr>
<tr>
<td>t_{start}</td>
<td>potenciális töltési időintervallum kezdete</td>
</tr>
<tr>
<td>t_{end}</td>
<td>potenciális töltési időintervallum vége</td>
</tr>
<tr>
<td>R_C</td>
<td>pillanatnyi hatótáv</td>
</tr>
<tr>
<td>R_e</td>
<td>utazás becsült hatótávja</td>
</tr>
<tr>
<td>R_{min}</td>
<td>minimum hatótáv</td>
</tr>
</tbody>
</table>

8.1 Módszer

A módszer kidolgozásakor a következő feltevések ből indultam ki:

- A jármű tudja szüneteltetni a töltési folyamatot, és tud váltni a töltés és a visszatáplálás között.
- A töltési költség csak a töltött energiamennyiségtől és a villamos energia tarifától függ.
- A villamos energia tarifa a várakozóhely közelében térben állandó.
- A felhasználó a járműben tárolt energiamennyiséget eladhatja a villamos hálózat üzemeltető számára.
- A villamos energia tarifa mértéke egy napon belül változik, de a változás mértéke előre ismert. Ha a villamos tarifa nem ismert előre, a minimum töltési költség nem érhető el.
A villamos energia tarifát azért tekintem térben állandónak a várakozóhely közelében, mert így nem szükséges vizsgálni a felhasználó célállomásának közelében található elérhető töltőállomások tarifáit, és így valóban optimális megoldás érhető el a töltésoptimalizálással. A valóságban a tarifa nem feltétlenül állandó térben. Ennek a feltevésnek az elhagyása a módszer egy lehetséges továbbfejlesztési iránya a jövőben.

Meghatároztam a minimalizáláshoz szükséges bemenő adatok körét, amit a 8.1. ábra mutat be.

8.1. ábra Töltési költség minimalizáló módszer bemeneti adatai és kimenete

A felhasználó az igény oldal adatait adja meg. A legfontosabb igény oldali adatok: A jármű mettől meddig fog parkolni olyan helyszínen, ahol töltőállomás található. Ezeket az időintervallumot határozzák meg a t_{start} és t_{end} paraméterek.

• Mekkora távolságot szeretne megtenni a felhasználó két töltés között. A becsült utazás hosszát az R_e paraméter beállításával adja meg a felhasználó. Minden t_{end} időponthoz tartozik egy R_e érték.

• Mekkora hatótáv tartalékot szeretne a felhasználó. Ezt az R_{min} paraméter beállításával állíthatja be a felhasználó. R_{min} értékére vonatkozó feltételnek a töltési terv minden időpontjában teljesülnie kell. Vagyis a töltőállomáshoz érkezéskor, és a visszatáplálás közben sem mehet a hatótáv értéke R_{min} értéke alá.

A kínálat oldal bemenő adatait a villamos hálózat üzemeltetője adja meg. A bemenő adatok az eljárás paraméterei. A célfűggyvény a töltési költség minimalizálása.

A töltési tervre a következő korlátozó feltételeknek kell teljesülnie:

• Csak t_{start} és t_{end} időpontok között tölthet a jármű.
A hatótáv értéke nem lehet kisebb, mint R_{min}.

t_{end} időpontban a hatótáv értéke legalább $R_{\text{min}} + R_{e}$.

Az akkumulátor kapacitásnál nagyobb energiamennyiséget nem tárolhat a jármű.

A módszer lépéseit, amennyiben a szükséges bemenő adatok rendelkezésére állnak, a 8.2. ábra mutatja be.

8.2. ábra Töltési költség minimalizáló módszer folyamatábrája
A töltési költség minimalizáló módszer lépsei a következők:

1. **Potenciális töltési időintervallumok meghatározása**: a módszer kizárja azokat az időpontokat, amelyek a \(t_{\text{start}} \) és \(t_{\text{end}} \) időpontokon kívül esnek, vagyis amikor a jármű mozgásban van, vagy nem töltőállomás közelében parkol. Ami \(t_{\text{start}} \) és \(t_{\text{end}} \) közé esik, az a potenciális töltési időintervallum.

2. **Energia ekvivalens intervallumok meghatározása**: a potenciális töltési időintervallumok felosztása úgy, hogy az adott rész intervallumban a tölthető energiamennyisége azonos legyen. Az időintervallum hossza függ a töltési teljesítménytől. A nagy teljesítményű töltőpontok esetén az intervallum rövidebb, alacsony teljesítményű töltőpontoknál hosszabb.

Az 1. és 2. lépésben végrehajtott folyamatot a 8.3. ábrán mutatom be.

3. **Hatótáv kritérium ellenőrzése**: a hatótáv kritérium ellenőrzés a legkorábbi időponttal kezdődik. Ha a becsült pillanatnyi hatótáv alacsonyabb, mint az elvárt, akkor a 4. lépés következik. Ha a becsült hatótáv minden pontban megfelel a követelményeknek, a 4. lépés kihagyható.

4. **Energia ekvivalens intervallum hozzáadása a töltési tervhez**: a hatótáv kritériumhoz tartozó időpontot megelőző energia ekvivalens intervallumok közül a módszer a legalacsonyabb költségtől hozzáadja a töltési tervhez. Ha több intervallumnak megegyezik a költsége, akkor a legkorábbit adja a töltési tervhez. Így a hatótáv

![8.3. ábra Töltési költség minimalizáló módszer 1. és 2. lépése](image-url)
követelmény akkor is teljesülhet, ha a felhasználó a tervezettnel hamarabb elindul a járművével. Az intervallumnak a töltési tervhez hozzáadását követően, ismételten a 3. lépés következik.

A 3. és 4. lépésben végrehajtott iterációs folyamatot a 8.4. ábrán mutatom be.

8.4. ábra Töltési költség minimalizáló módszer 3. és 4. lépese iterációval

A 8.4. ábrán szereplő példában a becsült hatótáv először a $t_{end,1}$ időpontban kerül ellenőrzésre. Ebben az időpontban az elvárt hatótáv $R_{e,1} + R_{min}$, ugyanis így a következő töltőállomáshoz érkezéskor ($t_{start,2}$) sem csökkent a hatótáv R_{min} értéke alá. Mivel a becsült hatótáv alacsonyabb, mint $R_{e,1} + R_{min}$, ezért egy energia ekvivalens intervallumot ad a töltési tervhez a módszer. A 3. lépést addig kell megismételni, amíg a hatótáv kritérium nem teljesül. A példában két használt meg a következő időpont, ahol a hatótáv kritérium ellenőrzésre kerül, a $t_{end,2}$ időpont. A hatótáv kritérium $R_{e,2} + R_{min}$. A kritérium teljesítése végett újabb energia ekvivalens intervallum adódik a töltési tervhez. Mivel egy intervallum hozzáadása nem elégéges, ezért további kettő, azaz összesen újabb három intervallum adódik a töltési tervhez. Az utoljára megismételt 3. lépésben a becsült hatótáv megfelel az összes hatótáv kritériumnak,
az optimalizálás véget ér. Ha a visszatáplálás nem megengedett, az eljáráscél és a töltési terv elkeszült.

Ha a visszatáplálás megengedett, akkor a költség minimalizálás az 5. lépéssel folytatódik. A visszatáplálás optimalizálása a potenciális töltési intervallum szabad energia ekvivalens intervallumaira elvégezhető. Ehhez feltételeztem, hogy a villamos energia vételi ára (C_p) egy adott időpillanatban mindig magasabb, mint az eladási ár (C_s) (elektromos jármű használó szemszögéből). A visszatáplálás optimalizálás lépései a következők:

5. **Bevétel számítása energia ekvivalens intervallumonként**: a módszer meghatározza, hogy egy energia ekvivalens intervallumban a visszatáplálással mennyire bevételre tesz szert a felhasználó.

6. **Visszatáplálás gazdaságosságának ellenőrzése**: ha van olyan energia ekvivalens intervallum, ahol a töltési költség kisebb, mint egy utána következő intervallumban a visszatáplálásból származó bevétel, akkor a 7. lépés következik. Ellenkező esetben az optimalizálás véget ér, mert nem lehetséges visszatáplálással csökkenteni a töltési költséget.

7. **Töltés-visszatáplálás energia ekvivalens pár keresése és hozzáadása a töltési tervhez**: a feltételnek megfelelt intervallumok közül annak az energia ekvivalens intervallumnak a kiválasztása, ahol a töltési költség a legkisebb. Az intervallumot követő időpontban energia ekvivalens intervallum kiválasztása, ahol a visszatáplálásból származó bevétel a legnagyobb. Visszatérés a 6. lépéshez.

A visszatáplálás optimalizálását a 8.5. ábra mutatja be.
8.2 Módszer alkalmazása

A módszer használhatóságának és a változó díjtételnek a töltési költségre gyakorolt hatásának a bemutatásához elvégztem egy szimulációt. Azonos mobilitási igényt feltételezve, többféle töltési stratégiát szimuláltam, és azokat a teljes töltési költség alapján hasonlítottam össze.

A szimuláció során egy 50 kWh akkumulátort kapacitású járművet feltételeztem, ami mindig csatlakoztatva van a villamos hálózathoz, mikor nincs mozgásban. A jármű energiafogyasztását leegyszerűsítve vettem figyelembe: 7,5 kWh/h mozgás közben. A töltési- és visszatáplálási teljesítmény 3,6 kW volt. A modellezett időszak kezdetekor a töltöttségi szint 5% volt.

Változó díjtételt feltételeztem, ami követi az egy napon belüli terhelés ingadozását az elektramos hálózaton. A véletli (C_p) és eladási (C_s) ár 20 percenként változhat. Az elektramos hálózat terhelés változásának a modellezéséhez az Egyesült Királyságban mért értéket vettem alapul (ESO 2017). A villamos energia tarifát a terhelés függvényében határoztam meg: amikor a terhelés a legkisebb, az eladási ár a legalacsonyabb ($C_{s\text{min}}$), amikor a terhelés a legnagyobb, az eladási ár a legmagasabb ($C_{s\text{max}}$). A két érték között az eladási árat lineáris interpolációval számoltam. A szimulációhoz használt változó díjtételt a 8.6. ábra mutatja be $C_{p\text{max}} / C_{p\text{min}} = 1.5$ esetén.

8.5. ábra Visszatáplálás optimalizálás
Kétféle mobilitási igény határoztam meg, amivel a rendszeres töltési igényt és a hosszútávú utazást megelőző időszakot szimuláltam:

- rendszeres töltési igény: 24 órás periódust vizsgáltam rövidtávú utazásokat feltételezve.
- hosszútávú utazás előtt: magas hatótáv követelményt feltételeztem a vizsgált időszak végén.

A két eltérő mobilitási igény jellemzőit a 8.2. és 8.3. táblázat írja le. Mobilitási igénytől függetlenül a következő töltési stratégiákat vizsgáltam:

- folyamatos töltés: a jármű mindig töltődik, ha csatlakoztatva van és az akkumulátor töltöttsége kisebb, mint 100%.
- éjszakai töltés: a jármű csak éjszaka, otthon töltődik, mivel az otthoni tartózkodási idő részben megegyezik a völgyidőszakkal.
- töltés és visszatáplálás optimalizálás: töltési terv optimalizálás töltési költség minimalizálással, töltés és visszatáplálás is engedélyezett. Vagyis az eljárás a 7. lépés után véget ér.
8.2. táblázat Mobilitási igény jellemzők, rendszeres töltési igény

<table>
<thead>
<tr>
<th>Időpont</th>
<th>Jármű helyzete</th>
<th>Hatótáv követelmény a töltés végén (töltöttségi szint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:40-7:20</td>
<td>Otthon</td>
<td>25%</td>
</tr>
<tr>
<td>7:20-8:20</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
<tr>
<td>8:20-17:00</td>
<td>Nem otthon</td>
<td>20%</td>
</tr>
<tr>
<td>17:00-17:40</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
<tr>
<td>17:40-19:40</td>
<td>Nem otthon</td>
<td>30%</td>
</tr>
<tr>
<td>19:40-20:40</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
</tbody>
</table>

8.3. táblázat Mobilitási igény jellemzők, hosszútávú utazás előtt

<table>
<thead>
<tr>
<th>Dátum</th>
<th>Időpont</th>
<th>Jármű helyzete</th>
<th>Hatótáv követelmény a töltés végén (töltöttségi szint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n+1. nap</td>
<td>0:00-7:20</td>
<td>Otthon</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>7:20-8:20</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8:20-17:00</td>
<td>nem otthon</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>17:00-17:40</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17:40-19:40</td>
<td>Nem otthon</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>19:40-20:40</td>
<td>Mozgásban</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20:40-0:00</td>
<td>Otthon</td>
<td>-</td>
</tr>
</tbody>
</table>

A szimulált töltési stratégiákkal érzékenység vizsgálatot végeztem, hogy megvizsgáljam az eladási és a vételi ár közötti különbség, a maximum és minimum eladási ár közötti különbség, valamint a hatótáv kritérium megadás időpontjának a teljes töltési költségre kifejtett hatását. Az érzékenység vizsgálatot 3 részre bontottam, melyek a következők:

I. $\frac{C_{p}^{\text{max}}}{C_{p}^{\text{min}}}$ értéke, vagyis a változó díjtétel szélsőértékei közötti különbség változik.
 Hipotézis: a töltés optimalizálást tartalmazó stratégiák és a többi töltési stratégia közötti különbség a teljes töltési költség értelmében nőni fog, ha $\frac{C_{p}^{\text{max}}}{C_{p}^{\text{min}}}$ értéke nő.

II. C_{i}/C_{p} értéke, vagyis az eladási és vételi ár aránya változik. Hipotézisek: a töltés optimalizálást tartalmazó stratégiák és a többi töltési stratégia közötti különbség a teljes töltési költség értelmében nőni fog, ha C_{i}/C_{p} értéke csökken. Függetlenül attól, hogy a visszatáplálás megengedett, vagy sem, a töltés optimalizálást tartalmazó stratégiák közötti különbség elhanyagolható, ha C_{i}/C_{p} hányadosa közel 1.

III. Az előzetes igénybejelentés időpontja változik. Hipotézis: minél korábbi az előzetes igénybejelentés, annál nagyobb mértékű a töltési költség megtakarítás töltés optimalizálást tartalmazó stratégia alkalmazásával.
I. érzékenység vizsgálat: $\frac{C_p^{\text{max}}}{C_p^{\text{min}}}$ értéke változik

Először a $\frac{C_p^{\text{max}}}{C_p^{\text{min}}}$ és a teljes töltési költség közötti kapcsolatot vizsgáltam meg (8.7. ábra). A vizsgálatot a rendszeres töltési igényre végeztem el. A vizsgálatban a többi paraméter konstans volt.

![8.7. ábra Teljes töltési költség $C_p^{\text{max}} / C_p^{\text{min}}$ függvényében rendszeres töltési igény esetén](image)

Megállapítottam, hogy a töltés optimalizálással elérő töltési költség minden esetben alacsonyabb, mint a gépi optimalizálást nélkülőző másik két töltési stratégia esetén. Az éjszakai töltés és csak töltés optimalizálás stratégiákhoz tartozó teljes költség értékek között a különbség nem jelentős, de utóbbi kevésbé érzékeny a $\frac{C_p^{\text{max}}}{C_p^{\text{min}}}$ változására. Ennek oka, hogy csak töltés optimalizálás esetén a töltés intervallumok teljes mértékben lefedik a völgyidőszakot, míg az éjszakai töltés stratégia esetén elsősorban a kora esti időszakot fedik le. Mivel a völgyidőszakban a töltési költség kevésbé érzékeny a $\frac{C_p^{\text{max}}}{C_p^{\text{min}}}$ változására, ezért összességében a csak töltés optimalizálás stratégia is kevésbé érzékeny. Jelentős különbség, hogy visszatáplálás optimalizálást tartalmazó töltési stratégia esetén a teljes töltési költség csökken, ahogy nő a $\frac{C_p^{\text{max}}}{C_p^{\text{min}}}$ hányados értéke. Ennek oka, hogy a visszatáplálásból származó bevétel gyorsabb ütemben nő, mint a töltési költség. Végül megállapítottam, hogy a mindig töltés stratégia a legkevésbé kedvező a felhasználó számára.

II. érzékenység vizsgálat: C_s / C_p értéke változik

Következő lépésben a C_s / C_p és a teljes töltési költség kapcsolatát vizsgáltam meg (8.8. ábra). A vizsgálatot a rendszeres töltési igényre végeztem el. A vizsgálatban a többi paraméter konstans volt.
A csak töltés optimalizálás és a töltés és visszatáplálás optimalizálás stratégia közötti különbség eltűnik, ha C_s/C_p értéke alacsony. Jelen esetben, ha $C_s/C_p \leq 0.7$ (8.7. és 8.8. ábra alapján).

Ennek oka, hogy ahogy csökken C_s/C_p értéke, úgy egyre kevesebb intervallumban éri meg a visszatáplálás. Ebből következik, hogy a visszatáplálás ösztönzéséhez magas C_s/C_p javasolt. Ezért az elektromos hálózat szempontjából a nagyteljesítményű töltőberendezések a kedvezők, amivel növelni lehet az egységnyi idő alatt átvitt energiamennyiséget. Továbbá otthon, éjszakai töltés során is előnyös a nagy teljesítményű töltő, amivel hatékonyan csökkenthető az éjszakai völgyidőszak és a nappali hálózati terhelés közötti különbség. Ugyanakkor, az akkumulátor élettartamának szempontjából az éjszakai lassú töltés a kedvező.

III. érzékenység vizsgálat: az előzetes igénybejelentés időpontja változik

Végezetül megvizsgáltam, hogy a minél korábbi előzetes igénybejelentés hogyan befolyásolja a teljes töltési költséget (8.9. ábra). A vizsgálatot a hosszútávú utazás előtti töltési igényre végeztem el. A vizsgálatban a többi paraméter konstans volt.

A töltés optimalizálást tartalmazó töltési stratégiák minden esetben jobban teljesítenek a többi töltési stratégiánál, és a különbség enyhén nő minél előbb jelenti be a felhasználó a töltési igényt. Megfigyelhető, hogy töltésmedzsentmentel a fajlagos töltési költség csökken, aminek oka, hogy a minél korábbi igénybejelentés egyre nagyobb szabadságot ad az optimalizálás során, így egyre jobb megoldásokat talál a módszer. Az éjszakai töltés fajlagos töltési költsége enyhén nő. Ennek oka, hogy a jármű az első éjszaka teljesen feltöltődik, a töltési időszak teljes mértékben lefedi a völgyidőszakot. Minden további éjjel a jármű rövidebb ideig töltődik az alacsony napközbeni energiafogyasztás miatt, így a töltés a drágább kora esti időszakban történik. Ugyanez a jelenség figyelhető meg a folyamatos töltés stratégia esetén is. A fajlagos töltési költség határértéke a végtelenben megegyezik a napi rutin esetén számított fajlagos költséggel, ugyanis ilyenkor elhanyagolható az időszak végén jelentkező extra töltési igény hatása.
Az eredmények alapján megállapítottam, hogy a töltési költség minimalizáló módszerrel mindegyik vizsgált töltési stratégia esetén csökkenthető a teljes töltési költség. A költségesökkentés mértéke jelentősen függ a változó díjtételtől és az előzetes igénybejelentés időpontjától. A szimuláció alapján a legfontosabb megállapítások:

- Ha $C_{p_{\max}} / C_{p_{\min}}$ és C_s / C_p magas (1,7 és 0,95), akkor a teljes töltési költség 12% és 41%-kal csökkenthető az éjszakai töltéshez képest, napi rendszeres töltési igény esetén, attól függően, hogy a visszatáplálás megengedett-e.
- A korai előzetes igénybejelentés (137 órával korábban) jelentősen csökkenti a fajlagos töltési költséget (5,3-8,7%).

Összefoglalva, az általam kidolgozott decentralizált töltési költség minimalizáló módszerrel 5,3-41%-kal csökkenthető a töltési költség a mobilitási igénytől függően és változó díjtételt feltételezve. Mivel a változó díjtétel tarifáján keresztül a villamos hálózat üzemeltető érdekei is érvényesülnek, az elektromos járművek széleskörű elterjedése esetén a töltés optimalizálás egyaránt kedvez a jármű és a villamos hálózat üzemeltető számára.

Mindezek alapján a téma területéhez kapcsolódó tézisem a következőképp fogalmaztam meg:

Elektromos járműhasználatot támogató decentralizált töltési költség minimalizáló módszert dolgoztam ki, amely támogatja a kétirányú energiaáramot. A felhasználó közlekedési szokásait figyelembe véve modelleztem a töltési igényt. Bemutattam, hogy a módszer alkalmazásával milyen mértékben csökkenthetők a töltési költségek.

Kapcsolódó saját publikációk:

(Csiszár et al., 2017), (Csonka és Csiszár, 2018), (Csizsár et al., 2019b), (Csonka és Csiszár, 2019b), (Csonka és Földes, 2019)
9 Új tudományos eredmények összefoglalása – tézisek

A fejezetben a kutatásm új tudományos eredményeit tézisekben foglalom össze. Összefoglalom továbbá a kutatási eredmények elméleti jelentőségét, gyakorlati hasznát és oktatási alkalmazhatóságát, valamint kutatásm tervezett folytatásának irányait.

9.1 Tézisek

1. Tézis: Integrált információs rendszer

Kidolgoztam az elektromobilitást támogató integrált információs rendszer szerkezeti és működési modelljeit. A legfontosabb információkezelési funkciókat az elektromos jármű negatív jellemzőiből vezettem le. Modelleztem a szükséges adatbázist.

A hagyományos járműtől eltérő üzemeltetési jellemzőkkel bíró elektromos járművek újszerű döntési helyzeteket idéznek elő a felhasználók számára. A tapasztalat hiánya miatt jelentősen megmúlik az az igény az értékmagyarító információs szolgáltatások iránt, amelyekkel jelentősen csökkenthető a technológiai látogatások számának való idegenkedés is.

A meghatározott újszerű funkciókkal valamennyi használati fázis lefedhető. A funkciókat alfunkciókra bontottuk, majd meghatároztuk a működéshez szükséges adatcsoportokat, és az adatok forrását. Modelleztem az információs rendszer szerkezetét (T.1. ábra) és működési folyamatát a funkciókhoz rendelve.

![T.1. ábra Az integrált információs rendszer szerkezete](image-url)
A szerkezeti és a működési modellek alapján megállapítottam, hogy az információs rendszerben jelentős a dinamikus információk aránya, amelyek elsősorban a járműtől és az utazótól származnak. A tézis igazolását a 4. fejezet tartalmazza.

Tézishez kapcsolódó saját publikációk:
(Csonka és Csiszár, 2016b), (Csiszár et al., 2019b), (Csonka és Csiszár, 2019b), (Csonka és Földes, 2019)

2. Tézis: Országos átjárhatóságot biztosító elektromos villámtöltő-állomások helyszínének értékelése és kiválasztása

Kidolgoztam az inter-city töltési igények kiszolgálására alkalmaz villámtöltő-állomás helyszíneket értékelő és kiválasztó módszert. A töltőállomások lehetséges helyszínei a meglévő pihenőhelyek, amelyek értékeléséhez súlyozott összeg modellt dolgoztam ki.

Az elektromos járművek elterjedésének alapján alapfeltétele az országos átjárhatóságot biztosító publikus töltőállomás-hálózat az autópályák és az országútak mentén. A töltőállomások helyszíne különösen a kezdeti fázisban jelentősek, amikor az állomások többsége még nem üzemeltethető tisztán piaci alapján.

A módszer lényege, hogy a lehetséges helyszíneket az ún. töltőtelepítési potenciál (Installation Potential=IP) alapján értékel. Az értékelés újszerűsége, hogy nem használja a gyakran nem hozzáférhető honnan-hová járműmúozgás adatokat. Ehelyett a forgalomnagyság, a közlekedési alapot, az elérhetőség és a legközelebbi egységek elfogadott határa alapján történik az értékelés. Az IP számításának a menetét a T.1 és T.2 egyenletek mutatják be. Bár elsősorban közlekedési szempontokat vettem figyelembe, feltételeztem, hogy a magas forgalmat tartalmazó helyszíneken és a töltőállomás telepítéséhez tartozó villamos hálózat kapacitás bővítésének költsége alacsonyabb, így közvetett módon a villamos hálózat szempontjából is értékeltem a helyszíneket.

\[
IP_j = a_{x_1j} + a_{x_2j} + a_{x_3j} + x_{4j} \tag{T.1}
\]

\[
x_{4j} = \begin{cases}
-5 \cdot \left(1 - \frac{d_j^3}{\alpha^3}\right), & \text{if } d_j \leq \alpha \\
4, & \text{if } \alpha < d_j \leq \beta \\
0, & \text{if } d_j > \beta
\end{cases} \tag{T.2}
\]

Ahol:

- \(j\): helyszín azonosítója,
- \(IP_j\): a \(j\)-helyszínre számított töltőtelepítési potenciál,
- \(x_{1j}\): forgalomnagyság értékelő szám,
- \(x_{2j}\): közeli települések teljes lakosságszámát értékelő szám,
- \(x_{3j}\): szolgáltatások értékelő száma,
3. tézis: Városi elektromos töltőállomások helyszínének kijelölése

A városi és a környéki utazásokhoz tartozó töltési igényekhez kidolgoztam a publikus töltőállomások helyszínét kijelölő módszert. A módszer makró- és mezo szintű multikritériumos értékelésen alapul. Makrószinten az elektromos járműhasználatot értékeltem a járművek száma, a jövedelem nagysága és a vendég forgalom jelentősége alapján. Mezo szinten a parkolási szokásokat értékeltem a gya-krán látogatott helyszínek, a lakosságszám és a beépítettség alapján.

Kétszintű értékelésen alapuló töltőállomás helyszín kijelölő módszert dolgoztam ki, aminek az újdonsága a makrószintű vizsgálat és a helyszintípusoknak a parkolási idő szerinti értékelése. Makrószinten a helyi és a vendég forgalomból származó töltési igényt befolyásoló jellemzők alapján értékelem és hasonlítom össze a területegységeket (Magyarországon a járásokat) és határozom meg a telepítendő töltőállomások számát a T.3 egyenlet szerint.

\[
IP_i = a_1 \cdot \frac{5}{2} \left(\frac{x_{1,i}}{\max(x_1)} + \frac{x_{2,i}}{\max(x_2)} \right) + a_2 \cdot x_{3,i}
\]

Ahol:
- \(IP_i \) i területegység töltőtelepítési potenciálja,
- \(x_{1,i} \) regisztrált elektromos személygépjárművek száma az i területi egységben,
- \(x_{2,i} \) átlagos éves jövedelem személyenként az i területi egységben,
max(...) legmagasabb értékű területi egységnél a változó értéke,

\[x_{3,i} \] turizmus fontosságát minősítő érték az \(i \) területi egységben, értéke 0 és 5 között lehet,

\[a_1, a_2 \] változók súlya. \(a_1 + a_2 = 1 \), \(a_1 \geq 0 \) és \(a_2 \geq 0 \)

\[
Y = b_1 \cdot \frac{5 \cdot \sum d}{\text{max} \left(\sum d \right)} + b_2 \cdot \left[r + \frac{5 \cdot p}{\text{max}(p)} \right]
\]

Ahol:

\(Y \) a hatszögben jelentkező töltési igény,

\(\sum d \) forgalomvonzó helyszíntípusokon jelentkező összesített töltési igény [perc/nap],

\(r \) lakóterület kategória [-],

\(p \) hatszög lakosságszáma [fő],

\(\text{max}(...) \) legmagasabb értékű változó a hatszög területegységek közül,

\(b_1, b_2 \) töltéstípusok súlya, \(b_1 + b_2 = 1 \), \(b_1 \geq 0 \) és \(b_2 \geq 0 \).

Mezo szinten a töltőállomás hatszögének a kijelölésekor \(Y \) jellemző mellett figyelembe vettem a:

- már meglévő töltőállomásoktól mért távolságot,
- a parkolóhelyek számát, és a
- gyaloglási hajlandóságot.

Tézishez kapcsolódó saját publikációk:

(Csonka és Császár, 2017a), (Csonka és Császár, 2017b), (Császár et al., 2019a), (Császár et al., 2019b), (Csonka és Földes, 2019), (Császár et al., 2019)

4. tézis: Carsharing szolgáltatások minőségének értékelése

Kidolgoztam a carsharing szolgáltatások elemzésére és minőségeértékelésére alkalmas módszert. Meghatároztam a felhasználói elvárások és szolgáltatás jellemzők közötti
A hagyományos közösségi közlekedés minőségértékelésére vonatkozó irányelveket adaptálva egy súlyozott összeg modellt dolgoztam ki a carsharing szolgáltatások értékeléséhez. A módszer bevezetése és alkalmazása a carsharing rendszerek sikerességét főkozza, ami elősegíti az elektromos járműhasználat arányának további növelését. Azonosítottam a minőségét befolyásoló ismérveket. Az ismérvekhez értékelő számokat rendeltem a felhasználói elvárások alapján.

Mivel a carsharing a jellemzői alapján a hagyományos közösségi közlekedés és az egyéni gépjárműhasználat között helyezkedik el, ezért a felhasználói elvárásokat a két közlekedési móddal szembeni elvárásokból vezettem le. Kérdőíves kutatást végeztem, ami alapján meghatároztam a felhasználói elvárások és a minőséget befolyásoló jellemzők közötti kapcsolat erősségét. A T.1. táblázat értékei azt mutatják, hogy egy felhasználói elvárást (oszlopfejléc) milyen mértékben (%) szolgál ki egy adott jellemző (sorfejléc). A súlyszámok a kapcsolat erősségére vonatkozó és a személyes elvárásokra adott preferencia pontszámokból vezethetők le, és így személyre szabott módon értékelhetők a szolgáltatások.

T.1. táblázat A minőségi ismérvek (c_i) és a felhasználói elvárások (i) közötti kapcsolati mátrix ($r_{i,j}$)

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
<th>e_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>Szolgáltatás típusa</td>
<td>18,8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_1</td>
<td>Legközelebbi szabad jármű átl. távolsága</td>
<td>10,7</td>
<td>34,5</td>
<td>25,7</td>
<td>14,1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_2</td>
<td>Min. és max. használati időtartam</td>
<td>24,7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_3</td>
<td>Üzemidő</td>
<td>18,1</td>
<td>34,6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_4</td>
<td>Lefoglalhatóság, rugalmasság</td>
<td>27,7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_5</td>
<td>Járművek megközelíthetősége</td>
<td>65,5</td>
<td>6,4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_6</td>
<td>Jármű megjelenése</td>
<td>17,8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_7</td>
<td>Jármű vezethetősége</td>
<td>39,7</td>
<td>7,2</td>
<td>30,1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_8</td>
<td>Férőhelyhatóság, csomagtér</td>
<td>15,4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_9</td>
<td>Energiával történő feltöltés körülményei</td>
<td>11,2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{10}</td>
<td>Parkolás körülményei</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{11}</td>
<td>Egyéb teendők szükségessége</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{12}</td>
<td>Jármű külső megjelenése</td>
<td>5,1</td>
<td>100</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{13}</td>
<td>Jármű külső mérete</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{14}</td>
<td>Jármű biztonság</td>
<td>69,9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{15}</td>
<td>CO₂ kibocsátás</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{16}</td>
<td>Rendszer kezelhetősége</td>
<td>14,8</td>
<td>31,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_{17}</td>
<td>Információs rendszer</td>
<td>68,9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Kapcsolatok száma [db] 5 1 2 3 9 1 2 1 2 26
A módszer alkalmazása alapján megállapítottam, hogy az értékelő eljárás hatékonyan támogatja a felhasználói és utazói döntéshozatalat is, mert egyértelműen azonosíthatók a szolgáltatások közötti különbségek és azok gyengeségei. Így több szolgáltató esetén a felhasználó a számára kedvezőbbet választhatja, míg az üzemeltető tudja azonosítani a szolgáltatás fejlesztésének a főkuszpontjait. A tézis igazolását a 7. fejezet tartalmazza.

Tézishez kapcsolódó saját publikációk:

(Csonka és Csiszár, 2015a), (Csonka és Csiszár, 2015b), (Csonka és Csizsár, 2016a),
(Csonka és Csizsár 2016c)

5. tézis: Töltési költség minimalizálása

Elektromos járműhasználatot támogató decentralizált töltés optimalizáló módszert dolgoztam ki, amely támogatja a kétirányú energiaáramot. A felhasználó közlekedési szokásait figyelembe véve modelleztem a töltési igényt. Bemutattam, hogy a módszer alkalmazásával milyen mértékben csökkenthetők a töltési költségek.

Előre ismert tarifájú, változó díjtételt feltételeztem a villamos hálózaton, és kidolgoztam a töltési költség minimalizáló módszert, ami a töltési folyamatot optimalizálja időben. A módszer működését a bemenő és kimenő adatokra fókuszálva a T.2. ábra mutatja be. A töltés optimalizáló eljárás a keresleti és a kínálati oldal jellemzőit figyelembe véve úgy határozza meg a töltés és az energia visszatáplálás időszakait, hogy a töltési költség a legalacsonyabb legyen. A kiválasztott töltési és visszatáplálási időszakok együttese alkotja a személyre szabott töltési tervet.

Energia ekvivalens egységekre osztottam azokat az időintervallumokat, amikor a jármű egy töltőberendezéshez csatlakoztatva van (felhasználó adja meg). Az energia ekvivalens
egységekben a tölthető energia mennyisége azonos. A töltés optimalizáló eljárás során mohó algoritmussal választottam ki a töltés végén jelentkező hatótáv igényhez szükséges energia egységeket abban az időszakban, amikor a villamos hálózati tarifa a legalacsonyabb. A kiválasztott energia egységekhez tartozó időintervallumokban töltődik a jármű. A szabadon maradt időszakra vonatkozóan, amikor a jármű csatlakoztatva van a töltőállomáshoz, de nem tölt, a visszatáplálással elérhető bevételt maximalizálja a módszer úgy, hogy visszatáplálási és töltési időszak párokat képez. Az energia egység párok képzésének együttes feltételei a következők:

- a hatótáv feltétel minden időpontban teljesül,
- az eladási ár minden esetben magasabb, mint a vételi ár (felhasználói szemszögőből).

Megállapítottam, hogy az optimalizáló módszer alkalmazásával alacsonyabb töltési költség érhető el, mint a hagyományos „mindig tölt” vagy a „csak éjszaka tölt” töltési stratégiákkal. A költségcsökkentés mértéke a váltózó díjtétel paramétereitől függően 5,3% és 41% közötti. Továbbá, a decentralizált irányítással csökkenthető a villamos hálózat terhelés ingadozása azáltal, hogy a váltózó díjtétellel előnyben részesítjük a nagy szabad kapacitással rendelkező időszakokot a töltés számára. A tézis igazolását a 8. fejezet tartalmazza.

Tézishez kapcsolódó saját publikációk:
(Csiszár et al., 2017), (Csonka és Csiszár, 2018), (Csizsár et al., 2019b), (Csonka és Csiszár, 2019b), (Csonka és Földes, 2019)

9.2 Tudományos eredmények hasznosíthatósága

A kutatási eredmények elméleti jelentőségét, gyakorlati hasznosulási lehetőségét és oktatási alkalmazhatóságát a következőkben foglaltam össze.

Elméleti jelentőség

Kutatásiommal a Tanszéken hosszú évek óta folyó, a közlekedési rendszerekre és az információs folyamatokra vonatkozó kutatások eredményeit bővítettem. Olyan időtálló modellek és módszerek kidolgozására törekedtem, amelyek továbbfejlesztéssel, illetve adaptációval a hasonló jellegű problémák megoldásához alkalmazhatók. Továbbá az általam végzett munka szorosan kapcsolódik a Felsőoktatási Intézményi Kiválósági Program Mesterséges Intelligencia – Future Mobility E-Mobility kutatócsoport kutatási területéhez is.

Gyakorlati hasznosulási lehetőségek

Az általam kidolgozott integrált információs rendszer koncepciója az elektromobilitási szolgáltatásoknak keretet adó információs rendszer megvalósításának alapja. Segíti a jövőbeli szolgáltatókat abban, hogy a felhasználóknak számára mely funkciókat érdemes nyújtani, ehhez milyen adatcsoportokra van szükség, és hogy az elektromobilitás mely összetevői között szükséges adatkapcsolatot létesíteni.

Az inter-city és intra-city töltési igények kiszolgálását támogató töltőállomás helyszín kijelölő módszerek különösképpen az elektromobilitás kezdeti fázisában segítik a töltőállomás üzemeltetőket abban, hogy a legnagyobb várható kihasználtságú helyszíneken létesítsenek
töltőberendezéseket. Az e-Mobi Elektromobilitás Kft. a kidolgozott módszerek alapján végzi Magyarországon a töltőtelepítést.

A carsharing szolgáltatások minőségét értékelő módszer elsősorban ott alkalmazható, ahol több, versenyző szolgáltató is jelen van (pl. Budapest). A szolgáltatások közül a felhasználó elvárásainak a leginkább megfelelő választható ki. Másrészt az üzemeltető számára is segítséget jelent a fejlesztési irányok meghatározásában. A kidolgozott módszert az Avalon CareServices Kft. alkalmazta az állomások helyszíneinek a meghatározásához.

A töltés optimalizáló módszer gyakorlati alkalmazhatóságának a feltétele a változó díjtétel, ami jelenleg nem megoldott. A decentralizált irányítással elérhető villamos hálózati terhelés ingadozás csökkentés és a felhasználó oldalán jelentkező költségmegtakarítás miatt jelentős potenciál van a gyakorlati alkalmazásban.

Az általam kidolgozott módszereket az Electric Travelling Európai Uniós projekt keretében és a Széllkapu mélygarázs - Elektromobilitási kutatóközpont létrehozásának elméleti háttere c. tanulmány megírásában is alkalmaztuk. Mindkét projekt célja az elektromobilitás elterjedésének az elősegítése intelligens megoldásokkal.

Oktatási alkalmazhatóság

A kutatási eredmények bekerültek a Tanszéken oktatott tantárgyak korszerűsített, magyar és angol nyelvű anyagaiba (Közlekedési információs rendszerek I-II. Közlekedési informatika, Személyközlekedés). Az eredményeket felhasználtuk a Közlekedési információs rendszerek c. egyetemi jegyet, valamint az Innovative Transportation Systems c. angol nyelvű egyetemi tankönyv megírásakor (Csiszár et al., 2019). A műszaki tudományokat népzerűsíti és a „Jövő új útjai a pályaválasztás és az autonóm autózás világában” c. EFOP projektek keretében a kutatási eredményeimet felhasználva középiskolások számára e-learning anyagot fejlesztettünk az autonóm járművekről, valamint hátrányos helyzetű gyermekek számára ismeretterjesztő előadásokat és foglalkozásokat tartottunk.

Társadalmasítás

Kutatási eredményeimet az „elektromobilitás” témájú előadások keretében számos alkalommal ismeretterjesztő jelleggel szélesebb közönség előtt is bemutattattam. Ezek közül a legfontosabbak:

- Csonka, B.: Az elektromobilitás üzemeltetési kihívásai; Mobil Weekend Budapest Konferencia, 2016. szeptember 22-24., Budapest
- Csiszár, Cs., Csonka, B., Földes, D.: Az elektromos autóbuszok üzemeltetése a közforgalmú közlekedésben. A közlekedéstudományi Egyesület Általános Közlekedési
Tagozatának Fenntartható Közlekedés Szakosztálya - E-közösségi közlekedés című szakmai délutánja, 2017. november 8., Makadám klub, Budapest

9.3 Kutatás folytatása

Kutatásaimat a jövőben is hasonló elszántsággal kívánom folytatni, építve az eddig elért eredményekre. A szakirodalomban és a technológiai fejlődésben tapasztalható trendek alapján a hagyományos közösségi közlekedésben a közeljövőben várhatóan egyre nagyobb számban jelennek meg elektromos autóbuszok. Továbbá a következő évtizedekben is jelentős kihívást fog okozni a közlekedés okozta környezetszennyezés, az új infokommunikációs technológiák pedig új megoldások bevezetését teszik lehetővé. Ezért kutatásom folytatásának az irányát a következőképp határoztam meg:

Rövidtávon:

- Elektromos autóbuszok üzemeltetésnek a gazdaságossága és a viszonylat, valamint menetrend jellemzői közötti kapcsolat vizsgálata.
Közép- és hosszú távon:

- Az elektromobilitás gazdasági-társadalmi hatásainak és a várható tendenciáknak a becslése (pl. járműszám, futásteljesítmény, töltési igények, töltési jellemzők, energiafelhasználás).
- Töltési helyszínek kijelölése (városi környezetben és gyorsforgalmi utak mentén; speciális pl. hűtött áruk szállító tehergépjárművek esetén).
- A taxik elektromos meghajtásra való átállásának feltételei, hatása, üzemeltetési modell kidolgozása, telephelyi töltő infrastruktúra méretezés a közcelű töltők figyelembevételével.
- A közösségi elektromos kerékpárok (pedelec) bevezetésének üzemeltetési, használati jellemzőinek, lehetőségeinek kutatása – különös tekintettel a turisztikai lehetőségekre.
10Fogalomtár

Adatmodell: a valóság leképezése adatokra, azok kapcsolataira, felhasználásuk körülményeire, szabályaira. Az adatmodell alapján történik az adatbázis szerkezetének a megtervezése.

Adatbázis: felesleges átfedés nélkül együtt tárolt és egymással kapcsolatban lévő adatok együttese, összetett logikai szerkezetű adathalmaz.

Carsharing (közautó): közösségi személygépkoesi megosztásán alapuló átmeneti közlekedési mód. Cél a járművek időbeleli kapacitásának (időalapjának) jobb kihasználása. A járműveket díj ellenében bárki igénybe veheti jellemzően rövididőúvú, városi utazásokra, rövid időtartamra.

Free-floating ~: egy kijelölt zónán belül bárhov felvehetők és leadhatók a járművek. A használat közben a zónát elhagyhatja a jármű.

One-way ~: a járművek kijelölt állomásokon vehetők fel és adhatók le. A felhasználó a felvétel helyétől függetlenül tetszőleges állomáson leadhatják a járművet.

Round-trip ~: a járművek kijelölt állomásokon vehetők fel és adhatók le. Használat végén a felvételi pontra kell visszavinni a járművet.

Station-based ~: a járművek kijelölt állomásokon találhatók. Ilyen szolgáltatás típus a one-way és a round-trip is.

Elektromobilitás: az elektromos járművek használatához szükséges közlekedési rendszerősszetevők (kiszolgáló infrastruktúra, információs és kommunikációs technológiák, stb.) és működési folyamatok összessége.

FCLM (Flow Capturing Facility Location Models): szakaszorientált modell. A cél a szakasz mentén jelentkező kereslet kiszolgálása kapacitás korlátos létesítményekkel.

Információ: az adatoknak(jeleknek) egy bizonyos szerkezetben való egyesítése; tárgyról, személyről, folyamatról, szervezetről szerzett ismeret. Cselekedetet vált ki. Az információ szubjektív fogalom, humán információkezeléssel.

Információs rendszer: az információ kezelését (rögzítés, feldolgozás, tárolás, elérés) végző rendszer.

Inter-city töltési igény: hosszútávú utazások során jelentkező töltési igény, mikor az elektromos jármű hatótávja nem elégséges, hogy az utazás utántöltés nélkül teljesíthető legyen. A töltési folyamat megszakítja az utazást.

Működési modell: az információkezelési funkciókat és azok kapcsolatait leképező modell.
Plug-In hibrid: villamos hálózatról töltethető hibrid jármű, ami a hagyományos és villamos hajtás előnyeit ötvözi.

Smart Grid: adat és energia áramlása a villamos hálózaton, aminek célja a megújuló energiaforrások részarányának növelése, és a terhelés ingadozás csökkentése.

Szerkezeti modell: az információkezelő rendszerösszetevőket és azok kapcsolatait leképező modell.
Irodalomjegyzék

Felhasznált irodalom

(Európai Szabványügyi Bizottság, 2006): Európai Szabványügyi Bizottság Public Passenger Transport – Basic Requirements and Recommendations for Systems that Measure Delivered Service Quality (EN15140) 2006

(Headicar et al., 2009): Headicar, P., Banister, D., Pharoah, T. Land Use and Transport: Settlement Patterns and the Demand for Travel, 2009 148 o.

(Lawrence, 1999): Lawrence, D. B. The Economic Value of Information. Springer-Verlag, New York, USA, 1999 393 o.

(Mets et al., 2012): Mets, K., Hulst, R. D., Develder, C. Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution...

Tézisekhez kapcsolódó saját publikációk

Egyetemi tankönyv (angolul):

Folyóiratcikkek (angolul):

Folyóiratcikkek (magyarul):

(Konferenciacikkek (angolul):
Konferenciacikkek (magyarul):

Ábrajegyzék

2.1. ábra Kutatási témakörök kapcsolata 2
2.2. ábra Töltési igény típusok .. 3
2.3. ábra Megosztáson alapuló járműhasználat módok jellemzői 4
3.1. ábra Töltőinfrastruktúra telepítéséhez kapcsolódó irodalom csoportosítása .. 13
4.1. ábra Az információs rendszer funkciói az elektromos járművek negatívumaiból levezetve 19
4.2. ábra Az integrált információs rendszer szerkezete 25
4.3. ábra Az integrált információs rendszer adatbázisának relációs adatmodellje ... 26
4.4. ábra Új jármű választás (F_1) funkció folyamatábrája .. 27
5.1. ábra Villámtöltő-állomás helyszín értékelő és kiválasztó módszer lépései (országos átjárhatóság) .. 35
5.2. ábra x_4 paraméter értéke a legközelebbi villámtöltő-állomástól mért távolság függvényében (d_0) .. 37
5.3. ábra Ütkategória rétegek .. 39
5.4. ábra 1. telepítési terv (α=20 km, β=40 km) .. 41
5.5. ábra 2. telepítési terv (α=40 km, β=60 km) .. 41
5.6. ábra 3. telepítési terv (α=80 km, β=100 km) .. 42
5.7. ábra A vizsgált hosszútávú utazások kezdő és célponthajak .. 43
5.8. ábra 7) Kiszolgált forgalomszögek aránya az elektromos jármű hatótávújának függvényében .. 45
6.1. ábra Az értékelés tárgyi - területi egység makró szinten, hatszögek mezo szinten .. 48
6.2. ábra Elvonó hatás meglévő, közeli töltőállomás esetén .. 52
6.3. ábra Töltőállomás helyszín meghatározása már meglévő töltőállomások esetében mezo szinten .. 53
6.4. ábra Javasolt töltőállomások száma makró szinten eltérő súlyok esetén .. 55
6.5. ábra Meglévő és javasolt töltőállomás helyszínek .. 57
7.1. ábra Az elemző és értékelő módszer lépései .. 58
7.2. ábra Térben és időben változó ismérvek .. 61
7.3. ábra A Q értékekének térbeli változása Bécs, Neubau városrészében, a két carsharing szolgáltató esetében eltérő felhasználói preferenciák mellett .. 67
8.1. ábra Töltési költség minimalizáló módszer bemeneti adatai és kimenete .. 70
8.2. ábra Töltési költség minimalizáló módszer folyamatábrája .. 71
8.3. ábra Töltési költség minimalizáló módszer 1. és 2. lépése .. 72
8.4. ábra Töltési költség minimalizáló módszer 3. és 4. lépése iterációval .. 73
8.5. ábra Visszatáplálás optimalizálás .. 75
8.6. ábra Villamos energia eladási árának változása egy napon belül, ha C_p^{max} / C_p^{min} = 1,5 76
8.7. ábra Teljes töltési költség C_p^{max} / C_p^{min} függvényében rendszeres töltési igény esetén .. 78
8.8. ábra Teljes töltési költség C_p^{max} / C_p^{min} függvényében rendszeres töltési igény esetén (C_p^{max} / C_p^{min} = 1,5) .. 79
8.9. ábra Teljes töltési költség az előzetes igénybejelentés időponthajának függvényében hosszútávú utazás előtti töltési igény esetén (C_p^{max} / C_p^{min} = 1,5 és C_p^{max} / C_p = 0,95) .. 80
T.1. ábra Az integrált információs rendszer szerkezete .. 81
T.2. ábra Töltés optimalizáló módszer bemenete és kimenete .. 86
Táblázatjegyzék

3.1. táblázat Centralizált és decentralizált töltés ütemezés jellemzői .. 16
4.1. táblázat Nevezékta – integrált információs rendszer ... 19
4.2. táblázat Az információs rendszer funkciói által támogatott elektromos járműhasználati fázisok . 21
4.3. táblázat Alfunkciók ... 21
4.4. táblázat Adat kategóriák és adatcsoportok ... 22
4.5. táblázat Adatcsoport - funkció (D-F) kapcsolati mátrix .. 23
4.6. táblázat Adatcsoport – összetevő (D-C) kapcsolati mátrix ... 24
5.1. táblázat Nevezékta – Országos töltőállomás helyszín kijelölő módszer 34
5.2. táblázat Sülyök értéke az alkalmazás során ... 39
5.3. táblázat Forgalmagyság-kategóriák ... 40
5.4. táblázat Lakosságszám-kategóriák .. 40
5.5. táblázat Szolgáltatási szint kategóriák .. 40
5.6. táblázat Tervváltozatok összehasonlítása .. 44
5.7. táblázat 8) A kiszolgált forgalomnagyság és a kijelölt villámütöltő-állomások számának a
hányadosa [szgk/nap/töltőállomás] ... 46
6.1. táblázat Nevezékta – Városi töltőállomás helyszín kijelölő módszer 47
6.2. táblázat Töltésjellemzők helyszintípusonként ... 50
6.3. táblázat Turizmus kategóriák .. 54
6.4. táblázat Lakóterület kategóriák minősítő értéke .. 56
6.5. táblázat A legnagyobb töltőtelepítési potenciállal rendelkező hatszögek értéke 56
6.6. táblázat A meglévő töltőállomást tartalmazó hatszögek töltőtelepítés potenciál értéke 56
7.1. táblázat Minőségi ismérvek és azok értékelő számai ... 59
7.2. táblázat Minőségi ismérvek minőségi kategóriákba sorolva .. 62
7.3. táblázat Felhasználói elvárások .. 63
7.4. táblázat Minőségi ismérvek (c_i) és a felhasználói elvárások (i) közötti kapcsolati mátrix (r_{i,j}) ... 64
7.5. táblázat Felhasználói elvárások fontossági sorrendje (1: legfontosabb, 9: legkevésbé fontos) 66
7.6. táblázat A bécsi carsharing szolgáltatások értékelő számai ... 66
7.7. táblázat Minőség értékelő számok kategóriánként .. 67
8.1. táblázat Nevezékta – Töltési költség minimalizáló módszer ... 69
8.2. táblázat Mobilitási igény jellemzők, rendszeres töltési igény ... 77
8.3. táblázat Mobilitási igény jellemzők, hosszútávú utazás előtt .. 77
T.1. táblázat A minőségi ismérvek (c_i) és a felhasználói elvárások (i) közötti kapcsolati mátrix (r_{i,j}) . 85
F.1. táblázat Járműhasználat gyakorisága ... 114
F.2. táblázat Parkolási preferencia és parkolási idő helyszín kategóriánként 115
F.3. táblázat Korábbi tapasztalatok elektromos járművel, országok szerint 116
F.4. táblázat Az elektromos jármű jellemzőivel való elégedettség, országok szerint 117
F.5. táblázat Az elektromos jármű jellemzőivel való elégedettség, jövedelem kategóriák szerint 117
F.6. táblázat Vásárlási hajlandóság országok szerint ... 117
F.7. táblázat Integrált információs rendszer ... 121
Függelék

1. Függelék: Kérdőív - Elektromobilitás

Elektromos autóhasználat elősegítése

A. Általános közlekedési szokások

1. Vezet-e autót?
 a. Igen, hagyományos belsőégésű motorral hajtott járművet
 b. Igen, EV
 c. Nem

2. Milyen gyakran vezet autót?
 a. soha
 b. kb. havonta
 c. hetente kb. 1 alkalommal
 d. hetente kb. 2-3 alkalommal
 e. hetente kb. 4-5 alkalommal
 f. szinte naponta

3. Milyen gyakran vezet autót 150 kilométernél nagyobb távolságra?
 a. soha
 b. kb. havonta
 c. hetente kb. 1 alkalommal
 d. hetente kb. 2-3 alkalommal
 e. hetente kb. 4-5 alkalommal
 f. szinte naponta

4. Naponta átlagosan mekkora távolságot tesz meg autóval?
 a. Nem utazom autóval
 b. Kevesebb, mint 25 km
 c. 25-50 km között
 d. 50-75 km között
 e. 75-100 km között
 f. 100-125 km között
 g. 125-150 km között
 h. Több, mint 150 km

5. Hogyan oszlanak meg az Ön parkolási műveletei a következő helyszíntípusok között?
 Értékek: 0-5 (0: soha, 1: nagyon ritkán, ..., 5:naponta)
6. Általában mennyi időt tölt egy parkolási művelet során a következő helyszíntípusoknál?

Értékek: 0 perc/10 perc/30 perc/2-4 óra/6-8 óra

a. Otthon (garázsbeállóban)
b. Közterületen, otthonhoz közel
c. Munkahelyen
d. Bevásárlóközpontok, áruházak, piacok parkolójában
e. Közhivatalok, posta, bank közelében
f. P+R parkolókban
g. Autóbusz- és vonatállomások közelében
h. Benzinkutakon
i. Turisztikai célpontoknál, kulturális- és sportlétesítményeknél
j. Közterületen, egyéb helyen

7. Általában mely idősávokban parkol a következő helyszíntípusoknál?

Értékek: soha/6 és 10 óra között/10 és 16 óra között /16 és 20 óra között/ 20 és 6 óra között

a. Otthon (garázsbeállóban)
b. Közterületen, otthonhoz közel
c. Munkahelyen
d. Bevásárlóközpontok, áruházak, piacok parkolójában
e. Közhivatalok, posta, bank közelében
f. P+R parkolókban
g. Autóbusz- és vonatállomások közelében
h. Benzinkutakon
i. Turisztikai célpontoknál, kulturális- és sportlétesítményeknél
j. Közterületen, egyéb helyen

B. Korábbi tapasztalatok elektromos járművel

1. Utazott már elektromos meghajtású autóval?

a. Igen, vezetőként
b. Igen, utasként
c. Nem

2. Milyenek itéli meg az elektromos járművek alábbi jellemzőit? (Kérjük, értékelje a megadott szempontokat.)

Értékek: Rendkívül hátrányos/Hátrányos/Közömbös/Előnyös/Nagyon előnyös

a. Technológia (jármű és töltés technológia)
b. Hatótáv
c. Publikus töltőállomások autópályák és országútak mentén
d. Publikus töltőállomások lakott területen belül
e. Munkahelyi és otthoni töltés lehetősége
f. Töltési idő
g. Jármű beszerzési ára
h. Vezetési élmény

C. Vásárlási hajlandóság
1. Ön rendszeresen használ elektromos meghajtású autót?
 a. Igen, tisztán elektromos meghajtású autót
 b. Igen, egyéb elektromos hálózatról tölthető (plug-in hibrid vagy range extender-
es) autót
 c. Nem, de szívesen használnék tisztán elektromos meghajtású autót
 d. Nem, de szívesen használnék elektromos hálózatról is tölthető (plug-in hibrid
 vagy range extender-es) autót
 e. Nem, és nem is tervezem

D. Elvárások a járművel szemben
1. Állítson fel fontossági sorrendet az elektromos járművek használatára vonatkozó
 szempontok között? (Minden érték, csak egy szemponthoz kerülhet.)
 Értékek: 1-8 (1: legfontosabb, 8: legkevésbé fontos)
 a. Kiforrótt, megbízható, könnyen kezelhető technológia (vehicle and charging
 technology)
 b. Minél nagyobb hatótáv
 c. Nyilvános töltőpontok országos főútvonalak mentén
 d. Nyilvános töltőpontok városokban
 e. Minél rövidebb töltési idő
 f. Alacsony hajtóenergia (áram) díj
 g. Alacsony egyéb üzemeltetési költségek (pl.: karbantartás, akkumulátor csere)
 h. Környezetvédelem/környezettudatosság

E. Elvárások a töltéssel szemben
1. Ön jelenleg hol tud/tudna tölteni egy elektromos autót? (Több választ is megjelölhet)
 a. Otthon (rendelkezésemre áll garázsbeálló)
 b. Közterületen, otthonhoz közel
 c. Munkahelyen
 d. Bevásárlóközpontok, áruházak, piacok parkolójában
 e. Közhivatalok, posta, bank közelében
 f. P+R parkolóban
 g. Autóbusz- és vonatállomások közelében
 h. Benzinkutakon
 i. Turisztikai célpontoknál, kulturális- és sportlétesítményeknél
 j. Közterületen, egyéb helyen
 k. Egyik sem

2. Hogyan oszlik meg/osztaná meg a töltési tevékenységét a következő helyszíntípusok
 között?
Értékek: 0-5 (0: soha, 1: nagyon ritkán,..., 5: naponta)

a. Otthon (rendelkezésemre áll garázsbeálló)
b. Közterületen, otthonhoz közel
c. Munkahelyen
d. Bevásárlóközpontok, áruházak, piacok parkolójában
e. Közhivatalok, posta, bank közelében
f. P+R parkolóban
g. Autóbusz- és vonatállomások közelében
h. Benzinkutakon
i. Turisztikai célpontoknál, kulturális- és sportlétesítményeknél
j. Közterületen, egyéb helyen

3. Milyen szolgáltatások meglétét tartja fontosnak rövid idejű (max. kb. 30 perces) töltésnél a nyilvános töltőpontok közelében? (Kérjük, értékelje a megadott szempontokat!)

Értékek: Egyáltalan nem fontos/Kevésbé fontos/Közepesen fontos/Fontos/Kiemelten fontos

a. Napi szükségleteket kielégítő árucikkek vásárlási lehetősége
b. Tartós használati cikkek vásárlási lehetősége
c. Mosdó
d. Étkezési lehetőség
e. WiFi
f. Úgyintézés (pl.: posta, bank, kormányablak)
g. Egyéb szolgáltatás (pl.: fodrászat, játszóház, virágüzlet)
h. Szórakozási lehetőség (pl.: mozi, színház, játékterem)
i. Sportolási lehetőség
j. Turisztikai látványelő

4. Milyen szolgáltatások meglétét tartja fontosnak hosszabb idejű (kb. 2–4 órás) töltésnél a nyilvános töltőpontok közelében? (Kérjük, értékelje a megadott szempontokat!)

Értékek: Egyáltalan nem fontos/Kevésbé fontos/Közepesen fontos/Fontos/Kiemelten fontos

a. Napi szükségleteket kielégítő árucikkek vásárlási lehetősége
b. Tartós használati cikkek vásárlási lehetősége
c. Mosdó
d. Étkezési lehetőség
e. WiFi
f. Úgyintézés (pl.: posta, bank, kormányablak)
g. Egyéb szolgáltatás (pl.: fodrászat, játszóház, virágüzlet)
h. Szórakozási lehetőség (pl.: mozi, színház, játékterem)
i. Sportolási lehetőség
j. Turisztikai látványelő

F. Elvárások az információs szolgáltatással szemben

1. Mennyire tartja fontosnak egy elektromobilitást támogató információs alkalmazás következő tulajdonságait? (Kérjük, értékelje a megadott szempontokat!)

Értékek: Egyáltalan nem fontos/Kevésbé fontos/Közepesen fontos/Fontos/Kiemelten fontos
a. Elérhetőség webes felületen
b. Elérhetőség mobil applikáció keresztül
c. Hozzáférés a hazai töltőállomások adatbázisához
d. Hozzáférés az európai töltőállomások adatbázisához
e. Testreszabhatóság, paraméterezhetőség (pl. saját jármű tulajdonságainak figyelembe vétele, keddvenc és/vagy kompatibilis töltőállomások, nyelv beállítása)

2. Mennyire tartja fontosnak egy elektromobilitást támogató információs alkalmazás következő funkcióinak meglétéét? (Kérjük, értékelje a megadott szempontokat!)

Értékek: Egyáltalán nem fontos/Kevésbé fontos/Közepesen fontos/Fontos/Kiemelten fontos

a. Járművásárlási döntés támogatása (pl. teljes járműélettartam alatt felmerülő kiadások számítása, járműtípusok összehasonlítása)
b. Statikus információk közlése (pl. töltőállomások elhelyezkedése, töltőpontok típusa, elérhető szolgáltatások a töltőállomás közelében)
c. Dinamikus adatok kezelése (pl. töltőpontok aktuális foglaltsága, várható töltési idő)
d. Kiválasztott töltőhöz való eljutás támogatása (pl. útvonaltervezés, navigáció)
e. Töltőpont előre foglalása
f. Töltési folyamat támogatása (pl. tájékoztatás a töltés menetéről, töltési folyamat indítása/befejezése az alkalmazással, töltés közbeni valós idejű értesítések)
g. Töltések automatikus fizetése (energia és díj adatok megjelenítése, kezelése)
h. Saját töltőpont megosztási lehetőség (energia és díj adatok megjelenítése, kezelése)
i. Smart töltés (pl. a töltés idejétől és helyszínétől függő tarifa)
j. Supply mode, az autó akkumulátóról az elektromos hálózatba való automatikus visszatáplálás engedélyezése (energia és díj adatok megjelenítése, kezelése - költségmegtakarítás)
k. Járművezetés támogatása (pl. valós idejű értesítések, környezeti előnyök számítása, vezetési stílus értékelése)
l. Információ hozzáadási lehetőség (pl. a felhasználók a töltőpontokról információkat oszthatnak meg az alkalmazáson keresztül)

3. Mennyire tartja fontosnak a különböző töltőállomás üzemeltetők közötti együttműködést az alábbi funkciók tekintetében? (Kérjük, értékelje a megadott szempontokat!)

Értékek: Egyáltalán nem fontos/Kevésbé fontos/Közepesen fontos/Fontos/Kiemelten fontos

a. Egységes tarifa
b. Egységes fizetés
c. Töltőpont foglalás
d. Egységes információs rendszer
e. Egységes működtetés (arculat)

G. Elvárások az ösztönzőkkel szemben

1. Állítson fel fontossági sorrendet az elektromos járművek elterjedését és használatát ösztönző intézkedések között. (Minden érték, csak egy intézkedéshez kerülhet.)
Értékek: 1-7 (1: legfontosabb, 3: legkevésbé fontos)

a. Ingyenes parkolás
b. Nincs útdíj
c. Buszsáv használat
d. Kedvezményes ár/állami támogatás vásárláskor
e. Otthoni/munkahelyi töltőpontok telepítésének támogatása
f. Nyilvános töltőpontok telepítésének támogatása
g. Egyéb tevékenységek (kutatás-fejlesztés, társadalmi támogatás, stb.) támogatása

H. Személyes adatok

1. Születési év:
2. Az Ön lakóhelyének jellege:
 a. Nagyváros (több, mint 500000 lakos), belváros
 b. Nagyváros (több, mint 500000 lakos), külváros
 c. Nagyváros (több, mint 500000 lakos), vonzáskörzet
 d. Közepes város (100000 – 500000 lakos)
 e. Kisváros (10000 – 100000 lakos)
 f. Egyéb település

3. Iskolai végzettség:
 a. Általános iskola
 b. Középiskola
 c. Főiskola
 d. Egyetem
 e. Posztgraduális képzés

4. A háztartásában egy főre eső jövedelem:
 a. Átlagosa általán alacsonyabb
 b. Átlagos
 c. Átlagosa általán magasabb
2. Függelék: Eredmény - Elektromobilitás

F.1. ábra Megkérdezettek részaránya országos bontásban

F.2. ábra Megkérdezettek részaránya korcsoportonként
F.3. ábra Jelenlegi személygépjármű használat

F.1. táblázat Járműhasználat gyakorisága

<table>
<thead>
<tr>
<th></th>
<th>Altalánosságban (nap/hét)</th>
<th>Nagytávolságú utazás (>150km) (alkalom/hónap)</th>
<th>Napi futásteljesítmény (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagyományos</td>
<td>4.6</td>
<td>3.3</td>
<td>40</td>
</tr>
<tr>
<td>Tölthető elektromos</td>
<td>6.2</td>
<td>4</td>
<td>61</td>
</tr>
</tbody>
</table>

F.4. ábra Járműhasználat gyakorisága lakóhely jellege szerint
F.5. ábra Napi futásteljesítmény lakóhely jellege szerint

F.2. táblázat Parkolási preferencia és parkolási idő helyszín kategóriánként

<table>
<thead>
<tr>
<th></th>
<th>Parkolási preferencia</th>
<th>Átlagos parkolási idő</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0: soha, 5: naponta)</td>
<td>(hh:mm)</td>
</tr>
<tr>
<td></td>
<td>Hagyományos</td>
<td>Tölthető elektromos</td>
</tr>
<tr>
<td>Otthon (privált)</td>
<td>3,5</td>
<td>4,7</td>
</tr>
<tr>
<td>Otthonhoz közel, közterületen</td>
<td>2,4</td>
<td>2,1</td>
</tr>
<tr>
<td>Munkahely</td>
<td>2,7</td>
<td>3,9</td>
</tr>
<tr>
<td>Bevásárlóközpont</td>
<td>2,6</td>
<td>2,9</td>
</tr>
<tr>
<td>Önkormányzat, posta, bank</td>
<td>1,4</td>
<td>2,1</td>
</tr>
<tr>
<td>P+R parkoló</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Autóbusz- vagy vasútállomás</td>
<td>0,9</td>
<td>0,7</td>
</tr>
<tr>
<td>Benzinkút</td>
<td>0,9</td>
<td>0,5</td>
</tr>
<tr>
<td>Turisztikai célpont, sport, rekreáció, kultúra</td>
<td>1,5</td>
<td>1,9</td>
</tr>
<tr>
<td>Egyéb, közterületen</td>
<td>1,9</td>
<td>2,6</td>
</tr>
</tbody>
</table>
F.6. ábra Parkolás megoszlása az egyes időintervallumokban

F.3. táblázat Korábbi tapasztalatok elektromos járművel, országok szerint

<table>
<thead>
<tr>
<th>Ország</th>
<th>Mint sofőr</th>
<th>Csak utasként</th>
<th>Nincs tapasztalata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magyarország</td>
<td>15%</td>
<td>51%</td>
<td>34%</td>
</tr>
<tr>
<td>Lengyelország</td>
<td>8%</td>
<td>7%</td>
<td>85%</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>12%</td>
<td>12%</td>
<td>76%</td>
</tr>
<tr>
<td>Hollandia</td>
<td>25%</td>
<td>42%</td>
<td>33%</td>
</tr>
<tr>
<td>Összesen</td>
<td>14%</td>
<td>37%</td>
<td>50%</td>
</tr>
</tbody>
</table>

F.7. ábra Korábbi tapasztalatok elektromos járművel, életkor szerint
F.4. táblázat
Az elektromos jármű jellemzőivel való elégedettség, országok szerint

<table>
<thead>
<tr>
<th></th>
<th>HU</th>
<th>PL</th>
<th>ES</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technológia</td>
<td>1.00</td>
<td>0.37</td>
<td>1.06</td>
<td>1.13</td>
</tr>
<tr>
<td>Hatótáv</td>
<td>0.06</td>
<td>-0.52</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Publikus töltőállomások autópályák és országutak mentén</td>
<td>-1.21</td>
<td>-1.04</td>
<td>-0.94</td>
<td>0.19</td>
</tr>
<tr>
<td>Publikus töltőállomások lakott területen belül</td>
<td>-0.68</td>
<td>-1.26</td>
<td>-0.81</td>
<td>-0.13</td>
</tr>
<tr>
<td>Munkahelyi és otthoni töltés lehetősége</td>
<td>-0.04</td>
<td>-1.04</td>
<td>-0.31</td>
<td>0.81</td>
</tr>
<tr>
<td>Töltési idő</td>
<td>-0.18</td>
<td>-0.56</td>
<td>-0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>Beszerzési költség</td>
<td>-0.84</td>
<td>-1.11</td>
<td>-0.81</td>
<td>-1.19</td>
</tr>
<tr>
<td>Vezetési élmény</td>
<td>1.46</td>
<td>0.26</td>
<td>1.13</td>
<td>1.50</td>
</tr>
<tr>
<td>Információs rendszer</td>
<td>0.36</td>
<td>-0.52</td>
<td>-0.31</td>
<td>0.13</td>
</tr>
</tbody>
</table>

F.5. táblázat
Az elektromos jármű jellemzőivel való elégedettség, jövedelem kategóriák szerint

<table>
<thead>
<tr>
<th></th>
<th>Alacsony</th>
<th>Átlagos</th>
<th>Magas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technológia</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Hatótáv</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Publikus töltőállomások autópályák és országutak mentén</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-1.2</td>
</tr>
<tr>
<td>Publikus töltőállomások lakott területen belül</td>
<td>-1.0</td>
<td>-0.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>Munkahelyi és otthoni töltés lehetősége</td>
<td>-0.9</td>
<td>-0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Töltési idő</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>Beszerzési költség</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.8</td>
</tr>
<tr>
<td>Vezetési élmény</td>
<td>0.9</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Információs rendszer</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

F.6. táblázat
Vásárlási hajlandóság országok szerint

<table>
<thead>
<tr>
<th></th>
<th>Tisztán elektromos autót</th>
<th>Hibrid elektromos autót</th>
<th>Használta megosztott elektromos autót (carrsharing)</th>
<th>Egyik sem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>venne</td>
<td>venne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magyarország</td>
<td>53%</td>
<td>15%</td>
<td>17%</td>
<td>15%</td>
</tr>
<tr>
<td>Lengyelország</td>
<td>8%</td>
<td>8%</td>
<td>7%</td>
<td>77%</td>
</tr>
<tr>
<td>Spanyolország</td>
<td>21%</td>
<td>40%</td>
<td>9%</td>
<td>30%</td>
</tr>
<tr>
<td>Hollandia</td>
<td>46%</td>
<td>4%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Összesen</td>
<td>39%</td>
<td>16%</td>
<td>14%</td>
<td>31%</td>
</tr>
</tbody>
</table>
F.8. ábra Vásárlási hajlandóság korcsoportok szerint

F.9. ábra Elektromobilitás jellemzői fontossági sorrendben
F.10. ábra Jelenlegi töltési lehetőségek országok szerint
F.11. ábra Otthoni töltés lehetősége a vásárlási hajlandóság szerint

F.12. ábra Gyaloglási hajlandóság, Hollandia
F.13. ábra Gyaloglási hajlandóság, összes elektromos személygépkocsi használó

F.7. táblázat Integrált információs rendszer

<table>
<thead>
<tr>
<th>Jelentőség</th>
<th>Funkciók</th>
<th>Interoperabilitás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hozzáférés az országos töltőinfrastruktúrához</td>
<td>Integrált információs szolgáltatások</td>
</tr>
<tr>
<td></td>
<td>Okostelefonos alkalmazás</td>
<td>Integrált fizetés</td>
</tr>
<tr>
<td></td>
<td>Személyre szabás</td>
<td>Töltőpont foglalás</td>
</tr>
<tr>
<td></td>
<td>Hozzáférés az európai töltőinfrastruktúrához</td>
<td>Automatikus fizetés</td>
</tr>
<tr>
<td></td>
<td>Webes felület</td>
<td>Töltés támogatás</td>
</tr>
<tr>
<td></td>
<td>Hozzáférés a</td>
<td>Vezetés támogatás</td>
</tr>
<tr>
<td></td>
<td>az országos</td>
<td>Felhasználói adatbejelentés</td>
</tr>
<tr>
<td></td>
<td>összes elektromos személygépkocsi használó</td>
<td>Intelligens töltés (változó díjtétel)</td>
</tr>
<tr>
<td></td>
<td>összes elektromos személygépkocsi használó</td>
<td>Vásárlás támogatása</td>
</tr>
<tr>
<td></td>
<td>összes elektromos személygépkocsi használó</td>
<td>Töltés menedzsment, kétrányú energiaáram</td>
</tr>
<tr>
<td></td>
<td>összes elektromos személygépkocsi használó</td>
<td>Saját töltő megosztása</td>
</tr>
</tbody>
</table>

Összes elektromos személygépkocsi használó
F.14. ábra Ösztönzők fontossági sorrendben
3. Függelék: Őrlapok - Integrált információs rendszer

![Diagram of menu system](image)

Jelmagyarázat:

- Alkalmazáson belüli űrlap
- Őrlapról elérhető funkció

F.15. ábra Menürendszer
Keresés cím vagy név alapján

Gyors keresési opciók

Részletes keresés

Korábbi találatok vagy korábban használt töltők

Kedvenc töltők

Gyors információ a járműről

Gyors információ az 5km-en belüli töltők és villám töltők számáról

Funkció gomb

F.16. ábra Nyitóoldal

F.17. ábra Töltőállomás keresés
1. ELMŰ - Városligeti fasor
2x22kW, Type2, 72Ft/kWh, ~ 3h15'

2. E-Mobi – Dob utca
43kW, CCS, 98Ft/kWh, ~ 34'

3. E-Mobi – Városliget
43kW, CCS, 98Ft/kWh, ~ 3h15'

F.18. ábra Találatok mutatása

Elérhető adatok a
töltőpontról

Töltőpont
kedvencekhez
adása

Töltőpont
foglalás

Töltőpont
megosztása

Fényképalbum
a töltőpontról

Töltőpont
értékelése

F.19. ábra Töltőpont adatok
4. Függelék: Kérdőív - Carsharing

Megosztott járműhasználat

Csonka Bálint doktorandusz hallgató vagyok a BME, Közlekedésüzemi és Közlekedésgazdasági Tanszékén. Témavezetőmmel, Dr. Csiszár Csabával együtt végzett egyetemi kutatásaink során a megosztott járműhasználat minőségét befolyásoló üzemeltetési jellemzőkkel és a felhasználói elvárásokkal foglalkozunk.

Jelen kutatásban célunk megismerni a saját járműhasználat és a hagyományos közösségi közlekedés jellemzőit, valamint a felhasználói elvárások, és a szolgáltatás jellemzői közötti kapcsolatot.

A kérdőív kitöltése kb. 10 percet vesz igénybe. Amennyiben ideje engedi, kérjük segítse munkákat kitöltéssel és megosztással.

Köszönettel:
Csonka Bálint, doktorandusz hallgató és Dr. Csiszár Csaba, egyetemi docens
BME, Közlekedésmérnöki és Járőrmérnöki Kar, Közlekedésüzemi és Közlekedésgazdasági Tanszék

1. Kérem, állítsa sorba a megosztott járműhasználattal szembeni elvárásokat fontosság szerinti sorrendbe!
 - Szabadság, függetlenség
 - Szabad parkolóhely
 - Közösségi közlekedéssel való kapcsolat
 - Megbízhatóság
2. Kérem, jelölje meg a saját járműhasználat ön számára 3 leginkább jelentős előnyét!

- Alacsony eljutási idő
- Szabadság, függetlenség
- Kényelem
- Megbizhatóság
- Ismert a jármű műszaki állapota
- Biztonság
- Szórakozás

3. Kérem, jelölje meg a saját járműhasználat ön számára 3 leginkább jelentős hátrányát!

- Drága
- Magas eljutási idő
- Kihasználatlanság
- Fenntartási teendők
- Megbízhatatlanság
- Stressz
- Biztonság hiánya
- Kevés szabad parkolóhely
- Környezetterhelés

3. Kérem, jelölje meg a hagyományos közösségi közlekedés ön számára leginkább jelentős hátrányát!

- Kötöttségek
- Menetidő
- Megbízhatatlanság
- Zsúfolt
- Kényelmetlen
- Rossz állapotú infrastruktúra
- Piszkos

<table>
<thead>
<tr>
<th>JELLEMZŐK</th>
<th>ELVÁRÁSOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szolgáltatás típusa*</td>
<td>Szabadság, függetlenség</td>
</tr>
<tr>
<td>Legközelebbi szabad jármű átlagos távolsága</td>
<td>Szabad parkolóhely</td>
</tr>
<tr>
<td>Használati időtartam min. és max. értéke</td>
<td>Közösségi közlekedéssel való kapcsolat</td>
</tr>
<tr>
<td>Özmédió</td>
<td>Megbízhatóság</td>
</tr>
<tr>
<td>Lefoglalhatóság, rugalmasság</td>
<td>Kényelem, könnyű kezelhetőség</td>
</tr>
<tr>
<td>Járművek megközelíthetősége</td>
<td>Közösséghez tartozás</td>
</tr>
<tr>
<td>Jármű belső megjelenése</td>
<td>Biztonság</td>
</tr>
<tr>
<td>Jármű meneteljegyzékei</td>
<td>Környezet védelme</td>
</tr>
<tr>
<td>Férfihegykínálal, csonagkerék</td>
<td>Szolgáltatással kapcsolatos információk</td>
</tr>
<tr>
<td>Ú-á törvényes feltüntetés körülményei</td>
<td>*A szolgáltatás típusa a megengedhető utazásokat határozza meg.</td>
</tr>
<tr>
<td>Parkolás körülményei</td>
<td></td>
</tr>
<tr>
<td>Egyéb teendők szükségessége</td>
<td></td>
</tr>
<tr>
<td>Jármű külső megjelenése</td>
<td></td>
</tr>
<tr>
<td>Jármű külső mérete</td>
<td></td>
</tr>
<tr>
<td>Jármű-biztonság</td>
<td></td>
</tr>
<tr>
<td>CO₂ kibocsátás</td>
<td></td>
</tr>
<tr>
<td>Rendszer kezelhetősége</td>
<td></td>
</tr>
<tr>
<td>Információs rendszer</td>
<td></td>
</tr>
</tbody>
</table>
5. Függelék: Eredmények - Carsharing

F.21. ábra Megosztott járműhasználattal szembeni felhasználói elvárások fontossági sorrendben

F.22. ábra Saját autóhasználat előnyei előfordulás gyakoriság szerint
F.23. ábra Saját autóhasználat hátrányai előfordulás gyakoriság szerint

F.24. ábra Hagyományos közösségi közlekedés hátrányai előfordulás gyakoriság szerint

A 4. kérdésből származó jellemzők és elvárások közötti kapcsolatok erősségét a 7.4. táblázat tartalmazza.