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INTRODUCTION 

During the last several decades thin-walled structural members made of cold-formed steel 

(CFS) have increasing popularity due to its structural efficiency i.e. high strength/weight ratio, 

low production and logistics costs and wide range of shapes available, especially in the fields 

of construction and vehicle engineering. Due to the high slenderness of these members, 

buckling is the governing mode of failure, which is a phenomenon with often neither no easily 

detectable indication prior to the occurrence of the failure, nor has post critical reserves which 

would allow a certain threshold of safety. Furthermore, the thin walls of the cross-sections 

usually ~1-3mm means that the traditional design methods aren’t always applicable and special 

design methods are required. Due to these, the understanding and reliable prediction of such 

member’s buckling resistance is very important. 

Buckling in general is a combination of two effects, the idealised phenomenon known as elastic 

buckling and the effect of imperfections. In the case of cold-formed thin-walled steel members, 

it is usually classified in three major modes: local-plate-, distortional- and global bucking. In 

real life, the various buckling modes hardly ever appear separately, mode-coupling is practically 

always present. However, in the current design standards [1-3] and methods, different formulae 

or methodology apply to determine the resistance belonging to the various modes, furthermore, 

the post-critical reserve also differs among the different modes. Therefore, the identification of 

the buckling modes is important in the buckling analysis of cold-formed thin-walled members. 

A relatively simple and easily automated method for mode classification is by preparing the so-

called signature curve of a cross-section. The signature curve is established by calculating the 

critical loads for different buckling lengths and then the results are plotted as illustrated in 

Figure 1. 

 

Figure 1: Signature curve of a C cross-section 
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The first minimum point of the curve belongs to the local-plate buckling mode, the second to 

the distortional buckling and the third, descending part of the signature curve at larger buckling 

lengths indicates global buckling. 

The current design standards are generally based on analytical solutions for the different modes; 

these are, however, often very complicated and not always totally reliable in capacity 

prediction. A new and simple method proposed and already integrated in the North American 

Standard (NAS) is the Direct Strength Method (DSM) [4-5]. The DSM design is based on 

critical loads obtained from numerical analysis e.g. with the finite strip method (FSM) [6-8] for 

the three major modes, then the final member resistance is calculated in a few simple steps. 

However, in some cases since the signature-curve doesn’t have both minima, or doesn’t have 

one at all, the critical load of a mode cannot unambiguously be determined. To overcome this 

problem, an extension of the FSM called constrained FSM or cFSM [9-12] was proposed where 

the pure buckling modes can be analysed. The principle of cFSM is similar to that of the 

Generalized Beam Theory (GBT) [13-15], i.e. it is based on constraining the deformations 

according to mode-specific mechanical criteria describing the different modes.  The necessary 

calculations in the research were performed by using the open source software CUFSM [16], 

directly or embedded in research specific routines. 

COMPARISON OF COUPLED AND PURE BUCKLING MODES 

As described above, cFSM solves the problem of always having a critical load for each buckling 

modes. However, all-mode or coupled (FSM based) and pure-mode or uncoupled (cFSM based) 

critical loads differ as presented in Figure 2.  

 

Figure 2: Comparison of all-mode critical loads by FSM and pure-mode critical loads by cFSM 
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Since the DSM formulae have been calibrated to the all-mode critical loads, the analysis of this 

difference deemed necessary to evaluate the possible impact on the final member resistance. 

This difference is natural due to the lack of the mode-coupling in the pure-mode results, 

however, since the values predicted by cFSM are always higher, hence on the unsafe side. 

The first part of the research studies and evaluates this difference based on statistical analysis 

of parametric studies performed on a wide range of cross-sections and geometries. Three load 

types were applied, pure compression (column), pure bending (beam) and compression-bending 

(column-beam). Based on the first study the following conclusions were drawn: (i) although 

the difference appears in all of the modes, the distortional buckling results are those affected 

most due to a more important mode-coupling effect, (ii) the difference is larger in those cases 

where at least one minimum point of the signature-curve doesn’t exist. It was also found that 

the above observations are basically independent from the applied load type. 

The magnitude of the differences for C cross-sections under pure compression load separately 

for local and distortional buckling is presented in Figure 3 and Figure 4. 

 

Figure 3: Distribution of differences in critical loads: C section, N load, D mode 

 

Figure 4: Distribution of differences in critical loads: C section, N load, L mode 

The next step of the study was to evaluate the effect of the difference in critical loads on the 

final load bearing capacity. A second large scale parametric study was conducted on six 

different cross-section types. Since the member resistance was determined with the DSM, the 
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prescriptions. The difference between all- and pure-mode results in member resistance is less 

than in that of the critical loads’, but a non-negligible difference even remains when comparing 

the final member resistance values as presented in Figure 5 for a C member under pure 

compression load. Table 1 presents the results for all of the cross-sections analyzed. It can thus 

be concluded, that cFSM indeed has the practical advantage of being able to differentiate pure 

buckling modes and the associated critical loads, however, the deviation of the results in the 

unsafe direction are non-negligible and appear even in the final member resistance. 

 

Figure 5: Distribution of differences in final load-bearing capacity: C section N load 

Table 1: Differences of resistances for pure compression: FSM vs. cFSM 

  Pnl Pnd Pn 

Cross section No. of 

Cases 

Average 

diff. [%] 

Max. 

diff. [%] 

Average 

diff. [%] 

Max. 

diff. [%] 

Average 

diff. [%] 

Max. 

diff. [%] 

C 

  (w/ real D min) 

1720 

(1233) 

0.3 

 

5.3 

 

6.8 

(4.1) 

25.4 

(11.4) 

3.6 

(2.0) 

25.4 

(10.6) 

C w/ stiffener 781 0.6 2.9 2.9 5.8 2.8 5.6 

Z 240 0.3 2.2 3.9 7.8 2.0 7.8 

Hat 78 0.5 1.3 2.5 2.7 2.5 2.7 

Rack 156 0.1 0.8 1.8 2.6 1.8 2.6 

Rack w/ stiffener 147 0.1 0.8 1.6 2.3 1.6 2.3 

Thesis 1 

I compared the buckling analysis of cold-formed steel members with finite strip method and 

constrained finite strip method for local-plate and distortional buckling modes. 

1a) I compared in a parametric study the elastic critical loads of cold-formed steel members on 

a wide geometrical range with finite strip method and constrained finite strip method for pure 

compression, pure bending and combined compression-bending loads both for local-plate and 

distortional buckling modes. I determined the characteristic differences for the various cross-

sections and load cases. I concluded that in case of local-plate buckling the difference obtained 
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by the two methods is a few percent in average, while in case of distortional buckling the 

differences show an average of approximately 10-20 percent, with a higher scatter. I concluded 

that the differences are considerably higher when the signature curve has no definitive 

minimum point at the given buckling mode. 

1b) I compared in a parametric study generally available cold-formed steel members’ resistance 

under pure compression and pure bending loads; the resistance was calculated from elastic 

buckling critical loads determined by finite strip method and constrained finite strip method. I 

determined the typical differences for the various cross-sections and load cases. I concluded 

that the difference shows an average of approximately 2-3 percent, and the difference is mostly 

due to the difference in the critical loads of the distortional mode. I concluded that the 

differences are significantly higher in the case the signature curve does not have a definitive 

minimum point for distortional mode. 

Related publications: [BZ1], [BZ2], [BZ3], [BZ4] 

APPLICATION OF CFSM WITH THE DIRECT STRENGTH METHOD 

Thin-walled cold-formed steel members are due to the nature of the manufacturing process 

always produced with rounded corners. The different standards’ approach to this is to simplify 

or neglect the rounded corners in the buckling design. Modelling rounded corners is done by 

dividing the corner into a series of close to parallel thin stripes. When the analysis is done with 

conventional FSM this discretization does not cause a problem, however, in case of cFSM 

analysis, although performing calculations with cFSM is technically possible, but due to the 

embedded mechanical criteria (limitation of displacements of nodes between non-parallel 

stripes) the results obtained are not compliant with the engineering expectations, therefore, they 

cannot be regarded as correct. This is demonstrated via two illustrations. 

In Figure 6 pure-mode solutions are shown both with sharp- and rounded-corner models. While 

G solutions show the expected tendency, L and D solutions produce unexpected ones, e.g. pure 

L critical values of rounded-corner models are too high with regard to their sharp-corner 

counterparts. Another strangeness is that the pure D curve has two minima: one in the L region 

where it is unexpected, besides the one in the D region, furthermore, in this latter case the 

calculated minimal D critical stress with the rounded corners is unexpectedly lower compared 

to the similar D critical stress with the sharp corners. The notation 160-60-15-4-1.5 used in the 

figure indicates a cross-section with a web depth of 160mm, a flange width of 60mm, a lip 

length of 15mm, a corner radius of 4mm and a plate thickness of 1.5mm. 



7 

 

Figure 6: Pure mode solutions for sharp and rounded models, 160-60-15-4-1.5 member 

The problem is also illustrated on a C member under pure compression, Figure 7 a) shows the 

cFSM analysis results of a sharp corner model, b) shows the results of the cFSM analysis of a 

rounded corner one, while c) represents the expected deformed shape. The deformation shown 

in b) indicates that the results aren’t correct. 

                   

    a)                                   b)                                c) 

Figure 7: Cross-section deformations for various L buckling modes 

Practically this means that obtaining pure-mode results for real cross-section models is not 

possible. To overcome this obstacle a so-called extrapolation method is proposed to estimate 

the numerical values corresponding to the pure modes of rounded corner members. The 

principle of the solution is to establish coefficients which take into account the effects of (i) the 

difference between rounded- and sharp corners in terms of the cross-sections’ geometrical 

properties, (ii) the difference between rounded- and sharp corners on the critical stress and (iii) 

mode coupling. Based on these coefficients, the numerical analysis results of cross-sections in 

all-mode with rounded corners and in pure-mode with sharp corners can be extrapolated to 

obtain results in pure-mode with rounded corners as follows: 
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rounded cFSM ≈ sharp cFSM * kc,W * kc,L/D * km,L/D 

kc,W : effect of rounded corners on the cross-section properties 

kc,L/D : effect of rounded corners on σcr 

km,L/D : effect of mode-coupling on σcr 

In order to verify the proposed extrapolation method, numerical analysis was performed on a 

set of cross-sections for which existing laboratory experimental data [17-18] was also available. 

The experiments were conducted in a way to receive pure buckling mode resistance values, 

hence served as a good basis for verification purposes. Naturally, since these were actual, 

commercially available steel members the corners were rounded. The pure-mode member 

resistance results of the rounded corner models obtained via the extrapolation method were 

compared to the experimental results and also verified against the DSM based predictions and 

then statistically evaluated. The extrapolation method was found to perform at least equally as 

good as the DSM, hence the approach may be regarded as an acceptable alternative solution for 

the problem. The results of the comparison is summarized in Table 2. 

Table 2: Comparison of test results with the extrapolation method and DSM based predictions 

 
Mode average st. deviation min. max. 

DSM/experiment All-L 0,976 0,084 0.837 1,246 

Extrap./experiment 
 

0,989 0,080 0,826 1,228 

DSM/experiment All-D 0,992 0,070 0,829 1,164 

Extrap./experiment 
 

1,018 0,099 0,863 1,218 

Thesis 2 

I proposed a simple, fully automated dimensioning method to determine the member resistance 

of cold-formed steel cross-sections with the constrained finite strip method and the direct 

strength method. In the proposed procedure, I introduced modification factors to take into 

account the differences between the finite strip method and the constrained finite strip method 

as well as the difference between rounded- and sharp corner cross-sections. Based on the results 

of a parametric study, I provided the necessary modification factors for the various profiles of 

generally available cold-formed steel members. I compared the results of the proposed design 
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procedure with experimental results and concluded that the proposed method is statistically 

equivalent to the widely applied direct strength method. 

Related publications: [BZ3], [BZ4] 

MECHANICAL MODELLING OF ROUNDED CORNERS 

Rigid corner model 

Although the extrapolation method’s performance seems fairly good, since it is based on certain 

assumptions which cannot be directly verified, a solution to directly model the rounded corners 

was sought. The aim of the corner modelling was to eliminate the nodes of the rounded corner 

itself to allow performing pure buckling mode numerical analysis. Two corner models were 

elaborated and evaluated. 

The first model was a so-called rigid corner model where the displacement of the corner nodes 

are assigned to a virtual (reference) node at the intersection of the flat parts, creating a sharp 

corner cross-section equivalent to the original rounded corner one as shown in Figure 8. 

 

          a) FSM model with rounded corner          b) rigid corner element and its reference point 

 

      c) effective DOF of the rounded-corner model     d) DOF of a similar sharp-corner model 

Figure 8: Illustration of the rigid-corner approach 
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The performance of the model is then compared to conventional and constrained FSM analysis 

results performed on both rounded and sharp corner members. Since, as mentioned above, the 

rounded corner cFSM analysis does not produce correct results, the extrapolation method 

served as the comparison basis in this case. Although this introduces some uncertainty in the 

interpretations of the results, it still renders drawing general conclusions possible. 

To evaluate the performance of the rigid-corner approach, the differences between critical 

values delivered by the rigid-corner and rounded-corner models are determined. The difference 

(‘rigid’-‘rounded’)/’rounded’ is calculated for both the all-mode and pure-mode solutions, and 

presented in Figure 9. To help identifying the type of buckling modes, a signature curve for the 

given cross-section is also shown in the figure. 

The results show that the rigid corner model leads to reasonable results; however, it tends to 

overestimate systematically the critical loads, especially if the corner radius is large. The reason 

of this lies in the simplicity of the model; the rigid corner brings an additional rigidity to the 

corner zones of the cross-section which modifies the overall behaviour. 

 

Figure 9: Differences between critical load results of rigid-corner and rounded-corner 

calculations, 160-60-15-4-1.5 member 

Elastic corner model 

The rigid-corner model proved that creating a mechanical model for the rounded corner element 

is a good approach. An improved modelling technique named elastic corner model was 

developed where the displacement of the corner nodes is derived from the displacement of the 

nodes of the flat plates, therefore, the corner nodes themselves were excluded from the 

numerical analysis. The principle of this approach is illustrated in Figure 10. 
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Figure 10: Principle of the elastic corner model 

The performance of the elastic model was evaluated in the same way as the rigid corner model, 

illustrated in Figure 11. 

 

Figure 11: Differences between critical load results from elastic-corner and rounded-corner 

calculations, 120-60-15-4-1.5 member 

The differences for all-mode options are negligibly small for any length and any cross-section 

shape; however, non-negligible differences exist between the results of pure-mode options. 

Since no theoretical solution is known for the exact pure-mode L or D critical load for cross-

sections with rounded corners, if the calculated difference is non-zero, this is not necessarily 

due to the error of one or the other calculation. However, the pure G critical values from a 
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rounded corner model can be regarded as exact values; therefore, deviation from these values 

is indeed an error. By analysing the illustrative example, it was found that the warping 

distribution of the corner zone wasn’t correct and this resulted in the higher than expected 

critical loads. 

A potential solution for this problem was to apply the in-plane shear modes when calculating 

the pure critical values. Since the so-called warping shear modes do not involve cross-section 

distortion, only warping, thus, when added to the pure modes, they practically do not modify 

the cross-section’s shape. 

Consideration of in-plane shear seems to eliminate the error of the pure G and L modes, since 

the critical load values from the rounded-corner and the elastic-corner options are mostly 

identical. With in-plane shear modes added to pure modes, the difference between pure D 

results from elastic-corner and rounded-corner options is decreasing. The elastic-corner 

approach predicts somewhat larger pure D critical load values, however, as no theoretical 

solution is known for the exact pure D critical load in case of a cross-section with rounded 

corners, it is hard to judge whether one or the other prediction is better or more exact. The 

differences between critical values predicted by the elastic-corner and rounded-corner options 

are also shown in Figure 12. 

 

Figure 12: Differences between critical load results from elastic-corner and rounded-corner 

calculations, with shear deformations, 120-60-15-4-1.5 member 

After carefully studying a typical cross-section, the overall performances of both the rigid and 

elastic models are verified by the statistical analysis of parametric studies on a large number of 

cross-sections. It was concluded that the primary aim, i.e. creating a rounded corner model on 
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which the constrained FSM analysis may be performed was achieved, although, in some cases 

certain overestimation of the critical loads was observed. 

Thesis 3 

I proposed rounded corner mechanical models for cold-formed steel members to be able to 

perform constrained finite strip method analysis on such members. 

3a) I proposed a rigid corner element for modelling thin-walled members with rounded corners 

using the finite strip method. I have demonstrated that the rigid corner element makes the use 

of the constrained finite strip method possible, even when rounded corners are modelled 

directly. I have analysed the effect of the rigid corner element on the critical loads of pure 

buckling modes via illustrative examples and a parametric study with the constrained finite strip 

method. I concluded that the use of the rigid corner element provides buckling results according 

to engineering expectations, but in some cases, it overestimates the critical load. The magnitude 

of the overestimation depends on the cross-section geometry, primarily on the radius of the 

rounded corners and in several cases it isn’t negligible. I concluded that the overestimation is 

partly caused by the rigidity of the corner element, thus when the rigid corner element is applied, 

the error cannot be eliminated. 

3b) I proposed an elastic corner element for modelling thin-walled members with rounded 

corners using the finite strip method. I have demonstrated that the elastic corner element makes 

the use of the constrained finite strip method possible, even when rounded corners are modelled 

directly. I have analysed the effect of the elastic corner element on the critical loads of pure 

buckling modes via illustrative examples and a parametric study with the constrained finite strip 

method. I concluded that the use of the elastic corner element provides buckling results 

according to engineering expectations, but in some cases, it overestimates the critical load. I 

concluded that the overestimation was caused by the error of the longitudinal displacements, 

and I demonstrated that by applying the shear modes too, this error disappears. The results of 

the application of elastic corner elements show that the rounded corner somewhat increases the 

difference between the finite strip method and constrained finite strip method distortional 

buckling critical loads. 

Related publications: [BZ5], [BZ6], [BZ7], [BZ8] 
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