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Abstract

This dissertation is about automated reasoning. We presentreasoning algorithms and ways in which such
algorithms can be useful for knowledge intensive applications. We will discuss two main topics. The
first topic is Description Logic reasoning. Description Logics (DLs) is a family of logic languages, a
knowledge representation formalism that is widely used forbuilding domain ontologies. We developed
various reasoning algorithms that allow for querying DL ontologies, as well as checking the consistency
of an ontology. The second topic is type inference for functional languages. Here, the task is to analyse
an input program and discover as many errors as possible in compile time, to make program development
easier. These topics seem very different at first sight, but they are quite similar at their cores: in both cases
we start out from some initial knowledge (a set of DL axioms inthe first case, an input program and a
set of type restrictions in the second), and we aim to discover some logical properties of the input through
automated reasoning.

The results related to these topics have been implemented intwo software systems. We built a DL
data reasoner called DLog and a type inference tool for the Q functional language calledqtchk. After
presenting the theoretical foundations and algorithms, wereport on the developed systems as well.
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Chapter 1

Introduction

Reasoningis the magic word that binds the chapters of this thesis together. Reasoning is the ability to use
available knowledge to infer something true that has not been stated explicitly. Today, there are numerous
information based systems that aim to represent knowledge in a machine processable way. For such sys-
tems, automated reasoning support is very important: it allows for discovering hidden knowledge, as well
as hidden errors in the knowledge base. Besides, automated reasoning can be used to answer complex user
queries.

In this dissertation I will present work related to two main topics. The first topic is Description Logic
reasoning. Description Logics (DLs) is a family of logic languages, a knowledge representation formalism
that appeared in the early 1990’s and gained wide popularityduring the past two decades. These languages
were designed with the intention to provide a convenient tool for building domain ontologies, while having
clear and well defined semantics. DL ontologies form the basis of the Semantic Web initiative. They also
play an important role in creating a unified vocabulary for medical applications. There are several futher
domains, such as software verification and configuration of complex systems, where Description Logics
were successfully deployed. For all such knowledge intensive applications, efficient reasoning support
plays a crucial role and the success of DLs is strongly tied tothe available reasoning algorithms. We
developed various reasoning algorithms that allow for querying DL ontologies, as well as checking the
consistency of an ontology.

Our second topic is type inference for functional languages. Here, the task is to analyse an input
program and discover as many errors as possible in compile time, to make program development easier.
Although our methods can be applied for functional languagein general, we formulate them in the context
of the Q language. Q is a vector processing language that appeared in 2003. It serves as a query language
for kdb+ database. Q allows for extremely fast processing oflarge arrays of numeric data and has gained
popularity in the financial sector over the past decade. By now, several large investment banks (Morgan
Stanley, Goldman Sachs, Deutsche Bank, Zurich Financial Group, etc.) store and manipulate their data
using Q. Q has a particularly terse syntax that allows for implementing complex calculations quickly,
however, it is very challenging to find programming errors. Automatic error detection can hence be greatly
beneficial for the Q programming community.

These topics seem very different at first sight, but they are quite similar at their cores: in both cases
we start out from some initial knowledge (a set of DL axioms inthe first case, an input program and a
set of type restrictions in the second), and we aim to discover some logical properties of the input through
automated reasoning.

In the following, I list the main research objectives. This is followed by an overview of the dissertation,
where I also highlight my own results. Afterwards, I list my publications. A precise formulation of my
theses will be provided at the very end of the dissertation.

1.1 Problem Formulation

This section summarises the main research objectives that resulted in the dissertation.
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Large scale Description Logic reasoning Description Logics is an important and widely used formalism
for knowledge representation. While existing reasoning support for Description Logics is very sensitive
to the size of the available data, there are lots of application domains – such as reasoning over the web
– that has to cope with really huge amounts of data. The goal ofthis work is to explore novel reasoning
techniques that are applicable in such situations. In particular, it is crucial that the reasoner be not affected
by the size of irrelevant data and to find a way to transform user queries into direct database queries.

1. The primary goal of my work is to find a tranformation schemeof Description Logic axioms into
function-free clauses of first-order logic.

2. This transformation should primarily target theSH I Q Description Logic language.

3. After a successfulSH I Q transformation, the results should be extended to incorporate more refined
language elements, such as complex role inclusion axioms.

4. The results should be implemented in the DLog data reasoning system.

Optimised PTTP execution The Prolog Technology Theorem Prover (PTTP) is a complete first-order
theorem prover built on top of Prolog. This technique plays an important role in the DLog reasoner, hence
any optimisations to this technique have the potential to greatly increase the performance of DLog.

1. Some of the PTTP implementations use an optimisation called loop elimination. However, the sound-
ness of this optimisation has not yet been proved. My goal wasto find a rigorous proof of the
soundness of loop elimination.

Static Type Analysis for the Q functional language Q is a dynamically typed functional programming
language with a very terse and irregular syntax. While the language is widespread in financial applications,
there is no built-in support for debugging and compile-timedetection of errors, which makes program
maintenance very difficult. The goal of this work is to provide Q with a tool that discovers static type
errors in compile-time.

1. The first task is to examine the possibility of static type analysis of Q programs. This task also
involves identifying the type discipline that should be enforced on Q programmers.

2. Devise an algorithm to verify the correctness of user provided type information.

3. Devise an algorithm that discovers as many type errors as possible, without any input from program-
mers.

4. Implement all the algorithms in a tool that can be deployedin industrial environment at Morgan
Stanley Business and Technology Centre, Budapest.

1.2 Thesis Overview

Part 1, which consists of Chapters 2-5, presents our work done in the field of Description Logic reasoning.
Part 2 deals with our results related to type analysis and consists of Chapters 6-8.

Chapter 2

This chapter contains all necessary background information that will be important for understanding the
first part of the thesis. We first introduce resolution theorem proving and logic programming. Afterwards,
we summarise the Description Logic formalism.

2



Chapter 3

In this chapter we present two reasoning calculi that can be used for deciding the consistency of a DL
knowledge base. The first calculus, that we will refer to as the modified calculusis based on first-order
resolution and supports theALC H I Q DL language. We show how this calculus can be used for a two-
phase data reasoning, which scales well and allows for reasoning over really large data sets. Using well
known techniques that reduce aSH I Q knowledge base to an equisatisfiableALC H I Q knowledge base,
we easily extend our results to theSH I Q language, which is the most widely used DL variant.

Result 1.A: I designed the modified calculus. I proved that it is sound, complete and always termi-
nates.

Afterwards, we present a transformation that reduces the task of consistency checking of aR I Q knowl-
edge base into that of anALC H I Q knowledge base. The benefit of this reduction is that the latter task
can be solved using our modified calculus. Our results yield awell scaling reasoning algorithm for the
R I Q language.

Result 1.B: I designed theR I Q to ALC H I Q transformation. I showed that the transformation
preserves the satisfiability of the knowledge base.

In the end of this chapter, we introduce a second calculus called theDL calculus, which is defined
directly on DL expressions, without recourse to first-orderlogic. The DL calculus decides the consistency
of a SH Q terminology.

Result 1.C: I designed the DL calculus. I proved that it is sound, complete and always terminates.

Chapter 4

In this chapter we present an important optimisation technique for the Prolog Technology Theorem Prover
(PTTP), calledloop elimination. This technique allows for avoiding certain kinds of infinite looping in the
reasoning process and is the single most important optimisation for PTTP. We give a thorough proof of the
soundness of loop elimination.

Result 2: I proved that loop elimination is sound, i.e., that it can be employed without missing a
valid solution.

Chapter 5

In this chapter we present the DLog data reasoner system thatcan be used to queryR I Q DL knowledge
bases with really large data sets.

Result 1.D: I implemented the TBox saturation module of the DLog system,which performs the
first phase of reasoning.

Chapter 6

In this chapter we give some background about type inference.

Chapter 7

In this chapter we present a reasoning algorithm that we developed to analyse programs written in the Q
programming language for type correctness. We first presenta type checker that builds on user provided
type information. Afterwards, we introduce a type inference algorithm that can detect type errors even
without any user provided information.

Result 3.A: I designed a type checking algorithm for the Q language.

Result 3.B: I designed a type inference algorithm for the Q language.
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Chapter 8

We present theqtchk type inference tool that analyses Q programs and discovers type errors.

Result 3.C: I implemented both type checking and type inference in the type analysis module of
theqtchk system.
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Chapter 2

Introducing Resolution and Description
Logics

This chapter contains background information that will be important for understanding the subsequent
chapters. First, in Section 2.1 we present first-order resolution, its connection to the Prolog programming
language and the Prolog Technology Theorem Prover (PTTP). Afterwards, in Section 2.2 we introduce
the Description Logic language family. In Section 2.3 we briefly present previous work done in applying
resolution for description logic reasoning.

2.1 Resolution and the Prolog Language

Resolution is one of the first and most widely used methods forproving first order theorems. In this section
we briefly introduce resolution and some of its variants. Afterwards, we present a logic programming
language called Prolog that is based on resolution. In fact,the execution of a Prolog program corresponds
to a resolution proof search for a sublanguage of first-orderlogic that consists of Horn clauses only. Finally,
we present the Prolog Technology Theorem Prover, a full firstorder theorem proving technology that is
built on top of Prolog. The definitions in this section will beimportant for understanding Chapter 3, where
we present some resolution calculi specialised for Description Logic reasoning and also for understanding
Chapter 4, which discusses an improvement on PTTP.

2.1.1 Resolution Theorem Proving

Resolution [46] is a powerful method for proving first-ordertheorems. Directly, it is used to check the
satisfiability of a set of first-order clauses, i.e., whetherthere is a model satisfying all the clauses. However,
all common reasoning tasks – such as entailment analysis – can be easily reduced to satisfiability checking.

Clausesare first-order formulae satisfying the following properties: all variables are universally quan-
tified, all quantifiers are at the beginning of the formula andthe quantifier-free part is a disjunction of
literals, i.e., possibly negated atomic predicates. It is well knownthat any set of first-order formulae can be
translated into a set of clauses (for example, see [18]) thatpreserves the satisfiability of the initial formula
set; in other words they areequisatisfiable. Since all variables in clauses are universally quantified,it is
customary to omit the quantifiers. We will do so in the following.

Resolution defines two inference rules, calledBinary ResolutionandPositive Factoring, presented in
Figure 2.1. In the figure, the clauses above the bar are the premises of the inference and the clause under
the bar is the conclusion.σ is themost general unifierof B andC, i.e., a variable substitution to terms that
satisfies two properties: (1) after the substitutionB andC are identical, i.e.,Bσ =Cσ, and (2)σ is a most
general substitution that satisfies (1). In Figure 2.2, we illustrate the application of the the two inference
rules. On the left side the Binary Resolution rule is used andon the right side the Positive Factoring rule
fires. The most general unifier is the same in both examples: variabley is mapped tox and every other
variable is mapped to itself.
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A∨B ¬C∨D
Aσ∨Dσ

A∨B∨C
Aσ∨Cσ

Figure 2.1: Binary Resolution and Positive Factoring

A(x)∨B(x) ¬B(y)∨D(y)
A(x)∨D(x)

A(x)∨B(x)∨B(y)∨D(y)
A(x)∨B(x)∨D(x)

Figure 2.2: Examples illustrating the Binary Resolution and Positive Factoring inference rules

Theorem 1. Binary Resolution and Positive Factoring yield a calculus that issoundandcomplete. This
means that a set of clauses is inconsistent if and only if there is a finite series of clauses C1,C2, . . . ,Cn =�,
where� denotes the empty clause, such that each clause is either a member of the initial clause set or is
obtained as a conclusion of Binary Resolution or Positive Factoring with premises selected from preceding
clauses.

A proof of Theorem 1 can be found, for example, in [46].

Linear resolution As Theorem 1 indicates, resolution captures logical entailment very well. However,
finding a deduction of the empty clause to show inconsistencycan be rather tedious as we are given no
guidance as to what clauses should be resolved in what order.To address this, various selection strategies
have been devised, among themlinear resolution.

Linear resolution is motivated by the idea that if we add a clause to a set of clauses that is considered
consistent, then we only have to check the interactions thatthe new clause can have with the rest. Hence,
in the first step, we resolve the new clause with some other, and in all subsequent steps, one of the premises
will be the conclusion of the preceding step. Unfortunately, while in linear resolution the number of pos-
sible deductions is greatly decreased, we lose completeness. However, linear resolution remains complete
for a restricted type of clauses that contain at most one positive literal, calledHorn clauses. Besides, as it
is shown in [34], linear resolution can be extended with a technique calledancestor resolution(see below
in Subsection 2.1.3) which yields a complete calculus for the whole of first-order logic.

Ordered Resolution Ordered resolution [5] refines this technique by imposing anorder in which the
literals of a clause have to be resolved. This reduces the search space while preserving completeness. It is
parametrised with anadmissible ordering (≻) on literals and aselection function.

Basic Superposition Basic superposition [4] is an extension of ordered resolution which has explicit
inference rules for handling equality. The rules are summarised in Figure 2.3, whereE|p is a subexpression
of E in positionp, E[t]p is the expression obtained by replacingE|p in E with t, C andD denote clauses,
A andB denote literals without equality andE is an arbitrary literal. The necessary conditions for the
applicability of each rule are given in the following list:

Hyperresolution: (i) σ is the most general unifier such thatAiσ = Biσ, (ii) eachAiσ is maximal
in Ciσ, and there is no selected literal in(Ci ∨Ai)σ, (iii) either every¬Bi is selected, orn = 1 and
nothing is selected and¬B1σ is maximal inDσ.

Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal inCσ and nothing is selected inAσ∨
Bσ∨Cσ.

Equality factoring : (i) σ = MGU(s,s′), (ii) t σ 6≻ sσ, (iii) t ′σ 6≻ s′σ, (iv) (s= t)σ is maximal in
(C∨s′ = t ′)σ and nothing is selected in(C∨s= t ∨s′ = t ′)σ.

Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C∨s 6= t)σ either(s 6= t)σ is selected or nothing
is selected and(s 6= t)σ is maximal inCσ.

Superposition: (i) σ = MGU(s,E|p), (ii) t σ 6≻ sσ, (iii) if E = ′w= v′ andE|p is in w thenvσ 6≻ wσ
and(sσ = tσ) 6≻ (wσ = vσ), (iv) (s= t)σ is maximal inCσ and nothing is selected in(C∨s= t)σ,
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Hyperresolution (C1∨A1)...(Cn∨An) (D∨¬B1∨···∨¬Bn)
(C1∨···∨Cn∨D)σ

Positive factoring A∨B∨C
Aσ∨Cσ

Equality factoring C∨s=t∨s′=t′
(C∨t 6=t′∨s′=t′)σ

Reflexivity resolution C∨s6=t
Cσ

Superposition (C∨s=t) (D∨E)
(C∨D∨E[t]p)σ

Figure 2.3: Inference rules of Basic Superposition

(v) in (D∨E)σ eitherEσ is selected or nothing is selected andEσ is maximal,(vi) E|p is not a
variable position.

An important feature of basic superposition is that it remains complete even if we do not allow super-
position into variables or terms substituted for variables. For this reason we keep track of such positions,
by surrounding them with ’[ ]’ and refer to them asvariable positionsor marked positions. So, for instance,
applying substitutionσ = {x/g(y)} to clauseC= R(x,y)∨P(x) results inCσ = R([g(y)],y)∨P([g(y)]).

2.1.2 Programming in Prolog

Prolog [45] is a declarative programming language equippedwith a built-in logical inference mechanism
that corresponds to linear resolution. This mechanism is complete for Horn clauses, which correspond
directly to Prolog rules. A rule has three parts: a head containing the only positive literal, the symbol’:-’
and a body which is the list of negative literals without negation, separated by commas. So, for instance,
the Horn clauseP(X)∨¬Q1(X)∨¬R(X,Y)∨¬Q2(Y) corresponds to the Prolog rule

P(X) :− Q1(X), R(X,Y), Q2(Y).

The semantics of this rule is as follows: if all atoms in the body are true, then so is the atom in the head. A
Prolog program is a set of rules that can be used to prove a query atom, calledgoal. The program will try
to unify the goal with some rule head, and in case of a successful unification, it will recursively try to prove
each statement in the body. If the goal matches more than one rule head, then the program remembers this
by creating a so calledchoice pointand proceeds with the first matching rule. If we manage to unify the
goal with a bodiless rule head, then the goal is proved. If theinference fails, because there is no matching
rule head, then we roll back to the last choice point and proceed with the next matching rule. This algorithm
corresponds to linear resolution that starts from the negation of the query and that is always resolved in
its first literal. This mechanism is very efficient in that it starts out from the goal and examines only those
rules that have a potential to answer it.

2.1.3 Prolog Technology Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) was developed by Mark E. Stickel in the late
1980’s [51]. PTTP is a sound and complete first-order theoremprover, built on top of Prolog. An arbitrary
set of general clauses is transformed into a set of Horn-clauses that correspond to Prolog rules. Prolog
execution on these rules yields first-order logic reasoning.

In PTTP, to each first-order clause we assign a set of Horn-clauses, the so-calledcontrapositives. The
first-order clauseL1∨L2∨·· ·∨Ln hasn contrapositives of the formLk←¬L1, . . . ,¬Lk−1,¬Lk+1, . . . ,¬Ln,
for each 1≤ k≤ n. Having removed double negations, the remaining negationsare eliminated by intro-
ducing new predicate names for negated literals. For each predicate nameP a new predicate namenot_P
is introduced, and all occurrences of¬P(X) are replaced withnot_P(X), both in the head and in the body.
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The link between the separate predicatesP andnot_P is provided usingancestor resolution, see below. For
example, the clauseA(X)∨¬B(X)∨¬R(X,Y) is translated into three Prolog rules, each with different rule
head:

A(X) :- B(X), R(X,Y).
not_B(X) :- not_A(X), R(X,Y).
not_R(X,Y) :- not_A(X), B(X).

Thanks to using contrapositives, each literal of a first-order clause appears in the head of a Horn clause.
This ensures that each literal can participate in a resolution step, in spite of the restricted selection rule of
Prolog.

Next, let us see how PTTP implements positive factoring. Suppose we want to prove the goalA and
during execution we obtain the subgoal¬A. What this means is that by this time we have inferred a rule,
according to which if a series of goals starting with¬A is true, thenA follows:

A← not_A, P1, P2, . . .Pk.

The logically equivalent first-order clause is

A∨A∨¬P1∨¬P2∨·· ·∨¬Pk

from which we see immediately that the two occurrences ofA can be unified, so there is no need to prove
the subgoalnot_A. This step is calledancestor resolution[34], which corresponds to the positive factoring
inference rule. Ancestor resolution is implemented in Prolog by building anancestor listwhich contains
openpredicate calls (i.e. goals that we started but have not yet finished proving).

Ancestor resolution is the inference step that checks if theancestor list contains a goal which can be
matched with the negation of the current goal. If this is the case, then the current goal succeeds and
the unification with the ancestor element is performed. Notethat in order to retain completeness, as an
alternative to ancestor resolution, one has to try to prove the current goal using normal resolution, too. This
is important if the ancestor element contains variables anda different proof can yield a different variable
substitution.

There are two further features in the PTTP approach. First, to avoid infinite loops, iterative deepening
is used instead of the standard depth-first Prolog search strategy. Second, in contrast with most Prolog
systems, PTTP uses occurs check during unification, i.e., for example termsX and f (X) are not allowed to
be unified because this would result in a term of infinite depth.

To sum up, PTTP uses five techniques to build a first-order theorem prover on the top of Prolog:
contrapositives, renaming of negated literals, ancestor resolution, iterative deepening, and occurs check.

2.2 Description Logics

Description Logics (DLs) [26] is family of logic languages designed to be a convenient means of knowledge
representation. These languages can be embedded into first-order logic, but – contrary to the latter – they
are mostly decidable which gives them a great practical applicability. Description Logics provide the
logical background for the Web Ontology Language (OWL [27] and OWL2 [21]).

A DL knowledge baseKB consists of two parts: the TBox (terminology box) and the ABox (assertion
box). The TBox contains universal knowledge that holds in a specific domain. The ABox stores knowledge
about individuals. We refer to the TBox part of the knowledgebase asKBT and to the ABox asKBA .

The main building blocks of a DL knowledge base areconcepts, that represent sets of individuals and
roles that represent binary relations, i.e., sets of pairs of individuals. Complex concepts and roles can be
built from simpler ones using concept and role constructors: the set of available constructors determines
the expressivity of the language and naturally defines a language family. In the following we introduce the
most important DL languages. These definitions will be important for understanding Chapter 3, where we
present various calculi to perform Description Logic reasoning.
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2.2.1 TheAL language and its extensions

The AL language allows for describing simple relationships between concepts and roles. In particular,
we can state that two concepts are identical or that one concept is a subset of another. These statements
constitute the TBox. Besides, the ABox holds assertions stating that some named individual belongs to the
extension of a concept or that the relationship representedby a role holds between two named individuals.

The syntax of theAL language is given with respect to a setNI of individual names, a setNC of atomic
concept names and a setNR of atomic role names. From these, we define the set ofAL-concepts to be
the smallest set such that 1) every concept name is a concept,2)⊤ and⊥ are concepts, and 3) ifC,D are
concepts,A is an atomic concept andR is a role, then¬A, C⊓D, ∀R.C and∃R.T are also concepts.

Let a,b be individual names,C,D concept names andRa role name. AnAL TBox is a list of axioms of
the formC≡D (concept equivalence axiom) andC⊑D (concept inclusion axiom). An AL ABox contains
axioms of the formC(a) andR(a,b).

The semantics ofAL is defined as follows:

Definition 1 (interpretation). An interpretation I= (∆I , ·I ) consists of a set∆I called thedomainof I and
a valuation·I which maps every concept to a subset of∆I , every role to a subset of∆I ×∆I and every
individual name to a member of∆I such that, for all concepts C,D roles R,S and nonnegative integers n,
the following equations hold, where♯S denotes the cardinality of a set S:

⊤I = ∆I

⊥I = /0

(¬A)I = ∆I \CI

(C⊓D)I = CI ∩DI

(∀R.C)I =
{

x | ∀y : 〈x,y〉 ∈RI → y∈CI}

(∃R.⊤)I =
{

x | ∃y : 〈x,y〉 ∈ RI}

An interpretation Isatisfies

• terminologyT if and only if CI ⊆ DI for each C⊑ D ∈ T and CI = DI for each C≡ D ∈ T . In this
case we say that I is a model ofT .

• ABoxA if and only if aI ∈CI for each C(a) ∈ A and〈aI ,bI 〉 ∈ RI for each R(a,b) ∈ A . In this case
we say that I is a model ofA .

A knowledge baseKB is said to besatisfiablein case there exists an interpretationI which is a model
of KBT andKBA .

A concept equivalence axiomC≡D is logically equivalent to two concept inclusion axioms:C⊑D and
D⊑C. Consequently, without loss of generality, we will sometimes treat the TBox as containing concept
inclusion axioms only.

Let R be a role name anda,b individual names. If〈aI ,bI 〉 ∈ RI for some interpretationI , then we say
thatbI is anR-successorof aI in that interpretation. When it leads to no misunderstanding we will simply
say thatb is anR-successor ofa.

Several language extensions exist for theAL language, which add new concept constructors. Each
extension has a letter associated with it and the name of an extended language is obtained by adding the
corresponding letters to theAL prefix. So, for example,AL extended withC andQ yields theALC Q
language. In the following, we introduce the most importantlanguage extensions.

C The AL language only allows negation in front of atomic concept. Wecan lift this restriction, by
allowing negation to be applied to any concept. Thus we obtain theALC language.
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U This extension introduces the union constructor (⊔), i.e., a concept can be the union of two concepts.
The syntax and semantics of this language extension is:

(C⊔D)I = CI ∪DI

E The simple existential restriction (∃R.⊤) in AL allows for describing individuals who appear in the
domain of some relationR. With full existential restriction (∃R.C), we can also prescribe that theR-
successors be in some conceptC. Syntactically, what changes is that we allow arbitrary concepts in place
of the⊤ concept:

(∃R.C)I =
{

x | ∃y : 〈x,y〉 ∈ RI ∧y∈CI}

N We add unqualified number restrictions of the form(≤ nR) and(≥nR) that define the set of individuals
having at least or at mostn R-successors:

(≤ nR)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI}≤ n
}

(≥ nR)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI}≥ n
}

Q Qualified number restrictions extend unqualified number restrictions. We can provide a concept that
theR-successors have to satisfy:

(≤ nR.C)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI ∧y∈CI}≤ n
}

(≥ nR.C)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI ∧y∈CI}≥ n
}

One can easily show that the expressive power of full negation (C ) is equivalent to that of the union
constructor (U) and full existential restriction (E) using De Morgan like equivalences, hence we have
ALC = ALUE = ALC E = ALC U = ALC UE . AL , ALE andALU are real sublanguages ofALC
and all these languages are extended by theN andQ extensions.

2.2.2 TheSH I Q language

TheAL language family presented in the previous section is rathersimple, which makes reasoning rather
straightforward. However, there are many domains that can only be described using more sophisticated
language constructs. In this section we introduce theSH I Q language that is probably the best known DL
variant, thanks to a good compromise between complexity andexpressivity. We define the language as a
series of language extensions, introducing theS , SH , SH I andSH I Q languages.

S This language extends theALC language with transitivity axioms of the formTrans(R) for some role
R. Such an axiom is satisfied by all interpretations whereR is a transitive role.

SH TheH extension introduces role hierarchies. The knowledge basecan contain axioms of the form
S⊑RwhereSandRare roles, which expresses that the relation represented byS is a subset of the relation
represented byR, i.e., (S⊑ R)I ⇔ SI ⊆ RI . Given a knowledge base KB, we will call the set of all role
inclusion axioms theRBox(KBR ). Note that defined this way, the RBox is part of the TBox.

SH I So far, we only saw constructors for concepts, that is, we could describe complex concepts, but not
roles. Now, we introduce the inverse role constructor (R−). This is an important extension since ontology
developers often need to refer to the inverse of some role:

(R−)I =
{

(x,y) | (y,x) ∈ RI}

14



SH I Q The SH I Q language is obtained by extendingSH I with qualified number restrictions (Q ).
This language has been the most important DL language of the last decade – it also forms the logical basis
of OWL1, the first Web Ontology Language – and only recently has attention shifted towards even more
expressive variants. The subsequent chapters will deal greatly with SH I Q reasoning, hence we now repeat
and summarize the definitions that make up this language:

Definition 2 (SH I Q ). Let NC be a set of concept names andNR a set of role names. The set of roles is
NR ⊔

{

R− | R∈NR

}

. We define the function Inv on roles such that Inv(R) = R− if R∈NR and Inv(R−) =
R.

A role inclusion axiom(RIA) is an expression of the form R⊑ S, where R,S are roles. Atransitivity
axiom is of the form Trans(R) where R is a role. ASH I Q -role hierarchy, also called aSH I Q RBox, is
a set of role inclusion axioms together with a set of transitivity axioms. For an RBoxR we define⊑∗ to be
a transitive-reflexive closure of⊑ overR ∪{Inv(R)⊑ Inv(S)|R⊑ S∈ R }. Role S is called asub-roleof R
if S⊑∗ R. A role issimpleif it has no sub-role S such that Trans(S) ∈ R .

The set ofSH I Q -concepts is the smallest set such that 1) every concept nameis a concept, 2)⊤ and
⊥ are concepts and 3) if C,D are concepts, R is a role, S is a simple role and n is a nonnegative integer,
then C⊔D, C⊓D, ¬C, ∀R.C, ∃R.C,≤ nS.C and≥ nS.C are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C⊑ D for two SH I Q -concepts
C,D. A SH I Q -terminology, also called aSH I Q TBox is a set of GCIs, extended with aSH I Q RBox.

Let NI = {a,b,c, . . .} be a set of individual names. Anassertionis of the form C(a), R(a,b), a= b or
a 6= b for a,b∈NI , a role R andSH I Q -concept C. AnABox is a set of assertions.

A SH I Q knowledge base KB can be broken into two parts: an ABox (KBA) and a terminology (KBT ).
The part of the terminology that relates to roles is called the role hierarchy (KBR ).

The semantics ofSH I Q is defined as follows:

Definition 3 (interpretation). An interpretation I= (∆I , ·I ) consists of a set∆I called thedomainof I and
a valuation·I which maps every concept to a subset of∆I , every role to a subset of∆I ×∆I and every
individual name to a member of∆I such that, for all concepts C,D roles R,S and nonnegative integers n,
the following equations hold, where♯S denotes the cardinality of a set S:

(R−)I =
{

(x,y) | (y,x) ∈ RI}

⊤I = ∆I

⊥I = /0

(¬C)I = ∆I \CI

(C⊓D)I = CI ∩DI

(C⊔D)I = CI ∪DI

(∀R.C)I =
{

x | ∀y : 〈x,y〉 ∈ RI → y∈CI}

(∃R.C)I =
{

x | ∃y : 〈x,y〉 ∈RI ∧y∈CI}

(≤ nR.C)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI ∧y∈CI}≤ n
}

(≥ nR.C)I =
{

x | ♯
{

y | 〈x,y〉 ∈ RI ∧y∈CI}≥ n
}

An interpretation Isatisfies

• role hierarchyR if and only if SI ⊆RI for each S⊑R∈R and RI is transitive for each Trans(R)∈R .
In this case we say that I is a model ofR .

• terminologyT if and only if it satisfies the contained role hierarchy and CI ⊆ DI for each GCI
C⊑ D ∈ T . In this case we say that I is a model ofT .

• ABoxA if and only if aI ∈CI for each C(a) ∈ A , 〈aI ,bI 〉 ∈ RI for each R(a,b) ∈ A , aI = bI for each
a= b∈ A and aI 6= bI for each a6= b∈ A . In this case we say that I is a model ofA .

A SH I Q knowledge baseKB is said to besatisfiablein case there exists an interpretationI which is a
model ofKBT andKBA .
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2.2.3 TheR I Q language

In SH I Q we only allowed RIAs of the formS⊑R for (possibly inverse) rolesRandS. Besides, we could
declare that some roles are transitive. With transitivity,we can make statements like:The friend of a friend
is a friendor thatIf A is located in B and B is located in C then A is located in C.However, often it would
also be convenient to be able to say things likeThe wife of a friend is a friend as wellor thatIf A is located
in B and B is a subdivision of C, then A is located in C. It might also be useful in an ontology of family
relations to say thatThe mother of a spouse is a mother-in-law. Motivated by these examples, we introduce
generalised RIAs:

Definition 4 (generalised role inclusion axiom). A generalised role inclusion axiom (RIA) is of the form
w⊑ R where R is an atomic role name and w= S1 ◦S2◦ . . .Sn, i.e., w is obtained by composing n roles. A
generalised role hierarchy is a set of generalised RIAs.

In the following, when it leads to no ambiguity, we will indicate composition of roles by simply writing
them after each other, i.e., instead ofS1 ◦S2 we will write S1S2. RestrictingR to atomic roles is no real
restriction and is only meant to make the syntax simpler. Note that the axiomw ⊑ R is equivalent to
Inv(w)⊑ Inv(R), hence we can always choose the one in which the right hand side is an atomic role name.
In the presence of generalised RIAs, there is no need for transitivity axioms, since the RIARR⊑Rcaptures
the transitivity ofR.

Introducing generalised RIAs toSH I Q leads to undecidability in general ([28]). However, we will
focus on an important decidable subcase, when the role hierarchy isregular:

Definition 5 (regular role hierarchy). Let≺ be a strict partial order on roles. A generalised RIA of the
form w⊑ R is≺-regular if

• w= RR or

• w= R− or

• w= S1S2 . . .Sn and Si ≺ R for i∈ {1. . .n} or

• w= RS1S2 . . .Sn and Si ≺ R for i∈ {1. . .n} or

• w= S1S2 . . .SnR and Si ≺ R for i∈ {1. . .n}

A generalised role hierarchy is regular if there exists a strict partial order≺ such that each RIA is≺-
regular. The semantics is defined analogously toSH I Q , i.e., a modelI satisfies a RIA w⊑ R if wI ⊆ RI .
The Description LogicR I Q 1 is obtained fromSH I Q by replacing role hierarchies and transitivity axioms
with regular role hierarchies.

With the change of the role hierarchy, the definition of simple roles changes as well:

• Every role name that does not occur on the right hand side of a RIA is simple.

• A role name R is simple if, for each RIA w⊑ R,w= S for some simple role S.

• An inverse role S− is simple if S is simple.

2.2.4 The reasoning task

We list the most important DL reasoning tasks:

1. Is a set of DL axioms satisfiable? In other words, can one finda model that satisfies all the axioms?

2. Is an axiom logically entailed by some set of axioms?

3. Is one concept subsumed by another, i.e., is it true that any individual that belongs to the first neces-
sarily belongs to the second?

1Note thatR I Q is sometimes defined to only allow RIAs where the left hand side contains at most two roles. Our more general
definition follows [28].
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4. Are two concepts equivalent, i.e., do they have the same extensions in all interpretations?

5. Are two concepts disjoint?

6. Is a concept satisfiable with respect to a TBox?

For sufficiently expressive languages, one can easily show that these reasoning tasks can be reduced to each
other. In particular, all reasoning problems can be rephrased as satisfiability checking.

Theorem 2. For any DL language that contains full negation (fromALC upwards), the following reason-
ing tasks can be reduced to satisfiability checking:

1. Is axiom Q logically entailed by the set of axioms KB?

2. Is concept C subsumed by concept D (C⊑ D)?

3. Are concepts C and D equivalent?

4. Are concepts C and D disjoint?

5. Is concept C satisfiable with respect to TBoxT ?

Proof. (1) Q is logically entailed byKB exactly whenKB∪{¬Q} is not satisfiable. (2)C is subsumed by
D exactly when(C⊓¬D) is not satisfiable. (3)C andD are equivalent exactly when neither(C⊓¬D) nor
(D⊓¬C) is satisfiable. (4)C andD are disjoint exactly when(C⊓D) is not satisfiable. (5) Take a roleR
that appears neither inT nor inC. Let us consider a new TBoxT ′ = T ∪{⊤ ⊑ ∃R.C}. Given thatR is a
new role name, it is easy to see that the newly added axiom willonly introduce inconsistency to the TBox
if C is unsatisfiable.C is satisfiable in the presence of TBoxT if and only if T ′ is consistent.

Thanks to Theorem 2, we can afford to address only satisfiability checking when we build algorithms
for DL reasoning. We will do so in the rest of the dissertation.

2.3 Resolution Based Reasoning for Description Logics

In [41] a resolution based theorem proving algorithm for theSH I Q DL language is presented. Our results
presented in Chapter 3 provide various extensions to this algorithm.

In the first step, transitivity axioms are eliminated, at theexpense of adding some new GCIs. The
language obtained fromSH I Q by eliminating transitivity is calledALC H I Q . The obtainedALC H I Q
knowledge base is not logically equivalent to the original one, however [41] proves that the two knowledge
bases are equisatisfiable.

In the following definition,NNF(C) denotes the negation normal form ofC, i.e., negation is pushed
inwards to atomic concepts.

Definition 6 (concept closure). For a SH I Q knowledge base KB,clos(KB) denotes the smallest set of
concepts that satisfies the following conditions:

• if C ⊑ D ∈ KB, then NNF(¬C⊔D) ∈ clos(KB);

• if C ≡ D ∈ KB, then NNF(¬C⊔D) ∈ clos(KB) and NNF(¬D⊔C) ∈ clos(KB);

• if C(a) ∈ KB then NNF(C) ∈ clos(KB);

• if C ∈ clos(KB) and D is a subconcept of C then D∈ clos(KB);

• if (≤ nR.C) ∈ clos(KB) then NNF(¬C) ∈ clos(KB);

• if ∀R.C∈ clos(KB), S⊑∗ R, and Trans(S) ∈ KBR , then∀S.C∈ clos(KB).

We call clos(KB) theconcept closure of KB.
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Definition 7 (Ω(KB)). For anySH I Q DL knowledge base KB,Ω(KB) is anALC H I Q knowledge base
constructed as follows:

• Ω(KB)T is obtained from KBT by removing all axioms Trans(R) and adding for each concept
∀R.C∈ clos(KB) and role S such that S⊑∗ R and Trans(S) ∈ KBR the axiom∀R.C⊑ ∀S.(∀S.C);

• Ω(KB)A = KBA

Proposition 1. KB is satisfiable if and only ifΩ(KB) is satisfiable.

Proof. See [41].

After eliminating transitivity axioms, the knowledge base, together with the negation of the query
is transformed into a set of first-order clauses with a characteristic structure. These are referred to as
ALC H I Q clauses and are summarised in Figure 2.4, where:

• P(t) is a possibly empty disjunction(¬)P1(t)∨·· ·∨ (¬)Pn(t) of unary literals;

• P(f(x)): is a possibly empty disjunctionP1( f1(x))∨·· ·∨Pn( fn(x));

• t is a term that is surely not marked;

• [t] is a term that is surely marked;

• <t> is a term that may or may not be marked;

• #∈ {=, 6=};

Figure 2.4:ALC H I Q clauses

¬R(x,y)∨S(y,x) (c1)

¬R(x,y)∨S(x,y) (c2)

P(x)∨R(x,< f (x) >) (c3)

P(x)∨R([ f (x)],x) (c4)

P1(x)∨P2(< f(x)>)∨
∨

(< fi(x)> #< f j (x)>) (c5)

P1(x)∨P2([g(x)])∨P3(< f([g(x)])>)
∨

(< ti > #< t j >) (c6)

whereti andt j are of the formf ([g(x)]) or of the formx

P1(x)∨
n∨

i=1

(¬R(x,yi)∨
n∨

i=1

P2(yi)∨
n×n∨

i, j=1

(yi = y j) (c7)

R(< a>,< b>)∨P(< t >)∨
∨

(< ti > #< t j >) (c8)

wheret, ti andt j are either a constant or a termfi([a])

The reasoning task is reduced to deciding whether the obtained first-order clauses are satisfiable. This
is answered using basic superposition (see Subsection 2.1.1) extended with a method calleddecomposition.
[41] shows that the set ofALC H I Q clauses is bounded and that any inference with premises taken from
a subset N ofALC H I Q results in either(i) an ALC H I Q clause or(ii) a clause redundant in N2 or
(iii) a clause that can be decomposed to, i.e., substituted with two ALC H I Q clauses without affecting
satisfiability. These results guarantee that the saturation of anALC H I Q set terminates.

2A redundant clause is a special case of other clauses in N and can be removed.
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2.3.1 Separating TBox and ABox Reasoning

The drawback of the resolution algorithm outlined above is that it can be painfully slow. In general, resolu-
tion with saturation is a bottom-up strategy and computes all logical consequences of the clause set, many
of which are irrelevant to deciding our question. It would benice to be able to use some more efficient,
query oriented, top-down mechanism. Unfortunately, such mechanisms are available only for more restric-
tive languages, such as Horn Clauses. One can get around thisproblem by breaking the reasoning into two
tasks: first perform a saturation based preprocessing to deduce whatever could not be deduced otherwise
and then use a fast top-down reasoner.

Note that complex reasoning is required because of the rules(TBox) of the knowledge base and that
in a typical real life situation there is a relatively small TBox and a large ABox. Furthermore, the rules in
the TBox are likely to remain the same over time while the ABoxdata can change continuously. Hence we
would like to move forward all inferences involving the TBoxonly, perform them separately and then let
the fast reasoner (whatever that will be) do the data relatedsteps when a query arrives.

In the framework of basic superposition, when more than one inference steps are applicable, we are free
to choose an order of execution, providing a means to achievethe desired separation. Elements from the
ABox appear only in clauses of type (c8). [41] gives two important results about the role of ABox axioms
in the saturation process:

Proposition 2. An inference fromALC H I Q clauses results in a conclusion of type(c8) if and only if
there is a premise of type(c8).

Proposition 3. A clause of type(c8)cannot participate in an inference with a clause of type(c4)or (c6).

In light of Proposition 2, we can move forward ABox independent reasoning by first performing all
inference steps involving only clauses of type (c1) – (c7). [41] calls this phase the saturation of the TBox.
Afterwards, Proposition 3 allows us to eliminate clauses oftype (c4) and (c6). Besides making the clause
set smaller, this elimination is crucial because in the remaining clauses there can be no function symbol
embedded into another (this only occurred in clauses of type(c6)). The importance of this result comes
out in the second phase of the reasoning, because the available top down mechanisms are rather sensitive
to the presence of function symbols.

By the end of the first phase, DL reasoning has been reduced to deciding the satisfiability of first-
order clauses of type (c1) - (c3), (c5), (c7) and (c8), where every further inference involves at least one
premise of type (c8). For the second phase, i.e., data reasoning, [41] uses a Datalog engine which requires
function-free clauses. Therefore (unary) functional relations are transformed to new binary predicates and
new constant names are added: for each constanta and each functionf the new constantaf is introduced
to representf (a). Note that this transformation requires processing the whole ABox.
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Chapter 3

Resolution based Methods for
Description Logic Reasoning

In this chapter we present our results related to resolutionbased Description Logic reasoning. After an
overview of related work, we present a resolution calculus in Section 3.2 that is a modified version of
basic superposition. This calculus is specialised forALC H I Q reasoning. In Section 3.3 we extend these
results to theR I Q language by giving a transformation that maps anyR I Q DL knowledge base to an
equisatisfiableALC H I Q knowledge base. Section 3.4 presents our work that aims to improve efficiency
by moving the resolution based reasoning from the level of first-order clauses to DL axioms, i.e. define a
calculus directly on DL expressions.

3.1 Related work

Description Logic languages are used more and more frequently for knowledge representation, which cre-
ates an increasing demand for efficient automated DL reasoning. The Tableau Method [2] has long pro-
vided the theoretical background for DL reasoning and most existing DL reasoners implement some of
its numerous variants. The typical DL reasoning tasks can bereduced to consistency checking and this is
exactly what the Tableau Method provides. While the Tableauitself has proven to be very efficient, the
reduction to consistency check is rather costly for some reasoning tasks. In particular, the ABox reasoning
taskinstance retrievalrequires running the Tableau Method for every single individual that appears in the
knowledge base. Several techniques have been developed to make tableau-based reasoning more efficient
on large data sets, (see e.g. [22]), that are used by the state-of-the-art DL reasoners, such as RacerPro [23]
or Pellet [50].

Other approaches use first-order resolution for reasoning.A resolution-based inference algorithm is
described in [30] which is not as sensitive to the increase ofthe ABox size as the tableau-based methods.
The system KAON2 [41] is an implementation of this approach,providing reasoning services over the
description logic languageSH I Q . The algorithm used in KAON2 in itself is not any more efficient for
instance retrieval than the Tableau, but several steps thatinvolve only the TBox can be performed before
accessing the ABox, after which some axioms can be eliminated because they play no further role in the
reasoning. This yields a qualitatively simpler set of axioms which then can be used for an efficient, query
driven data reasoning. For the second phase of reasoning KAON2 uses a disjunctive datalog engine and
not the original calculus. Thanks to the preprocessing, query answering is very focused, i.e., it accesses as
little part of the ABox as possible. However, in order for this to work, KAON2 still needs to go through the
whole ABox once at the end of the first phase.

Reading the whole ABox is not a feasible option in case the ABox is bigger than the available memory
or the content of the ABox changes so frequently that on-the-fly ABox access is an utmost necessity.
Typical such scenarios include reasoning on web-scale or using description logic ontologies directly on top
of existing information sources, such as in a DL based information integration system.
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During the past years, we have developed a DL ABox reasoner called DLog [39], that can be freely
downloaded fromhttp://dlog-reasoner.sourceforge.net, which is built on principles similar to
those of KAON2. We only highlight two main differences. First, instead of a Datalog engine, we use the
reasoning mechanism of the Prolog language [11] to perform the second phase (see [37]). Second, we use
a modified resolution calculus (see [57]) that allows us to perform more inference steps in the first phase,
thanks to which more axioms can be eliminated, yielding an even simpler set of axioms to work with in
the second phase. The important difference is that while theapproach of [41] can only guarantee that
there are no nested functional symbols, our calculus ensures that no function symbols remain at all. This
makes the subsequent reasoning easier and we can perform focused, query driven reasoning without any
transformation that would require going through the ABox even once.

3.2 Translating anALC H I Q TBox to function-free clauses

Following the framework presented in Section 2.3, we break the reasoning task into two parts: the first
phase works only with the terminology part (TBox) of the knowledge base and the second phase consti-
tutes the data (ABox) reasoning. Note that complex reasoning is required due to the complex background
knowledge stored in the TBox, while in a typical real life situation there is a relatively small TBox and a
large ABox. Furthermore, the rules in the TBox are likely to remain the same over time while the ABox
data can change continuously. Hence, if we manage to move forward all inferences involving the TBox
only and perform them separately, then the slow reasoning algorithm required by the complexity of the
TBox does not take unacceptably much time due to the potentially large size of the ABox. Furthermore,
these inferences need only to be performed once, in a preprocessing phase. Afterwards, the second phase of
reasoning can be performed by a fast and focused data reasoner. Each time queries arrive, only the second
phase is repeated, to reflect the current state of the ABox.

The input of the reasoner is a DL knowledge base and we want to decide whether the knowledge base
is satisfiable. As we have seen in Theorem 2, this is sufficientfor solving all other DL reasoning tasks. In
the first step we translate the knowledge base into a set ofALC H I Q clauses, as presented in Section 2.3.
We know that anySH I Q knowledge base can be translated intoALC H I Q clauses, hence the calculus
to be presented supports theSH I Q language.

Instead of the standard basic superposition calculus of Section 2.3, we introduce a new, slightly mod-
ified calculus, that allows us to perform more inferences before accessing the ABox. This is not just a
mere regrouping of tasks, we will see that the algorithm produces a crucially simpler input for the second
phase, allowing for more efficient data reasoning algorithms. The improvement is achieved by eliminating
function symbols from the clauses derived from the TBox.

3.2.1 Where Do Functions Come From?

The initial SH I Q DL knowledge base contains no functions.1 However, after translating TBox axioms
to first-order logic, we have to eliminate existential quantifiers using skolemisation which introduces new
function symbols. For example, consider the following axiom which states that rich people have a rich
parent:

Rich⊑ (∃hasParent.Rich)

This can be expressed using the following existentially quantified first-order formula:

∀x(¬Rich(x)∨∃y(hasParent(x,y)∧Rich(y)))

Resolution requires that first-order formulae be translated into clause form, which involves eliminating
existential quantification at the expense of introducing skolem functions. We obtain:

¬Rich(x)∨hasParent(x, f (x))

¬Rich(x)∨Rich( f (x))

1Altough constants are sometimes treated as nullary function symbols, we will not do so. Hence, whenever we refer to function
symbols, constant symbols are not considered.

22



The ABox remains function-free, hence everything that is toknow about the functions is contained in the
TBox. This means we should be able to perform all function-related reasoning before accessing the ABox.

3.2.2 The Modified Calculus

We modify basic superposition presented in Section 2.3 by altering the necessary conditions to apply each
rule. The new conditions are given below, with the newly added conditions underlined:

HyperresolutionTBox: (i) σ is the most general unifier such thatAiσ=Biσ, (ii) eachAiσ is maximal
in Ciσ, andeither there is no selected literal in(Ci ∨Ai)σ or Ai containsa function symbol,(iii)
either every¬Bi is selected, orn= 1 and¬B1σ is maximal inDσ (iv) noneof thepremisescontain
constants.

HyperresolutionABox: (i) σ is the most general unifier such thatAiσ=Biσ, (ii) eachAiσ is maximal
in Ciσ, and there is no selected literal in(Ci ∨Ai)σ, (iii) either every¬Bi is selected, orn = 1 and
nothing is selected and¬B1σ is maximal inDσ, (iv) eachAi is ground,(v) Dσ is function-free.

Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal inCσ andeither nothing is selected in
Aσ∨Bσ∨Cσ or A containsafunctionsymbol.

Equality factoring : (i) σ = MGU(s,s′), (ii) t σ 6≻ sσ, (iii) t ′σ 6≻ s′σ, (iv) (s= t)σ is maximal in
(C∨s′ = t ′)σ andeither nothing is selected inCσ or s= t ∨s′ = t ′ containsafunctionsymbol.

Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C∨ s 6= t)σ either(s 6= t)σ is selectedor s 6= t
containsa functionsymbol or nothing is selected and(s 6= t)σ is maximal inCσ.

Superposition: (i) σ = MGU(s,E|p), (ii) t σ 6≻ sσ, (iii) if E = ′w= v′ andE|p= w|p′ thenvσ 6≻ wσ
and(sσ = tσ) 6≻ (wσ = vσ), (iv) (s= t)σ is maximal inCσ andeither nothing is selected in(C∨s=
t)σ or s= t containsa functionsymbol,(v) in (D∨E)σ eitherEσ is selected or nothing is selected
andEσ is maximal,(vi) E|p is not a variable position.

Note that hyperresolution is broken into two rules (HyperresolutionTBox and HyperresolutionABox)
which differ only in the necessary conditions. In the following by original calculuswe refer to the basic
superposition presented in Section 2.3 and bymodified calculuswe mean the rules of basic superposition
with the restrictions listed above.

We illustrate the difference between the two calculi using asmall example. Suppose we know that
people have at most one child and we also know that everybody has a clever child. We have the following
axioms:

⊤⊑ (≤ 1hasChild.⊤)
⊤⊑ (∃hasChild.Clever)

From these we obtain three first-order clauses:

(1)hasChild(x, f (x))

(2)Clever( f (x))

(3)¬hasChild(x,y)∨¬hasChild(x,z)∨y= z

For any childb, i.e., for anyhasChild(a,b) axiom in the ABox, we can deduceClever(b) using the original
basic superposition calculus through the following steps (the relevant inference rule is indicated after the
conclusion):

(4)hasChild(a,b)

(5) f (a) = b Hyperresolution(3,1,4)

(6)Clever(b) Superposition(5,2)
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What basic superposition cannot deduce is the general rule that every child is clever. This, however, is easy
with the modified calculus:

(7)¬hasChild(x,y)∨y= f (x) HyperresolutionTBox(3,1)

(8)¬hasChild(x,y)∨Clever(y) Superposition(7,2)

From the newly deduced general rule, we can easily obtain thecleverness ofb using HyperresolutionABox
with premises (8) and (4).

The benefit of the modified calculus is that once we deduce (8),we can dispose of (1), (2) and (7), the
clauses containing function symbols. When we start adding the ABox clauses to the reasoning, the TBox
has reduced to the following axioms:

(3)¬hasChild(x,y)∨¬hasChild(x,z)∨y= z

(8)¬hasChild(x,y)∨Clever(y)

In the following we prove that the new calculus can be used to solve the reasoning task.

Proposition 4. The modified calculus remains sound and complete.

Proof. The inference rules of basic superposition are all valid even if we do not impose any restrictions on
their applicability. Since in the new calculus only the conditions are altered, it remains sound.

The modifications that weaken the firing requirements of a rule only extend the deducible set of clauses,
so they do not affect completeness.

In case of hyperresolution, let us first consider only the newcondition(iv) and disregard condition(v)
on HyperresolutionABox. A hyperresolution step in its original form has a main premise of type (c7),
some (possibly zero) side premises of type (c3) – (c4) and some (possibly zero) side premises of type (c8).
This one step can be broken into two by first resolving the mainpremise with all side premises of type (c3)
and (c4) (by one HyperresolutionTBox inference step) and then resolving the rest of selected literals with
side premises of type (c8) (applying a HyperresolutionABoxstep). A hyperresolution step in the original
calculus can be replaced by two steps in the modified one, so completeness is preserved.

All that remains to be proved is that condition(v) on HyperresolutionABox does not invalidate com-
pleteness. For this, let us consider a refutation in the original calculus that uses a hyperresolution step.
If all side premises are of type (c3) and (c4) then it can be substituted with a HyperresolutionTBox step.
Similarly, if all side premises are of type (c8), then we can change it to HyperresolutionABox, as clauses
of type (c7) are function-free, satisfying condition(v). The only other option is that there are both some
premises of type (c3) and of type (c8)2. The result of such step is a clause of the following type:

P1(x)∨
∨

P2(ai)∨
∨

P2([ fi(x)])∨
∨
∨

(ai = a j)∨
∨

([ fi(x)] = [ f j(x)])∨
∨

([ fi(x)] = a j)

At some point each function symbol is eliminated from the clause (by the time we reach the empty clause
everything gets eliminated). In the modified calculus we will be able to build an equivalent refutation
by altering the order of the inference steps: we first apply HyperresolutionTBox which introduces all
the function symbols, but none of the constants, then we bring forward the inference steps that eliminate
function symbols and finally we apply HyperresolutionABox.The intermediary steps between Hyperreso-
lutionTBox and HyperresolutionABox are made possible by the weakening of the corresponding necessary
conditions. Notice, that by the time HyperresolutionABox is applied, functions are eliminated so condition
(v) is satisfied.

We conclude that for any proof tree in the original calculus we can construct a proof tree in the modified
calculus, so the latter is complete.

Proposition 5. Saturation of a set ofALC H I Q clauses using the modified calculus terminates.

2It is shown in [41] that clauses of type (c8) and (c4) participating in an inference result in a redundant clause so we need not
consider this case.
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Proof. We build on the results in [41], that aSH I Q knowledge base can be transformed into first-order
clauses of type (c1) – (c8) and that clauses of type (c8) are ofthe formC(a),R(a,b),¬S(a,b),a=b or a 6= b,
i.e., initially they do not contain any function symbols. Wewill also use the fact that in the original calculus
any inference with premises taken from a subset N ofALC H I Q results in either(i) anALC H I Q clause
or (ii) a clause redundant in N or(iii) a clause that can be substituted with twoALC H I Q clauses via
decomposition.

All modifications (apart from breaking hyperresolution into two) affect clauses having both function
symbols and selected literals, in that we can resolve with the literal containing the function symbol before
eliminating all selected literals. Such a clause can only arise as a descendant of a HyperresolutionTBox
step. After applying HyperresolutionTBox, we can obtain the following clauses:

P1(x)∨
∨

(¬R(x,yi))∨
∨

P2(yi)∨
∨

P2([ fi(x)])∨ (c9)

∨
∨

(yi = y j)∨
∨

([ fi(x)] = [ f j (x)])∨
∨

([ fi(x)] = y j)

In the following, it will be comfortable for us to consider a clause set that is somewhat broader than (c9),
in which function symbols can appear in inequalities as well. This set is:

P1(x)∨
∨

(¬R(x,yi))∨
∨

P2(yi)∨
∨

P2([ fi(x)])∨ (c10)

∨
∨

(yi = y j)∨
∨

(< fi(x)> #< f j (x)>)∨
∨

(< fi(x)> # y j)

where #∈ {=, 6=}. Of course, every clause of type (c9) is of type (c10) as well.
Let us see what kind of inferences can involve clauses of type(c10). First, it can be a superposition

with a clause of type (c3) or (c5). In the case of (c3) the conclusion is decomposed (in terms of [41]) into
clauses of type (c3) and (c10), while in the case of (c5) we obtain a clause of type (c10). Second, we can
resolve clauses of type (c10) with clauses of type (c10) or (c5). The conclusion is of type (c10). Finally,
we can apply HyperresolutionABox with some side premises ofthe formR(a,bi), but notice that only if
the literals with function symbols are missing. The result is of type (c8). This means that during saturation,
we will only produce clauses of type (c1) – (c8) and (c10).

It is easy to see that there can only be a limited number of clauses of type (c10) over a finite signature.
Hence the modified calculus will only generate clauses from afinite set, so the saturation will terminate.

3.2.3 Implementing Two-Phase Reasoning

We will use the modified calculus to solve the reasoning task in two phases. Our separation differs from
that of [41] in that function symbols are eliminated during the first phase, without any recourse to the
ABox. Our method is summarised in Algorithm 1, where steps (1) - (3) constitute the first phase of the
reasoning and step (4) is the second phase, i.e., the data reasoning. Note that one does not necessarily have
to use the modified calculus for the second phase: any calculus that more effectively exploits the fact that
no function symbols remain is applicable.

Algorithm 1 SH I Q reasoning

1. Transform theSH I Q knowledge base to a set of clauses of types (c1) – (c8), where clauses of type
(c8) are function-free.

2. Saturate the TBox clauses (types (c1) – (c7)) with the modified calculus. The obtained clauses are of
type (c1) – (c7) and (c10).

3. Eliminate all clauses containing function symbols.

4. Add the ABox clauses (type (c8)) and saturate the set.

To show that our method is adequate, we first formulate the following proposition:
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Proposition 6. A function-free ground clause can only be resolved with function-free clauses. Further-
more, the resolvent is ground and function-free.

Proof. It follows simply from the fact that a constanta cannot be unified with a termf (x) and from
condition(v) on HyperresolutionABox.

We are now ready to state our main claim:

Theorem 3. Algorithm 1 is a correct, complete and finiteSH I Q DL theorem prover.

Proof. We know from Proposition 5 that saturation with the modified calculus terminates. After saturating
the TBox, every further inference will have at least one premise of type (c8), because the conclusions
inferred after this point are of type (c8) (Proposition 6). From this follows, (using Proposition 6) that
clauses with function symbols will not participate in any further steps, hence they can be removed. In light
of this and taking into account that the modified calculus is correct and complete (Proposition 4), so is
Algorithm 1.

By the end of the first phase of reasoning, we obtain clauses ofthe following types:

¬R(x,y)∨S(y,x) (c11)

¬R(x,y)∨S(x,y) (c12)

P(x) (c13)

P1(x)∨
∨

i

(¬R(x,yi))∨
∨

i

P2(yi)∨
∨

i, j

(yi = y j) (c14)

(¬)R(a,b) (c15)

C(a) (c16)

a= b (c17)

a 6= b (c18)

We have completely eliminated function symbols and are now ready to start the data reasoning.

3.2.4 Benefits of Eliminating Functions

The following list gives some advantages of eliminating function symbols before accessing the ABox.

1. It is moreefficient. Whatever ABox independent reasoning we perform after having accessed the
data will have to be repeated for every possible substitution of variables.

2. It is safer. A top-down reasoner that has to be prepared for arguments containing function symbols
is very prone to fall into infinite loops. Special attention needs to be paid to ensure the reasoner does
not generate goals with ever increasing number of function symbols.

3. We getequality handling for free. In the resulting TBox only clauses of type (c14) contain equality
that can be eliminated by a mere check whether two constants from the ABox refer to the same object
which is usually well known by the creators of the database. Note that equality treatment in general
makes the reasoning task much more complex. This is why we hadto use basic superposition.

4. ABox reasoning without functions isqualitatively easier. Some algorithms, such as those for Dat-
alog reasoning are not available in the presence of functionsymbols. We have seen in Section 2.3.1
that [41] solves this problem by syntactically eliminatingfunctions, but this has two drawbacks:
first, equality reasoning is required (an introduced constant might be equal to an ABox constant) and
second, this transformation requires scanning through thewhole ABox, which might not be feasible
when we have a lot of data.
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3.2.5 Summary

In this section we have presented a saturation algorithm forALC H I Q clauses that can be used to trans-
form a SH I Q TBox to a set of function-free clauses. The transformation is independent of the ABox,
and hence of the size of the ABox. It can be seen as a preprocessing for ABox reasoning and hence any
resolution based ABox reasoning algorithm can make use of it. The main benefit is that without functions
the ABox reasoning can be more focused, i.e., less sensitiveto the size of the ABox.

3.3 Reduction ofR I Q DL reasoning toALC H I Q DL reasoning

R I Q is a Description Logic language that is obtained by extending SH I Q with complex role inclusion
axioms. This extension significantly increases the expressive power of the language and is particularly im-
portant in medical ontologies. It is well known that the complexity of reasoning also increases, namely by
an exponential factor. We designed an algorithm that maps any R I Q knowledge base into an equisatisfi-
ableALC H I Q knowledge base, which isSH I Q without transitivity axioms. The transformation time is
exponential in the size of the initial knowledge base, henceit is asymptotically optimal. The transformation
provides a means to reduceR I Q reasoning toALC H I Q reasoning.

Most of the definitions that will be introduced in the following are based on [28], which gives a tableau
procedure for decidingR I Q . For each roleR, the authors define a non-deterministic finite automaton
(NFA) that captures the role paths that are subsumed byR. These automata are used during the construction
of a tableau, to “keep track” of role paths. In the following we will show that the automata can be used
to transform the initialR I Q knowledge base to an equisatisfiableALC H I Q knowledge base. The main
benefit is that the treatment of the role hierarchy becomes independent of the tableau algorithm. Hence,
any algorithm that decides satisfiability for anALC H I Q knowledge base can be used for satisfiability
checking of aR I Q knowledge base. In particular, the two phase reasoning algorithm that we presented
in Section 3.2 is applicable. This result extends the input language of the DLog reasoner fromSH I Q to
R I Q .

3.3.1 Building automata to represent RIAs

In this subsection we define a scheme for constructing finite automata to represent regular role hierarchies.
We use the same construction as presented in [28].

Definition 8 (AR, ÂR, BR). Let R be a regular role hierarchy. For each role name R occurring inR ,
the NFA AR is defined as follows: AR contains a single initial state iR and a single final state fR with the

transition iR
R−→ fR. Moreover, for each w⊑ R∈ R , AR contains the following transitions:

1. if w= RR, then AR contains fR
ε−→ iR,

2. if w= S1 . . .Sn and S1 6= R 6= Sn, then AR contains iR
ε−→ iw

S1−→ f 1
w

S2−→ f 2
w . . .

Sn−→ f n
w

ε−→ fR

3. if w= RS1 . . .Sn then AR contains fR
ε−→ iw

S1−→ f 1
w

S2−→ f 2
w . . .

Sn−→ f n
w

ε−→ fR

4. if w= S1 . . .SnR then AR contains iR
ε−→ iw

S1−→ f 1
w

S2−→ f 2
w . . .

Sn−→ f n
w

ε−→ iR

where all fiw, iw are assumed to be distinct.
Next, we introduce mirrored copies of automata, where all transitions go backwards and the initial and

final states are switched. Formally, in the mirrored copy of an NFA we carry out the following modifica-
tions:

• final states are made non-final but initial

• initial states are made non-initial but final

• each transition p
S−→ q is replaced with transition q

Inv(S)−−−→ p
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• each transition p
ε−→ q is replaced with transition q

ε−→ p.

We define NFAŝAR as follows:

• if R− ⊑R 6∈ R thenÂR := AR.

• if R− ⊑ R∈ R thenÂR is obtained as follows: first, take the disjoint union of AR with a mirrored
copy of AR. Second, make iR the only initial state, fR the only final state. Finally, for f′R the copy of

fR and i′R the copy of iR, add transitions iR
ε−→ f ′R, f ′R

ε−→ iR, i′R
ε−→ fR and fR

ε−→ i′R.

Afterwards, the NFAs BR are defined inductively over≺:

• if R is minimal w.r.t.≺, then we set BR := ÂR.

• otherwise, BR is the disjoint union ofÂR with a copy B′S of BS for each transition p
S−→ q in ÂR with

S 6= R. Moreover, for each such transition, we addε-transitions from p to the initial state in B′S and
from the final state of B′S to q, and we make iR the only initial state and fR the only final state in BR.

Finally, the automaton BR− is a mirrored copy of BR.

Proposition 7. For each role R∈ R the size of BR is bounded exponentially in the size ofR .

Proof. See [28].

Definition 9 (BR(q,∗), BR(∗,q)). We denote by BR(q,∗) the automaton that differs from BR only in its
initial state, which is q. Analogously, BR(∗,q) differs from BR only in its final state, which is q.

Proposition 8. For a regular role hierarchyR and interpretation I, I is a model ofR if and only if, for each
(possibly inverse) role S occurring inR , each word w∈ L(BS) and each〈x,y〉 ∈ wI , we have〈x,y〉 ∈ SI .

Proof. See [28].

Proposition 8 states that two individuals areS-connected exactly when there is a role pathw between
them accepted byBS. This result gives us a key to handle value restrictions. Suppose individualx satis-
fies someS-restriction. If this is a maximum restriction (≤ kS.C), thenS must be a simple role and the
restriction effects only the immediate neighbours ofx. This case is already treated inSH I Q . If it is a
minimum restriction (≥ kS.C), the restriction can be made true by adding someS-successors tox. The only
problematic case is universal restriction (∀S.C), because finding allS-successors might be rather difficult.
However, Proposition 8 tells us that it is the role paths described byBS that we need to check to look for
S-successors.

3.3.2 A Motivating Example

Before formally defining the transformation of automata generated from the role hierarchy into axioms, we
try to give an intuition through a small example. Suppose therole hierarchy of a knowledge base consists
of the single axiom

PQ⊑ R

whereR,P,Q are role names. One of the things that this axiom tells us is that in case an individualx satisfies
∀R.C for some conceptC, then the individuals connected tox through aP◦Q chain have to be inC. This
consequence can be described easily by the following GCI:

∀R.C⊑ ∀P.∀Q.C

or equivalently, we can introduce new concept names to avoidtoo much nesting of complex concepts:

∀R.C⊑ X1

X1⊑ ∀P.X2

X2⊑ ∀Q.C
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Of course, these axioms only provide for the correct propagation of conceptC and a new set of similar
axioms is required for all other concepts. However, we only need to consider the universal restrictions that
appear as subconcepts of some axiom in the knowledge base. These concepts can be determined by a quick
scan of the initial knowledge base. For example, if the TBox contains the following GCIs:

D⊑ ∀R.C
⊤⊑ ∀R.D

then, only conceptsC andD appear in the scope of a universalR-restriction. Let us add a copy of the above
GCIs for bothC andD and eliminate the role hierarchy. We obtain the following TBox:

D⊑ ∀R.C ⊤⊑ ∀R.D
∀R.C⊑ X1 ∀R.D⊑Y1

X1⊑ ∀P.X2 Y1⊑ ∀P.Y2

X2⊑ ∀Q.C Y2⊑ ∀Q.D

The two knowledge bases have different signatures and hencehave different models, however they are
equisatisfiable. We will prove this by showing that a model ofone knowledge base can be constructed from
a model of the other.

3.3.3 Translating automata to concept inclusion axioms

In this subsection we formally define the transformation of aregular role hierarchy into GCIs. In the end we
obtain anALC H I Q knowledge base. We make use of the notion of concept closure (clos(KB)) provided
in Definition 6. The transformation itself is analogous to how transitivity axioms were eliminated from
SH I Q (Definition 7). Here, the situation is more complex as we haveto take into consideration more
sophisticated role paths.

For each concept∀R.C ∈ clos(KB) and each automaton states of BR, we introduce a new concept
nameX(s,R,C). The concepts associated with the initial and final states ofBR are denoted withX(start,R,C)
andX(stop,R,C), respectively.

Definition 10 (Ω(KB)). For anyR I Q DL knowledge base KB,Ω(KB) is anALC H I Q knowledge base
constructed as follows:

• Ω(KB)T is obtained from KBT by removing all RIAs w⊑R such that R is not simple and adding for
each concept∀R.C∈ clos(KB) the following axioms:

1. ∀R.C⊑ X(start,R,C)

2. X(p,R,C) ⊑ X(q,R,C) for each p
ε−→ q∈ BR

3. X(p,R,C) ⊑ ∀S.X(q,R,C) for each p
S−→ q∈ BR

4. X(stop,R,C) ⊑C

• Ω(KB)A = KBA

Proposition 9. The size ofΩ(KB) is bounded exponentially in the size of KB.

Proof. We know from Proposition 7 that the size of eachBR is bounded exponentially in the size ofKBR

and consequently in the size ofKB. So for each concept∀R.C ∈ clos(KB) we introduce at most expo-
nentially many new GCIs of type 1-4. The size ofclos(KB) is linear inKB, so the total number of GCIs
introduced is at most exponential in the size ofKB.

The following proposition will be useful for proving thatKB andΩ(KB) are equisatisfiable.

Proposition 10. Let KB be someR I Q knowledge base and I be a model ofΩ(KB). Assume thatα ∈
(∀R.C)I and there is someβ and role path w∈ L(BR) such that〈α,β〉 ∈ wI . Thenβ ∈CI .
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Proof. Let w= S1S2 . . .Sn, whereSi is possibly anε transition. Letstart= b0,b1, . . .bn = stopbe states of
BR along thew path. Since〈α,β〉 ∈wI , there are individualsα = a0,a1, . . .an = β such that〈ai−1,ai〉 ∈ SI .
Note that in caseSi = ε thenai−1 = ai .

We show inductively thatai ∈ XI
(bi ,R,C)

for all 0 ≤ i ≤ n. For this we use the axioms added in the

construction ofΩ(KB). The axiom of type 1 ensures that the base case holds:α ∈ XI
(start,R,C), i.e., a0 ∈

XI
(b0,R,C)

. For the inductive step, suppose first thatSi is anε transition. Thenai = ai−1. By the inductive

hypothesisai−1 ∈ XI
(bi−1,R,C)

, and the corresponding axiom of type 2 ensures thatai ∈ XI
(bi ,R,C)

. In the other
case, whenSi is not anε transition, the same argument referring to a correspondingaxiom of type 3 ensures
thatai ∈ XI

(bi ,R,C)
.

Hence we know thatan ∈ XI
(bn,R,C)

, i.e.,β ∈ XI
(stop,R,C). This, together with the axiom of type 4 ensures

thatβ ∈CI .

We are ready to formulate the main claim of this section:

Theorem 4. KB is satisfiable if and only ifΩ(KB) is satisfiable.

Proof. (⇒) Let I be a model ofKB. We extend this model to an interpretationI ′ of Ω(KB). I ′ differs from
I only in the interpretation of the new conceptsX(s,R,C):

XI ′
(s,R,C) =

{

y | ∃x(x∈ (∀R.C)I ∧ (∃w∈ L(BR(∗,s))(〈x,y〉 ∈ wI )))
}

We prove thatI ′ is a model ofΩ(KB), by showing that the axioms added in the definition ofΩ(KB) are
true. We consider the four cases separately:

1. ∀R.C⊑ X(start,R,C)

Supposey∈ (∀R.C)I ′ . Then, by choosingx= y andw= ε, we can apply the above definition to show
thaty∈ XI ′

(start,R,C).

2. X(p,R,C) ⊑ X(q,R,C)

Supposey∈ XI ′
(p,R,C). Then, there is somex∈ (∀R.C)I ′ and somew∈ L(BR(∗, p)) such that〈x,y〉 ∈

wI ′ . Sincep
ε−→ q ∈ BR, it also holds thatw ∈ L(BR(∗,q)). Hence, the samex andw testify that

y∈ XI ′
(q,R,C).

3. X(p,R,C) ⊑ ∀S.X(q,R,C)

Supposey∈ XI ′
(p,R,C). Then, there is somex∈ (∀R.C)I ′ and somew∈ L(BR(∗, p)) such that〈x,y〉 ∈

wI ′ . Let z be someSI ′ -successor ofy, i.e., 〈y,z〉 ∈ SI ′ . Sincep
S−→ q ∈ BR, it also holds thatwS∈

L(BR(∗,q)). Hence,x andwS testify thatz∈ XI ′
(q,R,C). This holds for allSI ′ -successors ofy, hence

y∈ ∀S.XI ′
(q,R,C).

4. X(stop,R,C) ⊑C

Supposey∈ XI ′
(stop,R,C). Then, there is somex∈ (∀R.C)I ′ and somew∈ L(BR) such that〈x,y〉 ∈wI ′ .

SinceI andI ′ only differ in the extension of new concepts, we also havex∈ (∀R.C)I and〈x,y〉 ∈wI .
From the latter, we infer using Proposition 8 that〈x,y〉 ∈RI . Sincex∈ (∀R.C)I , it follows thaty∈CI

and from that we conclude thaty∈CI ′ .

(⇐) Let I be a model ofΩ(KB) andI ′ an interpretation constructed fromI as follows:

• ∆I ′ = ∆I ;

• For each individuala, aI ′ = aI ;

• For each atomic conceptA∈ clos(KB), AI ′ = AI ;

• For each roleR, RI ′ =
{

〈x,y〉 | ∃w∈ L(BR)(〈x,y〉 ∈ wI )
}
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By construction and referring to Proposition 8,I ′ satisfies the role hierarchyKBR . SinceR∈ L(BR), we

haveRI ⊆RI ′ . Furthermore, ifR is simple thenRI = RI ′ .
For concepts inclos(KB), we define the strict partial order⊳: C⊳D if and only if C or NNF(C) occur

in D. We will use induction on⊳ to show that for eachD ∈ clos(KB), DI ⊆ DI ′ . For the base case, i.e.,
whenD is an atomic concept or a negated atomic concept, this follows immediately from the definition of
I ′. We now turn to the inductive step:

• ForD =C1⊓C2, assume thatα ∈ (C1⊓C2)
I for someα. Then,α ∈CI

1 andα ∈CI
2. By the inductive

hypothesis,α ∈CI ′
1 andα ∈CI ′

2 , soα ∈ (C1⊓C2)
I ′ .

• For D =C1⊔C2, assume thatα ∈ (C1⊔C2)
I for someα. If α ∈CI

1, then by induction we also have
α ∈CI ′

1 ; if α ∈CI
2, then by induction we also haveα ∈CI ′

2 . Either way,α ∈ (C1⊔C2)
I ′ .

• For D = ∃R.C, assume thatα ∈ (∃R.C)I . Then,β exists such that〈α,β〉 ∈ RI and β ∈ CI . By
induction,β ∈CI ′ . SinceRI ⊆ RI ′ , we have〈α,β〉 ∈ RI ′ , soα ∈ (∃R.C)I ′ .

• For D = (≥ nR.C), assume thatα ∈ (≥ nR.C)I . Then, there are at leastn distinct domain elements
βi such that〈α,βi〉 ∈ RI andβi ∈CI . By induction,βi ∈CI ′ . SinceRI ⊆ RI ′ , we have〈α,βi〉 ∈ RI ′ ,
soα ∈ (≥ nR.C)I ′ .

• For D = (≤ nR.C), we haveRI = RI ′ sinceR is simple. LetE = NNF(¬C). Assume thatα ∈ (≥
nR.C)I , but α 6∈ (≥ nR.C)I ′ . Then, there existsβ such that〈α,β〉 ∈ RI ,β 6∈CI ,β ∈CI ′ , i.e., β ∈ EI

andβ 6∈ EI ′ . However, sinceE ∈ clos(KB), by induction we haveβ ∈ EI ′ , which is a contradiction.
Hence,α ∈ (≤ nR.C)I ′ .

• For D = ∀R.C, assume thatα ∈ (∀R.C)I , but α 6∈ (∀R.C)I ′ . Then someβ exists such that〈α,β〉 ∈
RI ′ and β 6∈ CI ′ . By the definition ofRI ′ there is somew ∈ L(BR) such that〈α,β〉 ∈ wI . Using
Proposition 10, it follows thatβ ∈CI . By induction,CI ⊆CI ′ , soβ ∈CI ′ , which is a contradiction.
Henceα ∈ (∀R.C)I ′ .

3.3.4 Summary

In this section we defined a transformationΩ that maps an arbitraryR I Q knowledge base to anALC H I Q
knowledge base. Theorem 4 states that the transformation preserves satisfiability. We also showed that the
transformation increases the size of the TBox with at most anexponential factor (Proposition 9). This is
asymptotically optimal:ALC H I Q is known to be ExpTime-hard whileR I Q is 2ExpTime-hard ([33]),
soR I Q is indeed exponentially harder thanALC H I Q .

Using this result, any algorithm that decides satisfiability for ALC H I Q can decide satisfiability for
R I Q . In particular, the modified calculus presented in Subsection 3.2.2 is applicable.

3.4 A Resolution Based Description Logic Calculus

In this section we present a reasoning algorithm, calledDL calculus, which decides the consistency of a
SH Q TBox. The novelty of this calculus is that it is defined directly on DL axioms. Working on this
high level of abstraction provides an easier to grasp algorithm with less intermediary transformation steps
and increased efficiency. As we showed in Theorem 2, such an algorithm can be used for solving all other
TBox reasoning tasks as well.

In Subsection 3.4.1 we present the DL calculus that performsconsistency check for aSH Q TBox.
Afterwards, in Subsection 3.4.2 we prove termination of thealgorithm. In Subsection 3.4.3 we prove the
soundness of the DL calculus. In Subsection 3.4.4 we prove that the calculus is complete. Subsection 3.4.5
discusses the possibility of extending the DL calculus to ABox reasoning. Finally, Subsection 3.4.6 con-
cludes by giving a brief summary of our results.
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3.4.1 DL Calculus

The algorithm can be summarized as follows. We determine a set of concepts that have to be satisfied
by each individual of an interpretation in order for the TBoxto be true. Next, we introduce inference
rules that derive a new concept from two concepts. Using the inference rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and add the consequent to the knowledge base. We also
apply redundancy elimination: whenever a concept extends another, it can be safely eliminated from the
knowledge base [3]. It can be shown that saturation terminates. We claim that the knowledge base is
inconsistent if and only if the saturated set contains the empty concept (⊥).

Preprocessing

We first eliminate transitivity from the knowledge base, as presented in Section 2.3. Next, we internalize
the TBox, i.e., we transform all GCIs into a set of concepts that have to be satisfied by each individual. For
instance, the axiomC⊑ D is equivalent to the axiom⊤ ⊑ ¬C⊔D, which amounts to saying that¬C⊔D
has to be satisfied by all individuals.

Internalization is followed by structural transformationwhich eliminates the nesting of composite con-
cepts into each other. ASH Q expression that appears in the TBox can be of arbitrary complexity, i.e., all
sorts of composite concepts can appear within another concept. This makes reasoning very difficult. To
solve this problem, we eliminate nesting composite concepts into each other by introducing new concept
symbols that serve as names for embedded concepts. For details, see [41].

Finally, we make a small syntactic transformation: concepts∀R.C and∃R.D are replaced with equiva-
lent concepts(≤ 0R.¬C) and(≥ 1R.D), respectively. As a result, we obtain the following types ofconcepts,
whereL is a possibly negated atomic concept andRan arbitrary role:

L1⊔L2⊔·· ·⊔Li

L1⊔ (≥ kR.L2)

L1⊔ (≤ nR.L2)

Notation

Before presenting the inference rules, we define some important notions. Aliteral concept(typically de-
noted withL) is a possibly negated atomic concept. Abool conceptcontains no role expressions (allowing
only negation, union and intersection). We use capital letters from the beginning of the alphabet (A,B,C. . . )
to refer to bool concepts. In the following, we will always assume that a bool concept is presented in a
simplest disjunctive normal form, i.e., it is the disjunction of conjunctions of literal concepts. So for exam-
ple, instead ofA⊔A⊔ (B⊓¬B⊓C) we writeA, andA⊓¬A is replaced with⊥. To achieve this, we apply
eagerly some simplification rules, see later. When the inference rules do not preserve disjunctive normal
form (DNF), we will use the explicitdnf operator:

dnf(A⊓B) =











dnf(A1⊓B)⊔dnf(A2⊓B) if A= A1⊔A2

dnf(A⊓B1)⊔dnf(A⊓B2) if B= B1⊔B2

(A⊓B) otherwise

The dnf operator is defined only for concepts that are the intersection of two concepts. The bool
concepts in the premises are always in DNF and the conclusioncontains either the union or the intersection
of such concepts. The union of two DNF concepts is also in DNF so we only need to apply thednf operator
to transform the intersection of two DNF concepts.

Ordering

Let≻ be a total ordering, called aprecedence, on the set of (atomic concept, atomic role, natural number,
logic) symbols, such that≥≻≤≻R≻ n≻C≻¬≻⊔≻⊓≻⊤≻⊥ for any atomic conceptC, atomic role
nameRand natural numbern; furthermore for any two natural numbersn1≻ n2 if and only if n1 > n2. We
define a correspondinglexicographic path ordering≻l po (see [3]) as follows:
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s= f (s1, . . . ,sm)≻l po g(t1, . . . , tn) = t if and only if

1. f ≻ g ands≻l po ti , for all i with 1≤ i ≤ n; or

2. f = g and, for somej, we have(s1, . . . ,sj−1) = (t1, . . . , t j−1),sj ≻l po t j , ands≻l po tk, for all k
with j < k≤ n; or

3. sj �l po t, for somej with 1≤ j ≤m.

In order for the above definition to be applicable, we treat concept(≥ kS.A) as≥(k,S,A) and concept
(≤ nR.D) as≤(n,R,D). If the precedence is total on the symbols of the language, then the lexicographic
path ordering is total on DL expressions. For simplicity, weoften write≻ instead of≻l po when it does not
lead to confusion. Note a couple properties of our ordering that will be useful later:

1. A≥-concept is greater than any≤-concept or any bool concept.

2. A≤-concept is greater than any bool concept.

3. C1 = (≤ n1R1.A1) is greater thanC2 = (≤ n2R2.A2) if and only if:

• R1≻ R2 or

• R1 = R2 andn1 > n2 or

• R1 = R2, n1 = n2 andA1≻ A2

Definition 11 (maximal concept). Given a set N of concepts, concept C∈N ismaximalin N if C is greater
than any other concept in N.

Since the ordering≻l po is total, for any finite setN there is always a unique conceptC∈N that is maximal
in N.

SH Q -concepts

A derivation in the DL calculus generates concepts that are more general than the ones obtained after
preprocessing. We call this broader setSH Q -concepts, defined as follows (C,D,E stand for concepts
containing no role expressions):

C (bool concepts)

C⊔
⊔

(≤ nR.D) (≤ -max concepts)

C⊔
(⊔

(≤ nR.D)
)

⊔ (≥ kS.E) (≥ -max concepts)

where bool conceptsC,D,E are in DNF. Note two important properties ofSH Q -concepts:

1. A SH Q -concept is a disjunction that contains at most one≥-concept.

2. There are no nested concepts containing role expressions, i.e., a concept embedded into a≥-concept
or a≤-concept is always a bool concept.

According to the ordering defined above, each≤-concept is greater than any bool concept, so the maximal
disjunct in a≤-max concept is a≤-concept. Similarly, any≥-concept is greater than any≤- or bool
concept, so the maximal disjunct in a≥-max concept is a≥-concept. This is the rationale for naming
these concepts≤-max and≥-max, respectively. Obviously, any concept obtained afterpreprocessing is a
SH Q -concept:

Proposition 11. For any SH Q knowledge base KB, if we apply the preprocessing transformations de-
scribed above on KB, we obtain a set ofSH Q -concepts.
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Inference Rules

The inference rules are presented in Figure 3.1, whereCi ,Di ,Ei are possibly empty bool concepts.Wi

stands for an arbitrarySH Q -concept that can be empty as well. Some of the rules do not preserve the
disjunctive normal form (DNF) of bool concepts. In such cases, we use thednf operator as defined above.
Note that two disjunctive concepts are resolved along theirrespective maximal disjuncts and the ordering
that we imposed on the concepts yields a selection function.Since the ordering is total, we can always
select the unique maximal disjunct to perform the inferencestep.

Rule1
C1⊔ (D1⊓A) C2⊔ (D2⊓¬A)

C1⊔C2

whereD1⊓A is maximal inC1⊔ (D1⊓A)

andD2⊓¬A is maximal inC2⊔ (D2⊓¬A)

Rule2
C W⊔ (≥ nR.D)

W⊔ (≥ nR.dnf(D⊓E))

whereE is obtained by using Rule1 on premisesC andD

Rule3
W1⊔ (≤ nR.C) W2⊔ (≥ kS.D)

W1⊔W2⊔ (≥ (k−n)S.dnf(D⊓¬C))

n< k,S⊑∗ R, (≤ nR.C) is maximal inW1⊔ (≤ nR.C)

and(≥ kS.D) is maximal inW2⊔ (≥ kS.D)

Rule4
W1⊔ (≤ nR.C) W2⊔ (≥ kS.D)

W1⊔W2⊔ (≤ (n− k)R.dnf(C⊓¬D))⊔ (≥ 1S.dnf(D⊓¬C))

n≥ k,S⊑∗ R, (≤ nR.C) is maximal inW1⊔ (≤ nR.C)

and(≥ kS.D) is maximal inW2⊔ (≥ kS.D)

Figure 3.1: TBox inference rules of the DL calculus

Along with the inference rules, we use a further set of rules that we callsimplification rulesand which
are shown in Figure 3.2. These rules only have one premise which is redundant in the presence of the
conclusion and hence can be eliminated. In other words, the simplification rules are used to simplify
concepts and do not deduce new concepts. Simplification rules are applied not only toSH Q -concepts, but
also to subconcepts appearing inSH Q -concepts. For example, S1 is used to replace the conceptC⊔A⊔A
with C⊔A, but also to replace(≥ nR.(C⊔A⊔A)) with (≥ nR.(C⊔A)).

Rule1 corresponds to the classical resolution inference and Rule2 makes this same inference possible
for entities whose existence is required by≥-concepts. Rule3 and Rule4 are harder to understand. They
address the interaction between≥-concepts and≤-concepts. Intuitively, if some entity satisfies≤ nR.C
and also satisfies≥ kS.D, then there is a potential for clash if conceptsC andD are related, more precisely
if D is subsumed byC. In such casesD⊓¬C is not satisfiable, which either leads to contradiction if
n< k (Rule3) or results in a tighter cardinality restriction on the entity (Rule4). If several≥-concepts and
a≤-concept are inconsistent together, then each≥-concept is used to deduce a≤-concept with smaller
cardinality (Rule4) until the≤-concept completely disappears from the conclusion (Rule3) and we obtain
the empty concept.

Saturation

We saturate the knowledge base, i.e., we apply the rules in Figure 3.1 to deduce new concepts as long as
possible. Before adding the consequent to the concept set, we eagerly apply the simplification rules of
Figure 3.2 to make the concept as simple as possible. We claimthat the consequent is always aSH Q -
concept.
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S1
C⊔L⊔·· ·⊔L

C⊔L

S2
C⊔D⊔ (D⊓E)

C⊔D

S3
C⊔D⊔ (¬D⊓E)

C⊔D⊔E

S4
C⊔D⊔¬D
⊤

S5
C⊔ (D⊓E⊓¬E)

C

S6
W⊔ (≥ nR.⊥)

W

S7
W⊔ (≤ nR.⊥)

⊤

Figure 3.2: TBox simplification rules of the DL calculus

Proposition 12. The set ofSH Q -concepts is closed under the inference rules in Figure 3.1 and the sim-
plification rules in Figure 3.2.

Proof. Consider Rule1.D1⊓A is maximal inC1⊔ (D1⊓A) which is only possible ifC1 does not contain
any≥- or ≤-concepts. Hence it is a bool concept. Analogously, the factthat D2⊓¬A is maximal in
C2⊔ (D2⊓¬A) ensures thatC2 is another bool concept. Bool concepts are in DNF. The conclusion is the
disjunction of two bool concepts (C1⊔C2) which is also in DNF and hence is a bool concept.

Rule2 resolves a bool concept with a≥-max concept. We have just seen that resolvingC andD by
Rule1 yields a bool concept. We take the conjunction of this concept and another bool concept (D⊓E)
which is not in DNF, but it yields a bool concept once we apply thednf operator. Hence the conclusion is
a≥-max concept.

In Rule3, the maximal disjunct of the first premise is(≤ nR.C), so it does not contain any≥-concept.
The second premise is a≥-max concept and contains exactly one≥-concept, namely(≥ kS.D). The
conclusion contains one≥-concept and is a≥-max concept. Again, thednf operator is used to ensure that
the bool concept appearing in the≥-disjunct of the conclusion is in DNF.

In Rule4, the maximal disjunct of the first premise is(≤ nR.C), so it is a≤-max concept and does
not contain any≥-concept. The second premise contains exactly one≥-concept, soW2 contains no≥-
concept. Consequently, the conclusion will contain only one≥-concept and all subconcepts inside≥- and
≤-concepts are bool concepts. We obtain a≥-max concept.

Simplification rules S1-S5 eliminate some disjuncts or conjuncts from bool concepts in DNF. The con-
clusion is always a simpler bool concept in DNF. S6 eliminates an unsatisfiable branch from a disjunction,
turning a≥-max concept either to a bool concept or to a≤-max concept. In case of S7, the premise is a
tautology and can be safely eliminated.

3.4.2 Termination

The following proposition – along with Proposition 12 – ensures that the DL calculus terminates.

Proposition 13. The set of allSH Q -concepts that can be deduced from any finite TBox is finite.

Proof. For any finite TBox, there can only be finitely many distinct role expressions and bool concepts.
Furthermore, note that each inference rule either leaves the arity of a number restriction unaltered or reduces
it. So in a(≤ nR.C) or (≥ nR.C) expression the number of possible values forn, R andC is finite for a
fixed TBox. As allSH Q -concepts are disjunctions of bool,≤, and≥-concepts, we have an upper limit for
the set of deducibleSH Q -concepts.
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DL calculus deduces onlySH Q concepts fromSH Q concepts. Since there are finitely manySH Q
concepts, even if we have to deduce every possibleSH Q -concept, it still requires finitely many steps, so
the calculus is guaranteed to terminate.

3.4.3 Soundness

It is straightforward to show that the simplification rules are sound, i.e., if all individuals of an interpretation
satisfy the premise then they also satisfy the conclusion. We leave this to the reader. The inference rules
are slightly more complex.

Theorem 5. The inference rules of the DL calculus are sound.

Proof. Consider Rule1 and suppose thatx satisfies both premises. EitherA or ¬A is true ofx. If A(x) is
true, thenx must satisfyC2, due to the second premise. Analogously, if¬A(x) is true, thenx must satisfy
C1. In either case, the conclusion holds forx.

We turn to Rule2. Letx be an individual. It satisfies the second premise, so eitherW or (≥ nR.D) holds
for x. In the first case the conclusion is satisfied byx, in the second casex has at leastn R-successors that
satisfyD. These successors also satisfy the first premise (C) and – given that Rule1 is sound – they satisfy
E. If these R-successors satisfy bothD andE, then they satisfyD⊓E as well. So it holds forx that it has
at leastn R-successors that satisfyD⊓E, so the conclusion is again satisfied.

For Rule3, letx be an arbitrary individual. Ifx satisfies eitherW1 orW2, then it satisfies the conclusion.
Otherwise,x satisfies(≤ nR.C) and(≥ kS.D), whereS⊑ R. So,x has at leastk distinct S-successors that
satisfyD (that are R-successors as well). Of these, at mostn successors can satisfyC, so there are at least
k−n S-successors that satisfy¬C. From this it follows directly that the conclusion holds forx.

Finally, let us consider Rule4 and let againx denote an arbitrary individual. Ifx satisfies eitherW1 or
W2, then it satisfies the conclusion. Otherwise,x satisfies(≤ nR.C) and(≥ kS.D), whereS⊑ R. So,x has
at leastk distinct S-successors that satisfyD. If any of these successors satisfy¬C then the last disjunct
of the conclusion holds. Otherwise, all thek S-successors satisfyC. Given thatx can have no more thann
successors that satisfyC, there cannot be more thann−k successors that are not among those satisfyingD,
but they satisfyC. Hence the second to last disjunct of the conclusion holds for x.

3.4.4 The Completeness of the DL Calculus

In this subsection we prove that the method presented in Subsection 3.4.1 is complete, i.e., whenever there
is some inconsistency in a TBoxT , the empty concept is deduced. We prove completeness by showing
that if a saturated setSatT does not contain⊥ then the axiom⊤⊑d

SatT has a model. Instead of building
the model itself, we will prove that theALC H Q tableau method can find one such model. In order for the
model to satisfy⊤ ⊑d

SatT , the concepts inSatT are added to the label of every newly created node in
the tableau.

Although the tableau rules are fairly standard, there mightbe small variations. Hence, to avoid confu-
sion, in Appendix A we provide the definition of the tableau rules that we assume in the following.

Building the Tableau Tree

In the previous sections, we replaced∀- and∃-concepts with≤- and≥-concepts to make the presentation
of the inference rules simpler. As we turn to the tableau, however, the reader might be more familiar with
the corresponding∀-rule and∃-rule. Hence, in the following, we will treat our(≤ 0R.C) and(≥ 1S.D)
concepts as(∀R.¬C) and(∃S.D), respectively.

Whenever we have several applicable tableau rules, we require the following ordering precedence:⊔-
rules,⊓-rule, ∃-rule,≥-rule, ∀-rule, ⊲⊳-rule and≤-rule. When applying the⊔-rule we proceed with the
branch3 that adds the minimal possible concept to the label of a node.Given that the tableau method is
don’t care non-deterministic with respect to these choices, the completeness of the algorithm is preserved.

3Throughout this paper, “branch” refers to a branch of the meta-tableau tree, i.e., one of the tableaux resulting from theapplication
of a non-deterministic rule.
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Whenever a noden contains a disjunctive conceptW⊔C, the branch whereC is added to the label of
n is only examined after each disjunct inW that is smaller thanC has been proven unsatisfiable. Aclash
occurs in the tableau tree when an atomic concept name and itsnegation both appear in the label of some
node. In this case we roll back and proceed with another branch. A final clashoccurs when there are no
branches left, i.e., the tableau proves the inconsistency of SatT . We show that no final clash can be reached
if SatT does not contain⊥.

Bool Concepts

Let us first consider the case whenSatT contains only bool concepts.

Theorem 6. If SatT contains only bool concepts and does not contain⊥, then no final clash is possible.

Proof. To obtain contradiction, suppose that we reach a final clash.Hence, for some atomic conceptA,
bothA and¬A appear in the label of some node. This is only possible ifSatT contains concepts

W1 =C1⊔ (D1⊓A) W2 =C2⊔ (D2⊓¬A)

The clash is final, so there are no more branches, i.e.,(D1⊓A) and(D2⊓¬A) are maximal inW1 andW2,
respectively, and each disjunct inC1 andC2 leads to clash.W1 andW2 are resolvable using Rule1, soSatT
also contains

W =C1⊔C2

W cannot be empty because we assumed thatSatT does not contain⊥. The simplification rules, and in
particular S1 was eagerly applied onW1 andW2, so there are no other occurrences of(D1⊓A) in C1 and
(D2⊓¬A) in C2. So the maximal disjuncts inW1 andW2 are strictly maximal. LetX denote the greater
concept of(D1⊓A) and(D2⊓¬A). X is greater than any disjunct in eitherC1 or C2. This means that the
branches corresponding to all disjuncts ofW were examined before examining the branch corresponding
to X (due to the ordering imposed on the application of the⊔-rule). But we know that all disjuncts inW
lead to clash, so a final clash must have been obtained onW, even before introducingX to the label of the
node, which contradicts our assumption that the final clash involvedX.

Corollary 1. If SatT does not contain⊥, then the set of bool concepts inT is satisfiable.

Notice that only Rule1 is used to detect the inconsistency ofbool concepts. This observation will be
useful for us later.

Corollary 2. If a set N of bool concepts is unsatisfiable then there is a sequence of bool concepts p1 . . . pn =
⊥ such that for each pi , there is an instance of Rule1 with premises from N∪ {p1, p2 . . . pi−1} whose
conclusion is pi . We call this sequence a deduction of⊥.

≥-max Concepts

Let us now assume thatSatT contains only bool concepts and≥-max concepts.

Proposition 14. Let W=C⊔ (≥ nR.D) be a≥-max concept in SatT . Then D is satisfiable.

Proof. Suppose thatD is unsatisfiable. Since it is in DNF, it is the disjunction of conjunctions such that
each conjunction contains some atom together with its negation. However, the simplification rules are
eagerly applied on allSH Q -concepts and due to S5 all disjuncts ofD were eliminated. HenceD =⊥ and
W = C⊔ (≥ nR.⊥). S6 is applicable onW yieldingC, soW was removed fromSatT and replaced byC.
This is a contradiction, soD must be satisfiable.

Proposition 15. Let W= C⊔ (≥ nR.D) be a≥-max concept and B= {Bi} a set of bool concepts. If
{D}∪B is inconsistent, then there is a deduction of C using Rule1 and Rule2 and the simplification rules.
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Proof. We know from Corollary 2 that there is a deductionp1, p2 . . . pn =⊥ from {D}∪B using Rule1. In
this sequence each concept has a set of premises, either fromthe original concept set or from concepts that
were deduced earlier. Let us define theancestorrelation as the transitive closure of the premise relation
and letdescendantbe its inverse relation. For eachpi, let Ai denote the set of its ancestors that are either
identical toD or are descendants ofD. For eachpi such thatAi is not the empty set, replacepi with
C⊔ (≥ nR.(pi ⊓

d
Ai)). We obtain a deduction in which each time the conclusion is a≥-max concept,

Rule2 is used instead of Rule1. In particular,pn = ⊥ is replaced withC⊔ (≥ nR.(⊥⊓d
An)), where

the≥-concept is unsatisfiable, so we can deduceC from this concept using the simplification rules (see
Proposition 14).

Corollary 3. Let W= C⊔ (≥ nR.D) be a≥-max concept in SatT and let B= {Bi} be the set of bool
concepts in SatT . Then{D}∪B is consistent.

Proof. Suppose{D}∪B is inconsistent. Then, from Proposition 15,SatT containsC. However,C makes
W redundant, soW was eliminated fromSatT whenC was added to it. This contradicts our assumption
thatW ∈ SatT .

Theorem 7. If SatT contains only bool concepts and≥-max concepts and does not contain⊥, then it is
consistent.

Proof. We know from Corollary 1 that the bool concepts are satisfiable. As of the≥-max concepts, at least
one of their disjuncts, namely the≥-disjunct can be satisfied: in each node we create separate successors
for each≥-concept, independent of each other (without≤-concepts, these successors never need to be
identified). The label of each successor is satisfiable (see Proposition 14 and Proposition 3), so the≥-
concept in the parent is satisfiable as well.

≤-max Concepts

We now consider a fully general saturated setSatT , that might contain bool concepts,≥-max concepts and
≤-max concepts. When we build the tableau tree, if a≤-concept appears in the label of a node, we possibly
have to add a new concept to the label of a node (∀-rule) or identify two nodes (≤-rule). We show that none
of these rules will lead to final clash.

Each successor node is created with an initial concept in itslabel: for instance, if a new node is created
due to concept≥ 1R.A, then we callA thecreator conceptof the node. Whatever other concept appears
in its label (before performing any identification step), itis derived fromA⊓d

Bi , where{Bi} is the set
of bool concepts inSatT . If a node with creator conceptA has to be identified with another such that the
second node containsA in its label, then identification cannot introduce new inconsistency and it can be
seen as simply deleting the first node.

As previously, we are only interested in potential clashes that are final. This means that the (non-
disjunctive) concepts that are involved in the clash can be assumed to be the maximal disjuncts ofSH Q -
concepts fromSatT .

Proposition 16. Let SatT be a saturated set ofSH Q -concepts that does not contain the empty concept
⊥. Let us try to build a model for⊤ ⊑d

SatT using the tableau method, observing the restrictions on the
order of rules. Then we never obtain a final clash.

Proof. We know from Theorem 7 that the set of bool concepts and≥-max concepts is consistent. Hence,
a final clash must involve a(≤ nR.D) concept. We use induction onn, the arity of the≤-concept to show
that no final clash is possible. We first give a sketch of the proof:

1. In the base case of the inductive proof, we assume that we have a(≤ 0R.D) concept in the label of a
node, which is a∀-concept. We show that no final clash is possible that would not have occurred in
the absence of this∀-concept.

2. In the inductive step, we assume that all(≤ n′R.D) concepts that appear in the label of a node, no
final clash is possible as long asn′ < n. From this we prove that the same holds for all(≤ nR.D)
concepts.
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A ≤-max concept can only lead to clash if the same label containssome(≥ niSi .Ai) concepts where
1≤ i ≤ l , Si ⊑∗ R. We use a second, embedded inductive proof, on the numberl of≥-max concepts.

(a) In the base case we assume thatl = 0 and show that no final clash is possible due to the
(≤ nR.D) concepts, as the examined node has no successors.

(b) In the inductive step, we assume that if a label containsl ′ < l different≥-max concepts, then
the successor nodes created due to these concepts can be identified into some nodes such that
at mostn of them satisfiesD. We show that this property holds if the label containsl different
≥-max concepts.

Now we fill in the details of the proof. The base case of the outer induction is whenn = 0, that is,
when we have a∀-concept in the label of a node. The∀-rule fires and a new concept is added to the label
of some successors. To obtain contradiction, we assume thatthis leads to a final clash. Given a nodex
that has anS-successory with creator conceptA. This means that the label ofx contains a concept≥ kS.A.
Furthermore, the label ofx also contains a∀-concept, which is a(≤ 0R.D) concept in our terminology.
S⊑ R, so the∀-rule is applicable and puts¬D in the label ofy. We assumed that a clash is obtained, so
A⊓¬D is not satisfiable. The≥-concept and≤-concept in the label ofx originate from a≥-max and a
≤-max concept, respectively, inSatT , that is,SatT contains concepts

W = E⊔ (≤ 0R.D) V = F ⊔ (≥ kS.A)

where(≤ 0R.D) is maximal inW, (≥ kS.A) is maximal inV and each disjunct inE andF leads to clash.
W andV are resolvable using Rule3 and the conclusion is

E⊔F ⊔ (≥ kS.dn f(A⊓¬D))

A⊓¬D is not satisfiable, so the DL calculus deducesE⊔F as well (Proposition 15). However, we know that
all disjuncts inE andF lead to clash, so we obtain a final clash without the≤-concept inW. Contradiction.

We now turn to the inductive step. The inductive hypothesis is that a≤-concept can never lead to final
clash, i.e., a(≤ n′R.D) concept in the label of a node that is derived from the maximaldisjunct of a≤-max
concept ofSatT can be satisfied for alln′ < n. We show that this also holds forn.

Let some nodex in the tableau tree contain concepts(≤ nR.D) and(≥ niSi .Ai), where 1≤ i ≤ l and
Si ⊑∗ R. Due to the(≥ niSi .Ai) concepts, we have already createdΣl

i=1ni successors with creator concepts
A1 . . .Al , respectively.D appears in the label of eachSi-successor, soAi , together with the bool concepts
impliesD. This means thatAi ⊓¬D is unsatisfiable. Suppose that we have to perform identification which
leads to final clash.SatT contains concepts

W = E⊔ (≤ nR.D) Wi = Fi ⊔ (≥ niSi.Ai) 1≤ i ≤ l

where(≤ nR.D) is maximal inW, (≥ niSi .Ai) is maximal inWi and each disjunct ofE andFi leads to clash
in x. By the time a≤-rule is applied, we have already performed all possible⊲⊳-rules, due to which the
label of eachSi-successor contains eitherA j or ¬A j for all j ∈ {1. . . l}. According to Corollary 3, each
creator concept is satisfiable and hence will remain satisfiable by taking its conjunction with eitherAi or
¬Ai .

We use induction onl , the number of≥-concepts to show that the assumption that the≤-concept gives
rise to final clash leads to contradiction.

The base case (of the second, inner induction) is whenl = 0. There are no≥-concepts in the label ofx,
so there are no involved successors to be identified.

We now turn to the inductive step (of the inner induction). Weassume that if the label ofx contains
only l ′ < l different≥-concepts then the resulting successors can be identified into n nodes without clash.

1. In casenl > n then Rule3 is applicable onW andWl , resulting in:

E⊔Fl ⊔ (≥ (nl −n)Sl .dn f(Al ⊓¬D))

We know thatAl ⊓¬D is unsatisfiable, so the DL calculus deducesE⊔Fi (from Proposition 15).
However, all disjuncts ofE andFi lead to clash inx, so we obtain a final clash even before introducing
any≤- and≥-concept, contrary to our assumption.
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2. If n≥ nl , then conceptsW andWl are resolvable using Rule4, resulting in

E⊔Fl ⊔ (≤ (n−nl)R.dn f(D⊓¬Al ))⊔ (≥ 1Sl .dn f(Al ⊓¬D))

Again, we know thatD⊓¬Al is unsatisfiable, so (from Proposition 15) the DL calculus deduces

E⊔Fl ⊔ (≤ (n−nl)R.dn f(D⊓¬Al )) (3.1)

Due to the⊲⊳-rule, the label of every successor contains eitherAl or¬Al . n−nl < n, so the inductive
hypothesis holds for (3.1), i.e., all the successors whose label contains bothD and¬Al can be iden-
tified into n−nl nodes by deleting some successors that are not necessary. Further to this, there are
nl successors with creator conceptAl , plus somek other successors such that the⊲⊳-rule putAl into
their labels.

(a) If k ≤ nl then we can eliminatenl − k nodes from those havingAl as their creator concept,
leaving exactlynl successors whose label containsAl . Contrary to our assumption, we obtain
no final clash.

(b) If k > nl then each of the nodes whose creator concept isAl can be eliminated since there are
more thennl other nodes satisfyingAl . All remaining successors originate from the≥-concepts
in W1 . . .Wl−1. However, according to the inductive hypothesis (of the inner induction), these
successors can be identified inton successors without clash.

This concludes the second inductive proof and the first one aswell. We have showed that the assumption
that a≤-concept introduces inconsistency into the label of a node leads to contradiction.

Let T be aSH Q TBox. Let SatT be the set of concepts obtained after performing preprocessing on
T and then saturating it with the DL calculus. We have showed that if SatT does not contain⊥ then it is
possible to build a model forT using the tableau algorithm. This concludes the proof of completeness for
the DL calculus.

3.4.5 Towards a DL Calculus for ABox Reasoning

The DL calculus imitates the modified calculus that we presented in Subsection 3.2.2. Recall however,
that the aim of that calculus was not to perform TBox reasoning, but to serve as a preprocessing phase for
the ABox reasoning. The modified calculus was used to performall inference steps that involve function
symbols. Function symbols are derived via skolemisation when we translate≥-max concepts to first-order
clauses. The question naturally arises if the DL calculus can be used in a similar way to perform all
inferences involving≥-max concepts, which then can be eliminated before accessing the ABox.

Unfortunately, the answer seems to be negative, which we will illustrate through a small example.
Consider the following knowledge base:

⊤⊑ (≤ 1R1)

⊤⊑ (≤ 1R2)

⊤⊑ (≥ 1S)

S⊑ R1

S⊑ R2

R1(a,b)

R2(a,c)

X(b)

¬X(c)

The ABox satisfies the TBox as long as we neglect the only axiomin the TBox that yields a≥-max
concept:⊤ ⊑ (≥ 1S). In the presence of this axiom, however,b andc have to be identified into a single
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S-successor ofa, which leads to contradiction becauseb andc are not identifiable. Now, the question
is: what kind of axiom(s) should the DL calculus derive from the TBox to ensure that the ABox remains
unsatisfiable even if we eliminate the≥-max concept? In this simple example, one could infer from the
three number restrictions thatR1 = R2 = S, which is sufficient to make the ABox inconsistent. Suppose
however, that the axiom with the≥-max concept is replaced with the following one:

⊤⊑C⊔ (≥ 1S)

Since(≥ 1S)(a) cannot be true,C(a) must be true, i.e., if we query the knowledge base for conceptC, then
a should be returned. For this, however, we should infer an axiom expressing that‘For every individual,
either it belongs to C or else all its R1- and R2-successors are also S-successors’. We cannot formulate
this using DL expressions.4 The modified calculus does not suffer from this problem, because much more
can be expressed using first-order clauses. Indeed, from theabove TBox, the modified calculus infers the
following two clauses:

C(x)∨¬R1(x,y)∨S(x,y)

C(x)∨¬R2(x,y)∨S(x,y)

which ensure the inconsistency of the ABox, even if we omit the axiom with the≥-max concept.
It turns out that we need regular expressions on roles in order to be able to eliminate≥-max concepts.

In another example, the TBox

⊤⊑ (≤ 2R1)

⊤⊑ (≤ 2R2)

⊤⊑ (≥ 1S)

S⊑ R1

S⊑ R2

is equisatisfiable to the following one:

⊤⊑ (≤ 2R1)

⊤⊑ (≤ 2R2)

S⊑ R1

S⊑ R2

⊤⊑ (≤ 1(R1⊓¬R2)

⊤⊑ (≤ 1(R2⊓¬R1)

Allowing regular expressions on roles, however, leads to the undecidability of the language in general.
It seems very difficult to extend the DL calculus in this direction. Hence, we conclude that eliminating≥-
max concepts before accessing the ABox is not likely to succeed without recourse to first-order logic. The
DL calculus can be used for TBox reasoning, however, it is notadequate for the two-phase data reasoning
that we discussed in Section 3.2.

3.4.6 Summary

We have presented the DL calculus, a resolution based algorithm for deciding the consistency of aSH Q
TBox. The novelty of this calculus is that it is defined directly on DL axioms. We showed that the algorithm
is sound, complete and terminates. More work needs to be doneto explore the real time complexity of the
reasoning, as well as potential optimization techniques. We hope that further research will reveal that the
DL calculus provides a reasonable alternative to the Tableau Method for certain reasoning tasks.

We have not been successful in extending the DL calculus for ABox reasoning in the way the modi-
fied calculus is used. In Subsection 3.4.5 we illustrated through some examples why we believe that this
extension is not possible at all.

4At least not without a significant increase in the expressivity of the DL language.
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Chapter 4

Loop Elimination, a Sound
Optimisation Technique for PTTP
Related Theorem Proving

In Section 2.1 we presented the Prolog Technology Theorem Prover (PTTP), which is a complete first-
order theorem proving technique built on top of the Prolog language. The DLog system [38] that will
be presented in Chapter 5 is a specialisation of PTTP to Description Logic reasoning. DLog performs
a two-phase reasoning, where the first phase is that presented in Section 3.2 and the second phase uses
PTTP. These systems exploit the backtracking mechanism of Prolog to search for a proof of the initial goal.
Efficiency is crucial since these systems typically need to explore a huge search space.

Loop elimination is an optimisation technique which can make a tremendous impact on the speed of
both of the aforementioned systems. This technique prevents logic programs from trying to prove the same
goal over and over again, thus avoiding certain types of infinite loops. My main contribution to this domain
is a rigorous proof of soundness of loop elimination.

Detecting loops to prune the search space for logic programsis not new, see for example [8]. However,
the systems that we are interested in extend standard Prologexecution with a technique calledancestor
resolution, that corresponds to the positive factoring inference rule. In the presence of ancestor resolution,
the considerations that trivially justify loop elimination do not hold. It is easy to see that trying to prove a
goal that is identical to some goal that we are already in the process of proving yields no useful solution and
the corresponding proof attempt can be aborted. However, itis far from trivial that the same holds in case
the two goals are identical onlymodulo ancestor list, i.e., they can be different in one of their arguments,
namely in their list of ancestors. In this chapter we prove this stronger claim. We are not aware of any other
work exploring the interaction between loop elimination and ancestor resolution.

In Section 4.1 we examine logic programs in terms of termination and identify the sources of infinite
execution. Section 4.2 contains our main contribution: we define loop elimination and prove its soundness.
We end the chapter with some concluding remarks in Section 4.3.

4.1 Termination of Logic Programs

Given that first-order logic is undecidable, it is not surprising that the Prolog Technology Theorem Prover
is not guaranteed to terminate. In this section we review theways in which a logic program can fall short
of termination. Afterwards, we compare PTTP and DLog with respect to termination.

4.1.1 Sources of infinite execution

We identify three sources of infinite execution:
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• If the program containsfunction symbols, then we might obtain terms of ever increasing depth.
Consider, for example, the following simple program:

p(X) :- p(f(X)).

If we attempt to provep(a) using the above rule, we will end up reducing it to the proof ofp( f (a)),
p( f ( f (a))) etc. and the program will never stop.

• A proof attempt might visit infinitely many goals if an unbounded number ofnew variablescan be
introduced during the proof. This happens with rules with a variable occurring in the clause body,
but not in the head. For example, consider the transitivity rule:

r(X,Y) :- r(X,Z), r(Z,Y).

It is easy to see that a proof attempt for the goalr(a,b) using the above rule will generate infinitely
manyr(a,V) subgoals, always with a fresh variable.

• Even if both the depth of terms and the number of variables canbe bounded, the program might
fall into a loop and attempt to prove the same goal over and over again. For example, the program
consisting of the following rule

p(X) :- p(X).

will never terminate, even though there are no function symbols and no new variables are introduced.

One can see easily that the above list is exhaustive. If the number of variables is bounded and there are
no functions, then the total set of terms is that of the variables and the constants appearing in the program,
i.e., it is finite. Since the set of predicate names is also finite, there can be finitely many different goals. If
there are no loops, even if a proof attempt goes though all possible goals (the worst case), it will eventually
terminate.

Hence, we conclude that infinite execution is due exactly to three aspects of logic programs: function
symbols, the proliferation of new variables and loops.

4.1.2 Termination in DLog

In light of the preceding subsection, let us reexamine the input clause set of the second phase of the DLog
data reasoner. We repeat this set here:

¬R(x,y)∨S(y,x) (c11)

¬R(x,y)∨S(x,y) (c12)

P(x) (c13)

P1(x)∨
∨

i

(¬R(x,yi))∨
∨

i

P2(yi)∨
∨

i, j

(yi = y j) (c14)

(¬)R(a,b) (c15)

C(a) (c16)

a= b (c17)

a 6= b (c18)

We see immediately that the absence of function symbols eliminates one of the three sources of infinite
execution.

We shall see that new variables are not introduced, either. The second nice property of the input clause
set is that the resulting contrapositives only contain a negative binary literal in the body in case the head
is a negative binary literal. This means that we can only encounter negative binary subgoals if the initial
query itself is a negative binary goal. InSH I Q DL reasoning, however, negative binary queries are

44



forbidden, so all contrapositives with a negative binary literal are unnecessary and can be disposed of.
Consequently, in our logic program binary literals will only appear positively. For proving such binary
goals only contrapositives from clauses of type c1 and c2 areavailable:

r(X,Y) :- s(X,Y).
r(X,Y) :- s(Y,X).

These rules do not introduce new variables. A proof of a binary goal consists of applying such rules possibly
several times, until finally we obtain a matching data assertion r(a,b), thanks to which the variables in
the binary goal get instantiated. We know that in all rule bodies that contain binary literals every variable
occurs in some binary literal (the third nice property of ourinput clause set). These are the rules that
introduce new variables. If, however, we move the binary literals to the front of the body, i.e., we prove
the binary goals first, by the time we reach the unary goals, they become ground. Hence, any unary goal
in the body either contains the same variable as the one in thehead – in case the rule contains no binary
predicates – or else it is ground by the time it is called. New variables may appear only for a short time
– until we prove the binary goals holding them. Hence, DLog will never encounter infinitely many new
variables during a proof attempt.

If there are no terms of increasing depth and variables do notproliferate, then the only way a DLog
program may not terminate is if it falls in an infinite loop andproves the same goal repeatedly.

4.1.3 Eliminating Loops

We have seen that there are three independent features that can make a PTTP execution non-terminating,
of which only one, namely loops can occur in DLog programs. InSection 4.2 we shall show that proofs
containing such loops are not necessary for completeness. This result yields an important optimization for
both PTTP and DLog, calledloop elimination. General PTTP still has to cope with infinite proof attempts
(due to the other two sources) and hence has to use iterative deepening, i.e., build several proof attempts
in parallel. However, even if loop elimination does not allow for changing the proof search strategy, but it
still prunes the search space significantly. In DLog, loop elimination eliminates the only remaining source
of infinite proofs. Accordingly, DLog always terminates anduses the standard depth-first search strategy
of Prolog, which gives much better performance than iterative deepening.

4.2 Loop Elimination

In this section we present the optimization heuristicloop eliminationfor both PTTP and DLog. In the
literature, loop elimination is often referred to asidentical ancestor pruning, see for example [51] or [20].
Although both PTTP and DLog employ this optimisation, therehas not yet been any rigorous proof of its
soundness. In Subsection 4.2.1 we describeproof treesthat can be used to represent Prolog execution.
Afterwards, Subsection 4.2.2 contains the proof of soundness.

Definition 12 (Loop elimination). Let P be a Prolog program and G a Prolog goal. Executing G w.r.t. P
usingloop eliminationmeans the Prolog execution of G extended in the following way: we stop the given
execution branch with a failure whenever we encounter a goalH that is identical to an open subgoal (that
we started, but have not yet finished proving). Two goals are identical only if they are syntactically the
same.

Loop elimination is very intuitive. If, for example, we wantto prove goalG and at some point we
realise that this involves proving the same goalG, then there is no point in going further, because 1) either
we fall in an infinite loop and obtain no proof or 2) we manage toprove the second occurrence ofG in
some other way that can be directly used to prove the first occurrence of the goalG. This is the standard
justification that we find in the literature. For example [20]says:

Identical ancestor pruning (IAP) is a powerful pruning heuristic in a model elimination search.
Imagine, in the course of expanding a ME proof space for a particular goal P, that one were to
encounter that same goal P again. One of two situations must hold:
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1. There are no proofs of P from this database (because it doesn’t logically follow).

2. Whether or not there is a proof using this second occurrence of P, there must be another
proof of the original P not using it. Also, the different proof occurs at a shallower depth.

This is true because the second occurrence must eventually be proven somehow, so this re-
cursion must bottom out. And then, by whatever proof this second occurrence succeeds, an
analogous proof path must exist below the first occurrence ofP. In either case, it is justifiable
to prune the space below the second occurrence of P.

Things get complicated, however, due to ancestor resolution. The twoG goals have different ancestor lists
and it can be the case that we only manage to prove the secondG due to the ancestors that the firstG does
not have. As it will turn out in the rest of this section, whilewe can indeed construct a proof of the firstG
from that of the second, this proof might have to be very different from the original one.

4.2.1 Proof Trees

In this subsection we introduceproof trees, that are used to represent Prolog execution. We will only con-
sider trees in the context of a PTTP like Prolog program, moreprecisely we will assume that the program
contains all contrapositives. Each tree node has a unique name and is labelled with a goal:(Name:Goal)
refers to a node calledName and labelled with goalGoal. The root is labelled with the initial goal to be
proved. Suppose the current goalG is unified with the head of rule

G :− B1,B2, . . . ,Bk.

In this case, the node labelledG will have k children, each labelledB1,B2, . . . ,Bk, respectively. In each
inference step, the validity of a goal is reduced to the validity of a set of goals in the children. After a
successful execution, we obtain a proof tree such that each of its leaves can be considered true without
further proof. We formalise this in the following definitions.

Definition 13 (atomic proof tree). An atomic proof treeconsists of a root node labelled Aσ with children
labelled B1σ, B2σ, . . . , Bnσ, whereσ is a variable substitution. We say that the atomic proof treeis valid if
the corresponding Prolog program contains a rule

A :− B1,B2, . . . ,Bn.

A valid atomic proof tree can be seen as an instance of a rule. Aproof treeis built from atomic proof trees
by matching nodes of identical labels. A proof tree isvalid if all constituting atomic proof trees are valid.

Remark 1. The labels of proof trees are atomic predicates that can contain variables. Note that labels
p(X) and p(Y) are not identical.

Definition 14 (complete node). In a valid proof tree, a node labelled A is calledcompleteif either 1) A
can be unified with the head of a bodiless Prolog rule or 2) the node has an ancestor labelled¬A (ancestor
resolution). A valid proof tree is complete if all its leafs are complete.

To each successful Prolog execution that employs ancestor resolution, we can assign a complete proof
tree.1 In fact, the execution mechanism can be seen as a search in thespace of complete proof trees. While
standard Prolog will not necessarily traverse the whole space (because it might fall into an infinite loop),
both PTTP and DLog are built so that they can enumerate all complete proof trees. This means that it is
enough to show the existence of a complete proof tree to guarantee a successful PTTP or DLog execution.

Definition 15 (flipping along a child). For an arbitrary child b of an atomic proof tree, the transformation
flipping over along theb child is defined as follows: the root node is switched with its childb and their
labels are negated. The rest of the tree is unaltered. This transformation is illustrated in Figure 4.1.

1In the Logic Programming community, it is customary to reserve the name proof tree only for complete proof trees. We introduce
the notion of completeness because we will have to refer to trees that are not fully expanded.
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a:A

b:B c:Cc:C a:¬A

b:¬B

Figure 4.1: Flipping over along theb child

Lemma 1. For every valid atomic proof tree, the atomic tree obtained after flipping over along a child
results in a valid atomic proof tree.

Proof. Let T be an atomic proof tree with the root node labelledAσ and children labelledBσ,C1σ, . . . ,Ckσ.
T is an instance of the Prolog clause

A :− B,C1, . . . ,Ck.

which is a contrapositive of the first-order clauseA∨¬B∨¬C1∨·· ·∨Ck. Since the Prolog program contains
all contrapositives of this clause, we also have

not_B :− not_A,C1, . . . ,Ck.

an instance of which corresponds to the flipped over version of T.

Note that flipping over allows us to move between contrapositives of the same first-order clause.

Definition 16 (flipping along a branch). The transformationflipping over along thea, ā branchis defined
on proof trees as follows: let F be a proof tree, with a node(a : A) which has a leaf descendant(ā : ¬A).
The nodes on the path from a tōa are a= x0,x1, . . . ,xn−1,xn = ā. To this tree we assign a tree F′ which
differs from F only in the subtree rooted at a. This subtree contains a branch y0 = xn,y1 = xn−1, . . . ,yi =
xn−i , . . . ,yn = x0, and the label of each of these nodes is negated. Furthermore, each yi in F ′ has the same
siblings as xn−i+1 in F. The subtrees under the siblings are left unaltered. This transformation is illustrated
in Figure 4.2.

x1:B

x2:D x1:¬B

x2:¬D

a:A

c:C

c:C

e:Ee:E

f :F

f :Fā:¬A

ā:A

a:¬A

Figure 4.2: Flipping over along the(a, ā) branch

Lemma 2. If we have a complete proof tree T that contains nodes(a : A) and(ā : ¬A) such thatā is a leaf
descendant of a, then the tree obtained after flipping T alongthe(a, ā) branch is a valid proof tree.

Proof. The new downward path ¯a→ a consists of atomic trees that are the flipped over versions ofthe
atomic trees of the initial upward path ¯a→ a. For example, the atomic tree on the left side of Figure 4.2
that consists of parent nodex2 and children ¯a and f turns into a flipped atomic tree with parent node ¯a and
childrenx2 and f . We know from Lemma 1 that flipping over a valid atomic proof tree yields another valid
atomic proof tree, hence the whole new proof tree is valid.
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Remark 2. Although we obtained a valid proof tree after flipping over, the proof tree is not necessarily
complete. This is because some ancestor lists change and branches that previously terminated in ancestor
resolution might have to be expanded further (because the required ancestor disappeared).

4.2.2 The Soundness of Loop Elimination

In this subsection we show that for every complete proof treethat contains loops, one can construct a
complete proof tree that is loop free.

Definition 17 (loop in proof tree). A complete proof tree is said to contain a loop L if it containsa pair of
nodes(p1 : P),(p2 : P), for some label P, such that p2 is a descendant of p1. Node p1 is called thetop node
and node p2 thebottom nodeof the loop L. We define thedepthof L to be the distance of p1 from the root.

Definition 18 (bad node). A node n: N is said to beeligible for ancestor resolutionif it has an ancestor
with label¬N. If an inner node is eligible for ancestor resolution, thenit is called abad node.

Bad nodes are called bad, because they are unnecessarily expanded. There is no need to provide a proof
tree under a bad node, since it is complete even if it remains aleaf.

Lemma 3. If we have a complete proof tree that contains a bad node n, then the tree obtained after
removing the subtree under n yields a complete proof tree in which n is not bad any more.

Proof. Removing the subtree undern makesn a leaf node. However,n is complete due to ancestor res-
olution. The rest of the leaves are unaltered, so they remaincomplete. Hence, the new proof tree is
complete.

Definition 19 (loop-depth). We define theloop-depthof a tree T with a pair of integers(−D,C), where D
is the minimum depth of all loops in T and C is the number of nodes that are bottom nodes of some loop of
depth D. If the tree contains no loops, then its loop-depth is(−∞,0). Loop-depths are comparable using
lexicographic ordering, i.e., loop-depth(A,B) is less than loop-depth(C,D) if and only if either A<C or
else A=C and B< D.

Lemma 4. Let F be a complete proof tree with loop-depth LD that contains at least one loop. It is possible
to find another complete proof tree F′ for the same goal (i.e., with the same label in the root) such that the
loop-depth of F′ is strictly less than LD.

Proof sketch.We pick a loop of greatest depth and try to get rid of it.

1. First, we eliminate bad nodes from the proof tree. If this eliminates the loop, we are ready.

2. Next, we try to replace the proof at the top of the root with the proof at the bottom of the loop. If this
results in a valid proof tree, then we are again ready.

3. If the proof at the bottom cannot be moved to the top (due to ancestor resolution), then we flip the
tree along the branch that connects the two ends of the loop. We obtain a valid proof tree which,
however, is not necessarily complete.

4. If a nodea becomes incomplete after flipping, this is because it loses an ancestor that previously
allowed for ancestor resolution. In this case, however, we show that there is another nodeb in the
tree with the same label, and the proof tree rooted atb can be copied undera to make it complete.

5. It can be shown that finitely many subtree copying results in a complete proof tree whose loop-depth
is greater than that of the initial tree.
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Proof. The loop-depth ofF is LD=(−D,C). This means that there is at least one loop of depthD and
there are no loops with depth less thanD. Let L be one such loop with top and bottom nodes(p1 : P) and
(p2 : P), respectively. First, we eliminate all bad nodes by removing the subtrees rooted at the bad nodes.
According to Lemma 3, the result is still a complete proof tree.

In case the elimination of the subtrees under bad nodes eliminates loopL, then the obtained complete
proof tree has loop-depth(−D2,C2). In case there were no other loops of depthD in F thenD2 > D.
Otherwise,D2 = D andC2 =C−1. In either case(−D2,C2)< (−D,C), so our lemma is satisfied.

Otherwise, in the obtained tree, all nodes that are eligiblefor ancestor resolution are leaf nodes. The
ancestor list ofp2 contains the ancestors ofp1 plus the nodes on the path betweenp1 and p2. Let ANC
denote the set of nodes betweenp1 andp2.

In case none of the nodes inANCplay any role in the proof ofp2 (i.e., they do not participate in ancestor
resolution), the proof ofp1 can be directly replaced with that ofp2, eliminating loopL. This is illustrated in
Figure 4.3. We obtained a complete proof treeF ′ and one of the loops at minimum depth was eliminated.
The new loop-depth is less than the initial, so our lemma is satisfied.

p1:Pp1:P

p2:P

a:A b:B

c:C

d:D

d:D

e:E

e:E

Figure 4.3: Replacing the proof ofp1 with that of p2

The situation is more complicated when some nodes inANC participate in ancestor resolution under
p2. Among these, let(a : A) be the lowest one (i.e., the last one to enter the ancestor list). Somewhere
underp2 there is a leaf(ā : ¬A) that is complete due to ancestor resolution. Let us flip overF along the
branch(a, ā). In the flipped over branch the nodes betweena andā will appear with negated labels and
in inverse order. Afterwards, we once more eliminate all badnodes by removing the subtrees under them.
Nodep2 is on the path betweena andā, so its label will turn to¬P, which makesp2 eligible for ancestor
resolution. Hence, when we eliminate badness, we eliminatethe subtree underp2. As a result, loopL
disappears. An example of this is shown in Figure 4.4. We knowthat flipping a complete proof tree results
in a valid proof tree, but it is not necessarily complete, because some goals that previously succeeded with
ancestor resolution might loose the required ancestor (cf.Remark 2). This is the case when there is a node
(b : B) undera and somewhere underneath there is a leaf(b̄ : ¬B). Nodeb has to be on the path between
a andā otherwiseb will continue to be an ancestor of̄b and their labels will not change. There are two
possibilities:

1. As it is illustrated in Figure 4.5,b lies betweena andp2. Then,b̄ cannot appear underp2, because
a was chosen to be the lowest node participating in ancestor resolution underp2. Hence,b̄ appears
underb, but not underp2. After flipping, bothb andb̄ will appear underp2, so they will be eliminated
when we eliminate the badness ofp2. Hence, this case will not yield any incomplete leaves.

2. We illustrate the second case, namely whenb is underp2 in Figure 4.6. We will treat all such nodes
together, i.e., let(b1 : B1),(b2 : B2), . . . (bk : Bk) be nodes on the path betweena andā (nodesb,c on
Figure 4.6), such that eachbi has at least one leaf descendant(b̄il : ¬Bi). The nodes are ordered so
thatb1 is the closest top2 andbk is the farthest. After flipping over, the labels of these nodes will be
negated, i.e., turn to¬Bi , respectively, and they will appear on the branch leading top2 in inverted
order, i.e.,bk will be the topmost, whileb1 the lowest.
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p1:P

p1:Pp1:P

p2:P

p2:¬P

p2:¬P

a:A

b:B

b:Bb:B

c:C

c:C

e:E

e:E

e:Eā:¬A

ā:A

ā:A

a:¬A

Figure 4.4: Flipping over along the(a, ā) branch, then bad node elimination

p1:P

p1:Pp1:P

p2:P

p2:¬P

p2:¬P

a:A

b:B

c:C

c:Cc:C

d:D

d:D

e:Ee:E

ā:¬A b̄:¬Bb̄:¬B

ā:A

ā:A

a:¬A

b:¬B

Figure 4.5: Ancestor resolution eliminates bothb andb̄
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Let us considerb1. Due to flipping over, it will lose all its previous descendants. Its new descendants
will be its previous ancestors on the path betweenp2 andb1 along with their descendants towards
other branches. We claim that none of the new descendants ofb1 can have lost an ancestor which
previously allowed for ancestor resolution, i.e., none canbe one ofb̄il . This is because the lost
ancestor would have been aboveb1, however,b1 was chosen to be the topmost one. Consequently,
the subtree underb1 after flipping has no incomplete leaves. This subtree in itself is not necessarily
complete, because the ancestors of ¯a might be needed for some ancestor resolution steps. We express
this by saying that the subtree underb1 is complete in the context of the ancestors ofā. In the
following, we will always assume the same context (the ancestors of ā) and will omit specifying it
whenever it leads to no misunderstanding. The label ofb1 is ¬B1, so we have a complete proof for
¬B1 (again in the context of the ancestors of ¯a). This means that we can copy the subtree underb1

to any node(b̄1l : ¬B1), thus compensating such nodes for the lost ancestor. Note that we need to
rename the copied nodes to ensure that each node has a unique name.

We next turn tob2. Through analogous reasoning we can see that the new leaf descendants ofb2

are either complete or else are incomplete because they lostan ancestor labelled¬B1. However,
by copying the subtree underb1, we have already turned such leaves into complete trees. Hence,
we have a complete proof tree underb2 (in the context of ¯a), proving¬B2, which we copy to any
incomplete leaf(b̄2l : ¬B2) (again assigning new names to the newly created nodes).

We continue the process. In theith step, we have a complete proof tree underbi which we copy
to any leaf(b̄il : ¬Bi). By the end of thekth step, we obtain a complete proof tree. Note that we
make exactly one copying for each leafb̄il that lost its completeness after flipping over, so copying
terminates.

We now obtained a new proof treeF ′. Let us show thatF ′ has the properties claimed by the lemma
being proved. Flipping over turns the label ofp2 from P to¬P, which makes loopL disappear. New
loops can arise (some nodes were negated), however, no such loop can start above or atp1. We show
this by contradiction. Suppose a node(n1 : N) above or atp1 obtains a descendant(n2 : N) after
flipping. The labels of the nodes undern1 in the new tree are either the same or the negated labels
that appeared undern1 before flipping. So, if a new loop appeared, it was either because the bottom
node of an already existing loopL2 was copied or because the label of a descendant ofn1, namely
of n2, changed from¬N to N. In the first case, the depth of loopL2 is smaller than the depth of loop
L, which is impossible becauseL was chosen to be a loop of minimum depth (cf. Definition 19. of
loop-depth). In the second case, before flipping over,n2 was eligible for ancestor resolution. Since
we eliminated all bad nodes,n2 was a leaf. However, flipping over does not negate the labels of leaf
nodes, so we obtained a contradiction.

We conclude that the possibly arising loops are all of greater depth than the eliminated loop. Hence, the
number of loops of depthD is reduced by one, i.e., the loop-depth of the new tree is strictly less than that
of the original tree.

Theorem 8. For every complete proof tree containing loops there is a complete proof tree that is loop free.

Proof. Using the transformation described in Lemma 4, we can createa series of proof trees of the same
goal such that the loop-depth is always decreasing. The second component of the loop-depth is a positive
integer (the number of loops at minimum depth) which cannot decrease infinitely, so eventually the first
component will decrease as well. This means that the minimumdepth of the loops increases, i.e. loops get
deeper and deeper. There are two possibilities:

1. Eventually, we manage to eliminate each loop after a finitenumber of iterations. The resulting proof
tree satisfies our theorem.

2. The elimination never terminates. Since the loops are getting farther from the root, it follows that
the part of the proof tree that is loop free grows beyond any limit. Suppose the initial tree contains
n distinct labels in its nodes. The transformation steps involve flipping over, copying subtrees and
eliminating nodes, each of which either preserves node labels or introduces the negation of some
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Figure 4.6: Copying makes first̄b, thenc̄ complete
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label to a node. Hence, there can be at most 2n distinct labels, i.e., any loop free path from the root
node can be at most 2n long. This contradicts the assumption that the loop free part of the tree grows
beyond any limit. Hence, all loops have to disappear after finitely many iterations.

4.3 Summary

Prolog based inference systems like PTTP and DLog can be usedto prove a query goal. We have shown
is Section 4.2 that these systems need not explore proof trees that contain loops, because in case there is
a complete proof tree, there is one without loops (Theorem 8). This allows for reducing the search space,
making both systems faster. Besides, loop elimination is sufficient to make the DLog reasoner terminating,
thus allowing one to replace iterative deepening search with depth-first search, which further increases
performance.
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Chapter 5

The DLog Description Logic Reasoner

The DLog system [38] is a DL data reasoner, written in the Prolog language, which implements a two-phase
reasoning algorithm based on first-order resolution, and itsupports theR I Q language. As described in
Chapter 3, the input knowledge base is first transformed intofunction-free clauses of first-order logic. The
clauses obtained from the TBox after the first phase are used to build a Prolog program. It is the execution
of this program – run with an adequate query – that performs the second phase, i.e., the data reasoning.
The second phase is focused in that it starts out from the query and only accesses parts of the ABox that
are relevant to answering the query. The relevant part is determined by the clauses derived from the TBox.
Hence, the performance of DLog is not affected by the presence of irrelevant data. Furthermore, the ABox
can be accessed through direct database queries and needs not be stored in memory. To our best knowledge,
DLog is the only DL reasoner which does not need to scan through the whole ABox. Thanks to this, DLog
can be used to reason over really large amounts of data storedin external databases. The last stable version
of DLog that supports theSH I Q language is available athttp://dlog-reasoner.sourceforge.net.

In Section 5.1 we give an overview of the architecture of the system. Afterwards, Section 5.2 discusses
more in depth the implementation of the TBox saturation module, which performs the first phase of rea-
soning. In Section 5.3 we collect the most important tasks that still need to be done to make DLog usable
in practical applications. Finally, Section 5.4 summarises our work in the DLog project.

5.1 Architecture of the DLog System

Figure 5.1 gives an overview of DLog. The system can be used both as a server and as a standalone
application. It communicates through the DIG [7] interface, which is a standardised, XML based interface
for Description Logic Reasoners. The input has three parts:the ABox which can be potentially huge, the
TBox which is typically much smaller and the user queries. The ABox is left unmodified and is asserted
into the Prolog moduleabox. The ABox can also be provided as a database, which is crucialfor really large
data sets. The content of the TBox is first transformed by the TBox saturation module into a set of function
free clauses, which are next compiled into Prolog clauses using a specialised PTTP transformation, and are
asserted into moduletbox. The last part of the input contains the user queries. These are instance retrieval
queries or their conjunctions. The generated Prolog program is run with the provided query as argument
and returns all solutions through a backtracking search.

The first reasoning phase is independent from the ABox and from the query. Hence, as long as the
TBox is unchanged, it is sufficient to perform the first phase only once, as a preprocessing step. For this
reason, its speed is not critical as it does not affect the response time of the system when answering queries.

This dissertation only deals with the first reasoning phase,performed by the TBox saturation module.
For a thorough description of the whole DLog system and in particular the Prolog code generation module,
see [38].
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Figure 5.1: Architecture of the DLog system
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5.2 Terminology Reasoning – the First Phase

The TBox saturation module takes the TBox part of the input and transforms it to first-order clauses of the
following types:

¬R(x,y)∨S(y,x) (c11)

¬R(x,y)∨S(x,y) (c12)

P(x) (c13)

P1(x)∨
∨

i

(¬R(x,yi))∨
∨

i

P2(yi)∨
∨

i, j

(yi = y j) (c14)

The transformation proceeds as described in Section 3.2 andSection 3.3 and this constitutes the first
phase of reasoning. The output clauses have a rather simple syntax, which allows for using a highly opti-
mised variant of PTTP in the subsequent data reasoning, where these clauses and the ABox are transformed
into a Prolog program. The most important benefit of the TBox saturation is that there are no function sym-
bols left in the knowledge base.

The first phase is implemented in the Prolog predicateaxioms_to_clauses/2, which takes aR I Q
knowledge base and generates clauses of types (c11) – (c14),through a series of transformation steps, as
shown in Figure 5.2.

First, we eliminate from the TBox the complex role hierarchies, as described in Section 3.3 and obtain
a set ofALC H I Q axioms. The predicate call

transitive:riq_to_alchiq(+RIQAxioms,-RBox,-ALCHIQGCIs)

results in a set ofALC H I Q GCIs and an RBox that contains neither transitivity axioms nor complex role
inclusion axioms.

This is followed by internalisation and normalisation, yielding a set ofALC H I Q concepts.

dl_to_fol:axiomsToNNFConcepts(+ALCHIQGCIs,-NNF)

The semantics of these concepts is that all individuals of aninterpretation have to satisfy all the concepts
in order for the interpretation to be a model of the TBox.

Afterwards, we eliminate the nesting of composite conceptsinto each other, by introducing new concept
names for embedded concepts.

dl_to_fol:defNormForms(+NNF,-Defs)

This is called structural transformation.
Next, we translate our concepts into first-order logic:

dl_to_fol:toFOLList(+Defs,-FOL1)

dl_to_fol:toFOLList(+RBox,-FOL2)

append(+FOL1,+FOL2,-FOL)

The first-order formulae are turned into first-order clauses:

dl_to_fol:list_cls(+FOL,-FOLClauses)

We obtain a set ofALC H I Q clauses (see Figure 2.4), i.e., they are of type (c1) – (c7).
This is followed by the real reasoning phase: the saturationof theALC H I Q clauses by the modified

calculus presented in Subsection 3.2.2.

saturate:saturate(+FOLClauses,-Saturated)

After saturation, no more inference steps can be performed using clauses containing function symbols,
hence they can be eliminated.

eliminate_functions(+Saturated,-FunFree)

The remaining clauses are passed over to the Prolog translator module which builds a Prolog program
from them based on PTTP.
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R I Q TBox

R I Q to ALC H I Q translator
ALC H I Q axioms

Internalisation and normalisation

ALC H I Q concepts

Structural transformation
NormalisedALC H I Q concepts

Translation to FOL clauses

ALC H I Q clauses

Saturation
Clauses (c1) – (c7) and (c10)

Elimination of function symbols

Clauses (c11) – (c14)

Figure 5.2: The TBox saturation module
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5.2.1 Data Representation

The input of the TBox reasoner is aR I Q terminology, represented as a Prolog list[GCIs,Hbox,Trbox]
of three elements.GCIs is a list of concept inclusion axioms of the formimplies(C1,C2), whereC1,C2

are concepts.Hbox is a list of complex role inclusion axioms of the formsubrole(Rs,R), whereRs is
a list of roles andR is a role. Trbox is the list of transitive roles. The Prolog representation or roles and
concepts is defined by the function·p as follows:

DL expression Prolog Representation
Rp(R∈ NR) = arole(R)
(R−)p = inv(Rp)
Cp(C∈NC) = aconcept(C)
⊤p = top
⊥p = bottom
(¬C)p = not(Cp)
(C⊓D)p = and([Cp,Dp])
(C⊔D)p = or([Cp,Dp])
(∀R.C)p = all(Rp,Cp)
(∃R.C)p = some(Rp,Cp)
(≤ NR.C)p = atleast(N,Rp,Cp)
(≥ NR.C)p = atmost(N,Rp,Cp)

For example, the DL axiom(≥ 2hasChild.Clever) ⊑ (Rich⊓Happy) is represented with the following
Prolog term:

implies( atmost(2,arole(hasChild),aconcept(clever)),
and([aconcept(rich),aconcept(happy)]) )

After a series of transformation steps the TBox is translated into a set of first-order clauses, that are
represented as lists of literals. We extend the·p function to describe how terms and literals are represented:

FOL expression Prolog Representation
FOL variable = Prolog variable
( f (X))p = fun(f,Xp,M)
(C(X))p = concept(Cp,Xp)
(R(X,Y))p = role(R,Xp,Yp)
(¬P)p = not(Pp)

The third argument of a functional term is used to indicate ifthe term is marked (see Subsection 2.1.1). If
the term is marked, its value is the termmarked, otherwise it is an uninstantiated variable. As an example,
we give the Prolog representation of the FOL clauseC(x)∨¬R(x, f (x))∨S([g(x)],x):

[ concept(aconcept(c),X),
not(role(arole(r),X,fun(f,X,_))),
role(arole(s),fun(g,X,marked),X) ]

5.2.2 Saturation

The key part of the TBox saturation module is saturation itself, which performs all possible inference steps
on the input clause set. A naive first implementation could beto non-deterministically select two clauses,
try to resolve them and if it succeeds, then add the conclusion to the clause set. This is very inefficient,
because (1) the same inference step might be performed more than once, (2) most of the time the selected
clauses cannot together be premises of an inference and (3) it is hard to determine when to stop, i.e., when
the clause set is saturated.
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To make saturation more efficient, we separate the clauses into two sets: the clause set SAT is saturated,
i.e., any inference with premises from SAT yields a conclusion that is either in SAT or is implied by some
clause in SAT. The rest of the clauses constitute the set UNSAT. Initially, UNSAT contains all clauses and
SAT is empty. We gradually add clauses from UNSAT to SAT and always collect all conclusions that can
be drawn from the newly added clause and some clause already in SAT. These conclusions are added to
UNSAT. Saturation terminates when UNSAT becomes empty.

Before adding a clause to SAT, it is very important to performredundancy checking. If one clause is
a consequence of another, then the first is said to be redundant and can be eliminated. For example, if we
have clausesC1 = P(x) andC2 = P(x)∨Q(x), thenC2 can be eliminated. Each clauseC that is newly added
to SAT has to be compared with every single clause already in SAT. If C turns out to be redundant, than
it should not be added. If, on the other hand, the presence ofC makes some other clauses redundant, then
they should be eliminated from SAT.

Saturation, extended with redundancy checking is summarised in Algorithm 2.

Algorithm 2 Saturation ofALC H I Q clauses
SAT= /0

UNSAT= Input clause set

DO

IF UNSAT= /0 THEN return SAT

ELSE LETC∈UNSAT

removeC from UNSAT

IsRedundant = FALSE

FOREACHC2 ∈ SAT

IF C2 is redundant due toC THEN removeC2 from SAT

IF C is redundant due toC2 THEN IsRedundant = TRUE

IF IsRedundant = FALSE THEN

Let RSbe the set ofR such that there is a clauseC2 ∈ SAT and an inference rule with
premisesC andC2 and conclusionR2, whereR2 can be simplified into the logically
equivalentR

addC to SAT

addRsto UNSAT

5.2.3 Optimising saturation via indexing

Saturation can take a long time. The size of the sets SAT and UNSAT can grow exponential in the size of
the initial clause set. Each time we add a clauseC from UNSAT to SAT, we compare it with every clause
in SAT to see if they can participate together in an inferenceand also to see if one is implied by the other.
Performance can increase greatly if we manage to narrow downthe set of clauses that are worth examining
for possible inferences withC and also to narrow down the set of clauses that have the potential to makeC
redundant. We can achieve this through some index tables.

In our first implementation, SAT and UNSAT were stored in Prolog lists. However, a Prolog list does
not allow for random access: if we want to find a particular element in the list, we have to go through all
the preceding elements, so it takes linear time in the size ofthe list. Hence, we decided to use the dynamic
predicate facility of Prolog for storing these sets. Each clauseC is associated with a unique identifierIDC

and we use the following Prolog facts:

For each clauseC∈ UNSAT, we assertclause:clause0(IDC ,C)

For each clauseD ∈ SAT, we assertclause:clause1(IDD ,D)
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Most Prolog implementations perform indexing on the functor of their first argument, so if we have an
identifier ID, then we can find the corresponding clause in constant time, regardless of the number of
clauses asserted.

When looking for resolvent clauses with some clauseC, we can use the maximal literal ofC to focus
our search. For example, ifC = A∨B and literalA is greater than literalB, thenC can only be resolved
with a clause whose maximal literal is¬A (for a resolution step), or with a clause whose maximal literal is
A= w (for a superposition step). Hence, we maintain an index table, which allows us to look up the set of
clauses associated with a particular maximal literal. Thistable is implemented using the Prolog fact

clause:starts_with(MaxLiteral,ID)

The following Prolog code collects all clausesCsfrom SAT whose maximal literal isL:

is_maximal_literal(L,Cs):-
findall(C, (

clause:starts_with(L,ID),
clause:clause1(ID,C)
), Cs

).

The time that this predicate uses is linear in the size ofCs, but it is independent from the size of SAT.
Another aspect of saturation that can be a serious performance bottleneck is redundancy checking. In

fact, it is a well known fact that modern theorem provers spend most of their reasoning time on redundancy
checking. In return, this allows for avoiding repeated inferences and falling into infinite loops. Hence, any
speedup in redundancy checking manifests directly in speedup in the whole reasoning process.

A clauseC is made redundant by some clauseD if there is a substitutionσ such that the literals in
Dσ are a subset of the literals inC. Consequently, when we want to check if clauseC is redundant, it
is enough to focus on clauses whose predicates are a subset ofthat of C. We maintain a lookup table
(implemented as the Prolog factclause:is_contained(Pred,ID)) which associates with each predicate
the clauses that contain it and another table which associates with each clause the set of its predicates
(clause:all_predicates(ID,Preds)). We first determine the set of predicatesCPredsof C, collect the
clauses that contain some of these predicates and then eliminate the ones that contain other predicates than
those ofC. The redundancy ofC is checked only with respect to the remaining clauses. This is implemented
in the following predicate:

narrower_predicate_set(CPreds,Ds):-
findall(ID, (

member(P,CPreds),
clause:is_contained(P,ID)

), IDs
),

sort(IDs,IDs2),
findall(D, (

member(ID,IDs2),
clause:all_predicates(ID,DPreds),
ord_subset(DPreds,CPreds),
clause:clause1(ID,D)

), Ds
).

On the other hand, if we want to see what clauses are made redundant byC, then it is enough to check
those clauses whose predicate set is a superset of that ofC. Hence we collect all the clauses that contain all
the predicates ofC:

broader_predicate_set([First|Preds],IDDs):-
findall(ID, (
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clause:is_contained(First,ID),
( foreach(P,Preds), param(ID)
do is_contained_nochoice(P,ID)
)

), IDs
),

( foreach(ID2,IDs), foreach(ID2-D,IDDs) do clause:clause1(ID2,D) ).
broader_predicate_set([],IDDs):- !, % The empty clause makes

% everything redundant
findall(ID-D, clause:clause1(ID,D), IDDs).

is_contained_nochoice(P,ID):-
clause:is_contained(P,ID), !.

The optimisations described in this paragraph increased the overall speed of TBox saturation with two
orders of magnitude.

5.3 Future Work

One of the most urgent tasks ahead of us is extending the system interface. Currently, we only support the
DIG ([7]) format for the input knowledge base and query. We would like to provide the system with an
OWL interface (see [27] and [21]). Moreover, we have alreadyimplemented the database support ([32])
which enables really large scale reasoning, however, it hasnot yet been incorporated into the reasoner.
Once these tasks are done, we need to do more testing to evaluate DLog with respect to other DL reasoners
such as RacerPro, Pellet, Hermit, KAON2.

On the theoretical side, we are curious to see how far we can extend the expressivity of DLog beyond
R I Q , approximating, as much as possibleSR OI Q (D), the language behind OWL2 ([21]).

5.4 Summary

The DLog program is in experimental stage. We implemented all the reasoning algorithms and we have
prototype implementations for various further features, such as support for ABoxes stored in database. In
the near future we plan to incorporate all our results in a reasoner that proves useful for the DL community.
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Part II

Static Type Inference
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Chapter 6

Introducing the Q Language and
Constraint Logic Programming

In the following, we present some background knowledge thatthe user my find useful in the context of type
inference for the Q functional programming language, in particular for understanding Chapters 7 and 8. In
Section 6.1 we describe the Q functional programming language which was the target language for which
we developed a type analysis tool. In Section 6.2 we briefly present the constraint satisfaction problem.
In Chapter 7, we will rephrase the task of type inference as a constraint satisfaction problem. Finally, in
Section 6.3 we present the Constraint Handling Rules language, which we used for implementing our type
analyser.

6.1 The Q Programming Language

Q is a highly efficient vector processing functional language, which is well suited to performing complex
calculations quickly on large volumes of data. Consequently, numerous investment banks (Morgan Stanley,
Goldman Sachs, Deutsche Bank, Zurich Financial Group, etc.) use this language for storing and analysing
financial time series [35]. The Q language first appeared in 2003 and is now (July 2012) so popular, that it
is ranked among the top 50 programming languages by the TIOBEProgramming Community [53].

Types Q is a strongly typed, dynamically checked language. This means that while each variable, at any
point of time, is associated with a well defined type, the typeof a variable is not declared explicitly, but
stored along its value during execution. The most importanttypes are as follows:

• Atomic types in Q correspond to those in SQL with some additional date and time related types that
facilitate time series calculations. Q has the following 16atomic types:boolean, byte, short, int,
long, real, float, char, symbol, date, datetime, minute, second, time, timespan, timestamp.

• Lists are built from Q expressions of arbitrary types, e.g.(1;2.2;‘abc) is a list comprising two
numbers and a symbol. However, if a variable is initialised to a list of atomic values of the same
type, then certain operations, e.g. updating a certain element of the list, insist on keeping the list
homogeneous.

• Dictionaries are a generalisation of lists and provide the foundation fortables. A dictionary is a
mapping that is given by exhaustively enumerating all domain-range pairs. For example,(‘a‘b !
1 2) is a dictionary that maps symbolsa,b to integers1,2, respectively.

• Tablesare lists of special dictionaries calledrecords, that correspond to SQL records.

• Functionscorrespond to mathematical mappings specified by an algorithm.
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Main Language Constructs Q being a functional language, functions form the basis of the language.
A function is composed of an optional parameter list and a body comprising a sequence of expressions to
be evaluated. Function application is the process of evaluating the sequence of expressions obtained after
substituting actual arguments for formal parameters.

As an example, consider the expression

f: {[x] $[x>0;sqrt x;0]}

which defines a function of a single argumentx, returning
√

x, if x > 0, and 0 otherwise. Note that the
formal parameter specification[x] can be omitted from the above function, as Q assumesx, y andz to
be implicit formal parameters. If a return value is specified, the function evaluates to its return value,
otherwise it has no return value.

Input and return values of functions can also be functions: for example, a special group of functions,
calledadverbstake functions and return a modified version of the input. Thewhole Q program can be seen
as a series of complex function evaluation steps.

Some built-in functions (dominantly mathematical functions) with one or two arguments have a special
behaviour calleditem-wise extension. Normally, the built-in functions take atomic arguments and return
an atomic result of some numerical calculation. However, these functions extend to list arguments item-
wise. If a unary function is given a list argument, the resultis the list of results obtained by evaluating
each argument element. A binary function with an atom and a list argument evaluates the atom with each
list element. When both arguments are lists, the function operates pair-wise on elements in corresponding
positions. Item-wise extension applies recursively in case of deeper lists, e.g.((1;2); (3;4)) + (0.1;
0.2) = ((1.1;2.1); (3.2;4.2))

Although it is a functional language, Q also has imperative features, such as multiple assignment vari-
ables, loops, etc.

Q is often used for manipulating data stored in tables. Therefore, the language contains a sublanguage
called Q-SQL, which extends the functionality of SQL, whilepreserving a very similar syntax.

Besides expressions to be evaluated, a Q program can containso calledcommands. Commands control
aspects of the Q environment. Among many other tasks, they are responsible for changing the current
context (namespace), performing various O/S level operations, loading a file, etc.

Principles of evaluation In Q, expressions are always parsed from right to left. For example, the evalua-
tion of the expressiona:2*3+4 begins with adding4 to 3, then the result is multiplied by2 and finally, the
obtained value is assigned to variablea. There is no operator precedence, one needs to use parentheses to
change the built-in right-to-left evaluation order.

Flexibility Q is an extremely permissive language: for example, it is allowed to divide by zero and
built-in functions accept extreme types without runtime error. This property of the language significantly
increases the chance of program errors that are very difficult to explore once the program evaluation fails.
Overcoming this difficulty by developing debugging tools for Q is likely to greatly enhance the usability of
the language.

Type restrictions in Q The program code environment can impose various kinds of restrictions on types
of expressions. In certain contexts, only one type is allowed. For example, in the do-loopdo[n;x*:2],
the first argument specifies how many timesx has to be multiplied by2 and it is required to be an integer.
In other cases we expect a polymorphic type. If, for example,function f takes arbitrary functions for
argument, then its argument has to be of typeA -> B (a function taking an argument of typeA and
returning a value of typeB), whereA andB are arbitrary types. In the most general case, there is a restriction
involving the types of several expressions. For instance, in the expressionx : y + z, the type ofx
depends on those ofy andz. A type analyser for Q has to use a framework that allows for formulating all
type restrictions that can appear in the program.

66



6.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) [24] can be described with a triple(X,D,C), where

• X = {x1, . . . ,xn} is a series of variables,

• D = {D1, . . . ,Dn} is a series of finite sets called domains,

• variablexi can only take values from domainDi ,

• C= {c1, . . . ,ck} is a series of constraints, i.e., atomic relations whose arguments are variables from
X.

A solution to a CSP is an assignment to eachxi ∈ X a domain elementvi ∈ Di , such that all constraints
c∈C are satisfied.

A value di of a variablexi of a constraintc is superfluousin case there is no assignment to the rest
of the variables ofc along withxi = di that satisfies constraintc. Removing superfluous values from the
corresponding domains yields an equivalent CSP.

There are two mechanisms that lead to a solution of a CSP. First, constraints constantly monitor the
domains of their variables and remove superfluous values. Second, in case constraints fail to reduce some
domain to a single value, we apply labeling: we choose a variablexi and split its domain into two (or more)
parts, creating a choice point where each branch corresponds to a reduced domain. Through a backtracking
search we explore the branches. During labeling, constraints can wake up as the domains of their variables
change and can further eliminate superfluous values. In casea domain becomes empty, we roll back to
the last choice point. By the end of labeling, either we find a single value for each variable such that all
constraints are satisfied, or else we conclude that the CSP isunsatisfiable.

6.3 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) is a language embedded intoa host language. Here we only give a brief
introduction, a more detailed tutorial can be found in [47].Most Prolog implementations contain a CHR
extension, and CHR code is translated into Prolog code. In the following, we will as assume the host
language to be Prolog.

CHR provides a very flexible tool, because arbitrary constraints can be formulated. However, there is
no built-in constraint reasoning, it has to be provided by the programmer in the form of rewrite rules. A
constraint can be any Prolog term except for variable.1 A CHR program consists of a sequence of rules,
that are simple if-then rules. Program execution is as follows:

1. There is aconstraint storewhere constraints are accumulated. A constraint can appearanywhere in
a Prolog program, instead of a predicate call. The constraint gets added to the store.

2. Each CHR rule monitors the constraint store and in case certain constraints are present, it can fire.
The firing of a rule can result in the addition or removal of some constraints, along with the execution
of some Prolog calls.

3. If the constraints in the store allow for no rule to fire any more, execution terminates and the user is
shown the final state of the constraint store.

We illustrate the use of CHR with a simple example taken from [47]. The program describes how to
mix colors. We will work with six different colors:red, yellow, blue, green, purple, orange. These
colors are our constraints, declared at the beginning of theprogram:

:- chr_constraint red, yellow, blue.
:- chr_constraint green, purple, orange.

1Though, it can contain variables as subexpressions.
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Of course, we know that three colors are sufficient for creating the other three. Red and blue yield
purple, red and yellow yield orange, blue and yellow yield green. These are expressed using the following
CHR rules:

red, blue <=> purple.
red, yellow <=> orange.
blue, yellow <=> green.

The above rules are calledsimplification rules, because the constraints to the left of the<=> sign are
simplified into the constraints to the right. The left part iscalled theheadthat contains all the constraints
that need to be present in the store in order for the rule to fire. The right part is thebodythat holds the
constraints to be added after firing. For example, the first rule can fire if we have constraintsred andblue
in the store. After firing,red andblue are removed andpurple is added to the store.

We have a mixing bucket, which corresponds to the constraintstore. What happens if we putred in the
bucket?

?- red.
red

Nothing happens,red remains in the bucket, because the rules require two colors to fire. If, however, we
also add yellow:

?- red, yellow.
orange

then the second rule fires and we obtain the color (constraint) orange in the bucket (store).
Now, let us add the colorbrown to our palette:

:- chr_constraint brown.

The particularity ofbrown is that it remainsbrown, no matter what color is added to it.

brown, orange <=> brown.
brown, purple <=> brown.
...

Notice that the constraintbrown appears both in the head and in the body. For such rules, thereis a
simplified notation:

brown \ orange <=> true.
brown \ purple <=> true.
...

The head has two parts: constraints that remain after firing and those that are eliminated by the rule.
Simplification rules are special cases of this rule, where the first part was empty. It is also possible that the
second part is empty, i.e., nothing is removed from the store. For example, the coloryellow might contain
some constituent that leads to the corrosion of the mixing bucket. This is called apropagation rule:

yellow ==> corrosion

Rules where neither part of the head is empty can be seen as thecombination of simplification and propa-
gation rules. For this reason, they are calledsimpagation rules.

Until now, we only had atomic constraints. There is no reasonfor that, any Prolog term is allowed
(except for variables). Let us add a saturation value to our colors. The arity of the constraints change,
which has to be reflected in the constraint declaration:

:- chr_constraint red/1, yellow/1, blue/1.
:- chr_constraint green/1, purple/1, orange/1.
:- chr_constraint brown/1.
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As we mix colors, the saturation values are added:

red(X), blue(Y) <=> Z is X+Y, purple(Z).
red(X), yellow(Y) <=> Z is X+Y, orange(Z).
blue(X), yellow(Y) <=> Z is X+Y, green(Z).

What we see here is that arbitrary Prolog code can be insertedin the rule body. The code is executed, while
the constraints are added to the store.

?- yellow(3), blue(4).
green(7)

Let us suppose that colors have a maximum saturation value, say 10. This means that if some color has
maximum saturation, then it does not mix with any other color. This is a precondition for firing the rule,
that can be placed in the so calledguardpart:

red(X), blue(Y) <=> X < 10, Y < 10 | Z is X+Y, purple(Z).
red(X), yellow(Y) <=> X < 10, Y < 10 | Z is X+Y, orange(Z).
blue(X), yellow(Y) <=> X < 10, Y < 10 | Z is X+Y, green(Z).

The guard can contain arbitrary Prolog calls with the only restriction that it may not bind variables from
the head. If the guard succeeds, the rule can fire and the body is executed.

Formal syntax After this informal introduction, we now present the precise syntax for the tree kinds of
CHR rules:

• Simplification
H1, . . . ,Hi <=> G1, . . . ,G j |B1, . . . ,Bk.

• Propagation
H1, . . . ,Hi ==> G1, . . . ,G j |B1, . . . ,Bk.

• SimpagationH1, . . . ,Hl\Hl+1, . . . ,Hi <=> G1, . . .G j |B1, . . . ,Bk.

The rules consist of the following parts:

• Head:H1, . . . ,Hi , whereHm is a CHR constraint

• Guard:G1, . . . ,G j , whereGm is a host constraint2

• Body: B1, . . . ,Bk, whereBm is either a CHR or a host constraint

The semantics and execution of the rules:

• Simplification: In case the guard is true, the head and the body are equivalent. The constraints in
the store that match the head are removed and the body is executed. This might involve adding new
constraints to the store.

• Propagation: In case the guard is true, the head implies the body. The body is executed.

• Simpagation: In case the guard is true, the head is equivalent to the body along with the first part
of the head. The constraints in the store that match the second part of the head are removed and the
body is executed. Note that simpagation can be expressed as asimplification, since the following
two rules are equivalent:3

Head1 \ Head2 <=> Body
Head1, Head2 <=> Head1, Body.

2In the case of Prolog a host constraint can be arbitrary predicate call.
3However, the rules are different in terms of efficiency, since the constraints inHead1 are removed and then re-added in the second

rule.
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Example We demonstrate the usefulness of CHR through a small exampleprogram. The program com-
putes the prime numbers in the range{0. . .N}, implementing the sieve of Eratosthenes:

:- chr_constraint primes/1, prime/1.
primes(1) <=> true.
primes(N) <=> ground(N), N>1 | M is N-1, primes(M), prime(N).
prime(X) \ prime(Y) <=> Y mod X =:= 0 | true.

The code is remarkably short. Let us see what happens if we addthe constraintprimes(10) to the store.
The second rule generates constraintsprime(I) for all I ∈ {2. . .10}. Afterwards, the first rule removes
the primes/1 constraint. Finally, the third rule fires as long as it finds two constraintsprime(X) and
prime(Y) in the store, such thatY is divisible byX, in which case it eliminatesY. Only the primes remain.

?- primes(10).
prime(2)
prime(3)
prime(5)
prime(7)
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Chapter 7

Type Inference for the Q Functional
Language

In this chapter we present our work on designing a type analysis tool for the Q vector processing language,
see Section 6.1. This work was carried out in the framework ofa collaborative project between Budapest
University of Technology and Economics and Morgan Stanley Business and Technology Centre, Budapest.
We emphasize two merits of our work: 1) we provide a type language that allows for adding type declara-
tions to Q programs, making the code better documented and easier to maintain and 2) our tool checks the
type correctness of Q programs and detects type errors that can be inferred from the code before execution.

The type analysis tool has been developed in two phases. In the first phase we built atype checker:
the programmer was expected to provide type annotations forall variables (in the form of appropriate Q
comments) and our task was to verify the correctness of the annotations. In the second phase we moved
from type checking towardstype inference: we devised an algorithm for inferring the possible types ofall
program expressions, without relying on user provided typeinformation. Although we no longer require
type annotations, we allow them as they provide documentation and improve maintenance and code reuse.

The main goal of the type analysis tool is to detect type errors and provide detailed error messages
explaining the reason of the inconsistency. Our tool can help detect program errors that would otherwise
stay unnoticed, thanks to which it has the potential to greatly enhance program development.

We perform type inference using constraint logic programming: the initial task is mapped into a con-
straint satisfaction problem (CSP), which is solved using the Constraint Handling Rules extension of Pro-
log [19], [48].

First, in Section 7.1, we give an overview of previous work done in the field of static type analysis.
In Section 7.2, we present some restrictions that we had to impose on the Q language in order to make
type analysis feasible. Afterwards, in Section 7.3 we present the type language that we designed in order
to enable Q programmers to add type annotations to their programs. The following two sections describe
the type analysis itself. Section 7.4 shows how to check Q programs for type correctness in case there is a
ground type declaration for each variable. The algorithm discussed in Section 7.5 lifts this restriction and
allows for inferring the possible types for each program expression without any type information provided
by the user.

7.1 Work Related to Type Inference

Static analysis of computer programs is a very broad conceptand encompasses numerous techniques.
These techniques analyse the code in compile time and try to predict the runtime behaviour. Often they
aim to optimise resource consumption through better memorymanagement, reuse of previously computed
results etc. Furthermore, they can be used to automaticallypredict properties of the program that hold for
all possible execution paths.

Static type analysis aims to ensure that program execution will never cause an error. This is not possible
with full generality as errors may depend on particular input values of the program, but a large class of
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errors may be discovered based on the types of the involved expressions and these types are often known
already in compile time. A type represents a set of expressions and working with types as opposed to values
is a useful abstraction that enables the early discovery of many programming errors.

A successful method for static analysis and in particular static type analysis isabstract interpretation
[12]. In order to demonstrate a certain property of the program, we approximate the program with a
simpler, more abstract one that shares the property to be demonstrated. This involves mapping concrete
values to abstract values (types) and mapping concrete operations to abstract operations. The benefit of
the mapping is that instead of considering all the possible execution branches of the initial program, we
only need to consider groups of execution branches, such that the various executions within a group cannot
be distinguished on the abstract level. Abstract interpretation can be very fine grained or very abstract,
depending on the complexity of the property to be demonstrated.

A very different approach to type analysis is to generate constraints from the program to ensure that it
is well typed. One of the first such algorithms used for type inference is the Hindley-Milner type system
[25]. It associates the program to be analysed with a set of equations which can be solved by unification. It
supports parametric polymorphism, i.e., allows for using type variables. The type inferred by the algorithm
for an expression is guaranteed to be the most general possible type, theprincipal type. Most type systems
for statically typed functional languages can be seen as extensions of the Hindley-Milner system. Some
of the best known examples are the ML family [44] and Haskell [31]. We also find several examples of
dynamically typed languages extended with a type system allowing for type checking and type inference.
These attempts aim to combine the safeness of static typing with the flexibility of dynamic typing. [42]
describes a polymorphic type system for Prolog, which is essentially the same as that of ML. Here, the
only addition to the language are type declarations, and it is guaranteed that any well-typed program will
behave identically with or without type analysis.

A major limitation of the Hindley-Milner system is that it requires disjoint types. In such a system
one cannot have, for example, anumericand anintegertype since they are not disjoint. Another approach
to type inference which does not suffer from this limitationis based on subtyping [10]. Here, the input
program is mapped into type constraints of the formU ⊆ V whereU andV are types, as opposed to
Hindley-Milner systems where we obtain constraints of the formU =V. Subtyping systems can be seen as
generalisations of Hindley-Milner systems. [40] presentsa type checker for Erlang, a dynamically typed
functional language, based on subtyping. Several of the shortcomings of this system were addressed in
[36]. Their tool aims to automatically discover hidden typeinformation, without requiring any alteration of
the code. The inferred types enhance program maintenance and reuse by helping programmers understand
code written long ago. They introduce the notion of success typing: in case of potential type errors (for
example, because a variable can have two possible types during execution and one leads to abnormal
behaviour), they assume that the programmer knows what he wants. They only reject programs where the
type error is certain, i.e., when there is no way the program can run correctly.

The Q language is similar to Erlang in that they are both dynamically typed functional languages. The
usage of the language naturally yields many constraints of the formU ⊆ V for typesU,V. Still, a type
system based on subtyping is not sufficient. Due to built-in functions being highly overloaded (ad-hoc
polymorphism), we need tools to formulate and handle versatile and complex constraints. Constraint logic
programming seems ideal for this task.

[16] reports on using constraints in type checking and inference for Prolog. They transform the input
logic program with type annotations into another logic program over types, whose execution performs the
type checking. They give an elegant solution to the problem of handling infinite variable domains by not
explicitly representing the domain on unconstrained variables. The way variable domains are represented
in the Q type inference tool was motivated by their work. [52]describe a generic type inference system for
a generalisation of the Hindley-Milner approach using constraints, and also report on an implementation
using Constraint Handling Rules. The CLP(SET ) [17] framework provides constraint logic reasoning over
sets. Our solution has many similarities to CLP(SET ) as types can be easily seen as sets of expressions.
The main difference is that we have to handle infinite sets.
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7.2 Necessary Restrictions of the Q Language for Type Reasoning

Q is a very permissive language. In consultation with experts at Morgan Stanley we decided to impose
some restrictions on the language supported by our tool, in order to promote good coding practice and
make the type analysis more efficient.

With multiple assignment variables and dynamic typing, Q allows for setting a variable to a value
of type different from that of the current value. However, this is not the usual practice and it defies the
very goal of type checking. Hence we agreed that each variable should have a single type in a program,
otherwise the type analyser gives an error message.

Other restrictions concern the type of the built-in functions. Most built-in functions in Q are highly
overloaded, thanks to which some functions do not raise errors for certain “strange” arguments. For exam-
ple, the built-in functionlast takes a list as argument and returns the last element of the list. However,
this function works on atomic arguments as well: it simply returns the input argument. To increase the
efficiency of the type reasoner we decided to ignore some special meanings of some built-in functions. For
example, we neglected this special meaning of thelast function. Consequently, we infer that the argument
of thelast function is a list, which is not necessarily true in general.

7.3 Extending Q with a Type Language

In order to allow the users to annotate their programs with type declarations, we had to devise a type
language that could be comfortably integrated into a Q program. Our type language supports type poly-
morphism, i.e., the usage of type variables. Type expressions are built from atomic types and variables
using type constructors. The concrete syntax is provided inAppendix B. The abstract syntax of the type
language – which is at the same time the Prolog representation of types – is as follows:

TypeExpr =
AtomicTypes | TypeVar | symbol(Name) | any

| list(TypeExpr) | tuple([TypeExpr,...,TypeExpr])
| dict(TypeExpr, TypeExpr) | func(TypeExpr, TypeExpr)

AtomicTypes This is shorthand for the 16 atomic types of Q. Furthermore, the numeric keyword is
used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression with the restriction that the same variables stand for
the same type expression. Type variables make it possible todefine polymorphic type expressions,
such aslist(A) -> A (a function mapping a list of a certain type to a value of the given type) and
tuple([A,A,B]).

symbol(Name) The named symbol type is a degenerate type, as it has a single instance only, namely the
provided symbol. Nevertheless, it is important because in order to support certain table operations,
the type reasoner needs to know what exactly the involved symbols are. For example, when we insert
a new record into a table, it is not sufficient to know that the record maps symbols to the adequate
types (that of the column values), we also have to check that the column names match.

any This is a generic type description, which denotes all data structures allowed by the Q language.

list(TE) The set of all lists with elements from the set represented byTE.

tuple([TE1, ..., TEk]) The set of all lists of lengthk, such that theith element is from the set
represented byTEi .

dict(TE1,TE2) The set of all dictionaries, defined by an explicit association between domain list (TE1)
and range list(TE2) via positional correspondence. For example, the dictionary (‘name;‘date) !
(‘Joe; 1962) has type
dict(tuple([symbol(name),symbol(date)]),tuple([symbol(Joe),int]))1.

1To facilitate type inference for tables, we include detailed information on the domain/range of a dictionary in its type. (A record
is a dictionary with the domain being a list of column names.)
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func(TE1, TE2) The set of all functions, such that the domain and range are from the sets represented
by TE1 andTE2, respectively.2

While some type expressions correspond directly to Q language constructs (such aslist, dict or func),
others were “discovered” in the process of trying to describe Q expressions. Such are thetuple(. . .)
and symbol(. . .) type expressions. Some built-in functions require list arguments with fixed length.
These lists might also have to be non-homogeneous, with wellspecified type for each list member. To
be able to describe the type of such functions (and that of their argument), we introduced thetuple
type. Using thetuple type, we can for example easily describe a function that takes a list consisting
of an integer and a symbol and returns another list consisting of two integers and a float: it has type
func(tuple([int,symbol]),tuple([int,int,float])).

Thesymbol(Name) type was introducted to enable type checking table operations. For example, it
allows for deciding whether a given record to be inserted into a given table has matching column names. A
record is a dictionary that maps column names to values. By using symbol(Name), we can represent the
domain type of dictionaries in such a way that contains the names of all columns. Hence, instead of treating
dictionary(‘name‘age)!(‘jim;2), asdict(tuple([symbol,symbol]),tuple([symbol,int])), we
represent its type asdict(tuple([symbol(name),symbol(age)]),tuple([symbol,int])).

Note that our type system contains non-disjoint types: for example,int is a subtype ofnumeric and
tuple([int,int]) is a subtype oflist(int). As we shall see later, this greatly complicates the type
analysis.

7.3.1 Type Declarations

Type annotations appear as Q comments and hence do not interfere with the Q compiler. A type declaration
can appear anywhere in the program and it will be attached to the smallest expression that it follows
immediately. For example, in the code

x + y //$: int

variabley is declared to be an integer.
Type declarations can be of two kinds, having slightly different semantics:imperative(believe me that

the type of expression E is T) orinterrogative(I think the type of E is T, but please do check). To understand
the difference, suppose the value ofx is loaded from a file. This means that both the value and the type is
determined in runtime and the type checker will treat the type ofx asany. If the user gives an imperative
type declaration thatx is a list of integers, then the type analyser will believe this and treatx as a list of
integers. If, however, the type declaration is interrogative, then the type analyser will issue a warning,
because there is no guarantee thatx will indeed be a list of integers (it can be anything). Interrogative
declarations are used to check that a piece of code works the way the programmer intended. Imperative
declarations provide extra information for the type analyser.

Different comment tags have to be used for introducing the two kinds of declarations. We give an
example for each:

f //$: int -> boolean interrogative
g //!: int -> int imperative

7.4 Type Checking for the Q Language

In this section we give an outline of the data structures and algorithms developed for the first version of
our type analyser tool: the type checker. There are two requirements towards Q programmers: they have to
provide a type declaration for all variables and only grounddeclarations are allowed, i.e., type variables are
not allowed. Both restrictions will be lifted in the type inference algorithm to be described in Section 7.5.

We only discuss type analysis proper: details about parsingQ programs can be found in [62]. Hence,
we assume that the input of this phase is the abstract syntax tree (AST), constructed by the parser. Its output
is a (possibly empty) list of type errors.

2To help readability, we often use the notationA -> B instead offunc(A,B).
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7.4.1 Type Analysis Proper

Algorithm 3 gives a summary of the type analysis component. Our aim is to determine whether we can
assign a type to each expression of the program in a coherent manner. Some types are known from the
start: the types of variables are provided by the programmer, furthermore, we know the types of atomic
expressions and built-in functions. The analyser infers the types of the other expressions and checks for
consistency.

Algorithm 3 Algorithm of the type analysis component
1. To each node of the abstract syntax tree, we assign a type variable.

2. We traverse the tree and formulate type constraints. For each program expression there is a constraint
that can be used to determine its type based on the types of itssubexpressions. In terms of the abstract
syntax tree, these constraints specify the type of a node based on the types of its child nodes.

3. Constraint reasoning is used to automatically

• propagate constraints,

• deduce unknown types

• detect and store clashes, i.e., type errors.

From the types of the leaf nodes, we infer the types of their immediate parents. This wakes up new
constraints, so in the next step we can determine the types ofnodes that are at most two steps away
from all their leaf descendants. Continuing this process, we eventually find all types.

4. If there is a type mismatch, we mark the erroneous node. Allthe parent nodes will also be marked
erroneous – however, we only show the smallest erroneous expressions to the user, i.e., those that
have no erroneous subexpression.

5. By the end of the traversal, each node that corresponds to atype correct expression is assigned a
type. The types satisfy all constraints.

Each expression in the concrete syntax corresponds to a subtree of the AST. Hence, we maintain a
variable (in mathematical sense) for each node of the tree, that stands for the type of the subtree rooted at
the node. The task of the type checker is to instantiate the variables to proper ground types, as described
in the type language in Section 7.3. During reasoning, theremay be situations where we can only partially
instantiate a variable, for example, we might first infer that a certain expression is a list and only later narrow
it to be a list of floats. To handle these situations, we allow type variables in the inner representation of
types, despite the fact that the programmers are not allowedto use them in the declarations.

We traverse the tree and formulate context specific constraints on the type of the current node and those
of its children. For instance, in the example in Figure 7.1, when we reach theapp node, we know it is
a function application, so the left child has to be of typea -> b, the right child of typea and the whole
subtree of typeb. In some cases the constraint determines the type of some node, but in many others it only
narrows down the range of possible values. In case of clash between the restrictions, there is a type error
in the program.

The type checker also detects hazardous code that contains potential type error. This is the case when
the expected type of some expression is a subtype of the inferred one. An example for this is when a
function is declared to expect an integer argument and all weknow about the argument is that it is numeric.
We cannot determine the runtime behaviour of such a code, since the type error depends on what sort of
numeric argument will be provided. Instead of an error, we give a warning in such cases that the user can
decide to suppress.

Constraints are handled using the Prolog CHR [48] library. For each constraint, the program contains
a set of constraint handling rules. Once the arguments are sufficiently instantiated (what this means differs
from constraint to constraint), an adequate rule wakes up. The rule might instantiate some type variable, it
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Figure 7.1: The abstract tree format of the expressionf (4+2)

might invoke further constraints or else it infers a type error. In the latter case we mark the location of the
error, along with the clashing constraint.

In case all variables are provided with a type declaration, we start the analysis with the knowledge of
the types of all leaves of the abstract syntax tree. This is because a leaf is either an atomic expression or
a variable. Once the leaf types are known, propagation of types from the leaves upwards is immediate,
because we can infer the type of an expression from those of its subexpressions. Constraints wake up
immediately when their arguments are instantiated, as a result of which the type variables of the inner
nodes become instantiated.

7.4.2 Constraints

The constraints that can be used for type inference come fromtwo sources. First, we know the types of
atomic expressions and built-in functions. For example,2.2 is immediately known to be a float. Similarly,
we know that the functioncount is of typeany -> int. Such knowledge allows us to set – or at least
constrain – the types of certain leaves of the abstract syntax tree. The other source of constraints is the lan-
guage syntax. This can be used to propagate constraints, because the language syntax imposes restrictions
on the types of neighbouring nodes.

Besides these type constraints, there can be type information provided by the user at any level of the
abstract syntax tree.

Constraint Handling Rules To handle type constraints, we use constraint logic programming. More
precisely, we use the Prolog CHR (Constraint Handling Rules) library [48], which provides a general
framework for defining constraints and describing how they interact with each other. The advantage of
CHR is that the constraint variables can take values from arbitrary Prolog structures, so we can comfortably
represent all values that a type expression can have.

An Example Constraint We illustrate constraint handling with a small example. Consider the expression
x in y, where the types ofx,y areX,Y, respectively. Thein function checks if the first argument is
a member of the second. The second argument is either a list ora dictionary. The type of the whole
expression is boolean and the restriction onX,Y is expressed using the constraintdict_list_c(Y,_,X),
which can be defined by the following constraint handling rules:

% dict_list_c(X,A,B):-
% either X is a list of type B and A is integer
% or X is a dictionary with domain type A and range type B
dict_list_c(dict(X,Y),A,B) <=> A = X, B = Y.
dict_list_c(list(X),A,B) <=> A = int, B = X.

The rules remain suspended until the first argument gets instantiated to adict/2 or list/1 structure. The
constraint fails if the adequate types cannot be unified.
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However, these rules are incomplete in two ways. First, as wehave seen in Section 7.3, a list can also
be represented as a tuple. Hence, we have to add the followingrule:

dict_list_c(tuple(Xs),A,B) <=>
A = int, ( foreach(B,Xs), param(B) do true ).

The second problem is the lack of error handling. If the constraint fails, the whole program fails. Thus,
instead of telling the user where the type error occurred, weonly indicate that there is a type error, which is
not useful at all. We address this by assigning an identifier to each expression. Each time an error occurs,
we store the identifier and the kind of error. After all constraints exited, we retrieve the identifiers of the
erroneous expressions and the relevant location in the program code. With these we can give an error
message that explains the problem. The final version of the constraint handling rules fordict_list_c:

% dict_list_c(X,A,B,ID):-
% either X is a list of type B and A is integer
% or X is a dictionary with domain type A and range type B
dict_list_c(X,A,B,ID) <=> nonvar(X) |

( X = dict(A,B)
; X = list(B), A = int
; X = tuple(Xs), A = int,
( foreach(B,Xs), param(B) do true )

; assert(q:error(type,ID,wrong_dict_list))
), !.

The constraint wakes up as soon as the first argument is instantiated. Then, if it is a dictionary or a list,
we can enforce the constraint by unifying some terms. If the unification succeeds, the constraint exits
successfully. Otherwise, we mark that an error occurred.

7.4.3 Issues about Type Declarations

We require programmers to provide every variable with a ground type declaration. In this subsection we
give reasons for this requirement.

The immediate benefit is that the types of all leaves of the abstract syntax tree are known at the begin-
ning of the analysis. Without type declarations, some constraints might remain suspended and lots of types
unknown. In this case we would have to use some sort of labeling to assign a type to each expression.

Furthermore, if the arguments of constraints are ground, wedo not have to worry about the interaction
of constraints. Consider, for example the following two constraints:

int_or_float(X) <=> (X == int ; X == float) | true.
int_or_long(X) <=> (X == int ; X == long) | true.

If these two constraints apply toT, then they will not do anything as long asT is a variable, even though
there is only one solution, namelyT=int. In order for the type analyser to infer this, we have to add a new
rule that describes the interaction of the two constraints,such as

int_or_float(X), int_or_long(X) <=> X = int.

More complex constraints can interact in many different ways and the number of constraint handling rules
necessary for capturing all interactions can be exponential in the number of constraints. Given that we
work with more than 60 different constraints, it is not realistic to exhaustively write up all rules. If, on the
other hand, the arguments are sufficiently instantiated that the constraints can wake up individually (not
knowing about the others), then we only need to provide a couple of rules for each constraint. In the above
example, ifX is instantiated, then eitherX=int and both constraints exit successfully or else at least one
constraint indicates an error.

When we have a variable in a Q program, we have to copy its type from its defining occurrence to all
its applied occurrences. If the type is ground, copying is simple since we unify the type expressions. This,
however, does not work if the type of the variable contains variables that are possibly constrained. Let
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the type off beX -> int where there is a constraint onX ensuring that it is from the set{int, float}.
Consider the following code:

x:f 2
y:f 3.1

If we unify the type variables for each occurrence off with X -> int, then from the first lineX will be
instantiated toint, which will make the type checker indicate a type error in thesecond line, since it will
try to unify int with float. What we need is separate instances of the type off with distinct variables,
while holding the same constraints, which is quite complicated. Fortunately, this problem does not arise if
all variables are provided with a ground type declaration.

7.5 Type Inference for the Q Language

In the second phase of the development of our type analyser tool, we set out to eliminate the two main
restrictions of the type checker: sometimes it is too burdensome for the programmers to have to provide
type declarations and sometimes it is too restrictive that the declarations have to be ground. In order
to find a more flexible solution, where the analyser uses whatever information is available and infers as
much as possible, we looked for a more solid theoretical foundation. In the following, we will show how
to reformulate the task of type inference as a constraint satisfaction problem (CSP) and then provide a
solution through this reformulation, based on logic programming.

7.5.1 Type Inference as a Constraint Satisfaction Problem

Type reasoning starts from a program code that can be seen as acomplex expression built from simpler
expressions. Our aim is to assign a type to each expression appearing in the program in a coherent manner.
The types of some expressions are known immediately (atomicexpressions, certain built-in functions),
besides, the program syntax imposes restrictions between the types of certain expressions. The aim of the
reasoner is to assign a type to each expression that satisfiesall the restrictions.

We associate a CSP variable with each subexpression of the program. Each variable has a domain,
which initially is the set of all possible types. Different type restrictions can be interpreted as constraints
that restrict the domains of some variables. In this terminology, the task of the reasoner is to assign a value
to each variable from the associated domain that satisfies all the constraints.

Domains Type expressions can be embedded into each other (e.g.list(int), list(list(int)), etc.),
and tuples can be of arbitrary length, consequently we have infinitely many types, which makes represent-
ing domains more difficult than in a classical CSP. Furthermore, the types determined by the type language
are not disjoint. For example1.1f might have typefloat or numeric as well. It is evident that every
expression which satisfies typefloat also satisfies typenumeric, i.e.,float is asubtypeof numeric. We
will use the subtype relation to represent infinite domains finitely: a domain will be represented with an
upper and a lower bound.

We say that type expressionT1 is a subtype of type expressionT2 (T1 ≤ T2) if and only if, all expres-
sions that satisfyT1 also satisfyT2. The subtype relation determines a partial ordering over type expres-
sions. For example, consider thetuple([int,int]) type which represents lists of length two, where both
elements are integers. Every expression that satisfiestuple([int,int]) also satisfieslist(int), i.e.,
tuple([int,int]) is a subtype oflist(int). For atomic expressions it is trivial to check if one type is
the subtype of another. Complex type expressions can be checked using some simple recursive rules. In
the following, we provide these rules:

• list(A) is a subtype oflist(B) exactly ifA is subtype ofB.

• tuple([A1, . . . ,Ak]) is a subtype oftuple([B1, . . . ,Bk]) exactly if Ai is a subtype ofBi for all
1≤ i ≤ k.

• tuple([A1, . . . ,Ak]) is a subtype oflist(B) exactly ifAi is a subtype ofB for all 1≤ i ≤ k.

78



• func(D1,R1) is a subtype offunc(D2,R2) exactly if D2 is a subtype ofD1 andR1 is a subtype of
R2.

• dict(D1,R1) is a subtype ofdict(D2,R2) exactly if D2 is a subtype ofD1 andR1 is a subtype of
R2.

• symbol(Name) is a subtype ofsymbol.

• Every type is a subtype ofany.

The domain of a variable is initially the set of all types, which can be constrained with different upper
and lower bounds.

An upper bound restriction for variableX is a listA= [A1, . . . ,Ak], meaning that the upper bound ofX is⋃k
j=1A j , i.e.,X is a subtype of some element ofA. Disjunctive upper bounds are very common and natural

in Q, for example, the type of an expression might have to be eitherlist ordict. The conjunction of upper
bounds is easily described by having multiple upper bounds.If we have two upper boundsA= [A1, . . . ,Ak]
andB = [B1, . . . ,Bl ] on the same variableX, this means the value ofX has to be in

⋃
(Ai

⋂
B j), for all

1≤ i ≤ k and 1≤ j ≤ l .
A lower bound restriction for variableX is a single type expressionA, meaning thatA is a subtype of

X. For lower bounds, it is their union which is naturally represented by having multiple constraints: ifX
has two lower boundsA andB, thenA∪B has to be subtype ofX. We do not use lists for lower bounds and
hence cannot represent the intersection of lower bounds. Wechose this representation because no language
construct in Q yields a conjunctive lower bound.

With the following example we demonstrate that lower and upper bounds are natural restrictions in Q: In
the codea:f[b] functionf is applied tob and the result is assigned toa. Suppose the type off turns out to
be a map fromnumeric to tuple([int, int]). We can infer that the type ofb must be at mostnumeric,
which can be expressed with an upper bound. The result off[b] has the typetuple([int,int]), which
means, that the type ofa must be at leasttuple([int,int]), which can be expressed with a lower bound.
If later the type ofa turns out to belist(int) (a list of integers) and the type ofb to be e.g.float, then
the above expression is type correct.

Constraints After parsing – where we build an abstract syntax tree representation of the input program
– the type analyser traverses the abstract syntax tree and imposes constraints on the types of the subex-
pressions. The constraints describing the domain of a variable are particularly important, we call them
primary constraints. These are the upper and lower bound constraints. We will refer to the rest of the
constraints assecondary constraints. Secondary constraints eventually restrict domains by generating pri-
mary constraints, when their arguments are sufficiently instantiated (i.e., domains are sufficiently narrow).
Constraints that can be used for type inference can originate from the following sources in a Q program:

Type declarations If the user gives a type declaration, the expression will be treated as having the declared
type.

Built-in functions For every built-in function, there is a well-defined relationship between the types of its
arguments and the type of the result. These relations are expressed by adequate – sometimes quite
complicated – constraints.

Atomic expressionsThe types of atomic expressions are revealed already by the parser, so for example,
2.2f is immediately known to be afloat.

Variables Local variables are made globally unique by the parser, so variables with the same name must
have the same type. We ensure this by equating their corresponding domains. However, care has to
be taken with polymoprhic functions. If, for example, thereis a functionf that maps arbitrary input
to an integer, then its various applied occurrences might have different types: inf[2] andf[‘jack]
the function will have typesint -> int andsymbol -> int, respectively. In such cases, instead
of equality, we impose thespecialisedrelation on the defining and the various applied occurrences
of the function symbol. We will discuss this later in more detail.
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Program syntax Most syntactic constructs impose constraints on the types of their constituent constructs.
For example, the first argument of anif-then-else construct must beint or boolean. Another
example is the assignment construct. The type of the left side has to be at least as “broad” as the type
of the right side. It means the type of the right side is subtype of the type of the left side.

Constraint Reasoning Constraint reasoning is based on aproduction system[43], i.e., a set of IF-THEN
rules. We maintain aconstraint storewhich holds the constraints to be satisfied for the program tobe type
correct. We start out with an initial set of constraints. A production rule fires when certain constraints
appear in the store and results in adding or removing some constraints. We also say (with the terminology
of CHR) that each rule has a head part that holds the constraints necessary for firing and a body containing
the constraints to be added. The constraints to be removed are a subset of the head constraints. One can
also provide a guard part to specify more refined firing conditions.

The semantics of the constraints is given by describing their consequences and their interactions with
other constraints. At each step we systematically check forrules that can fire. The more rules we provide
the more reasoning can be performed.

Primary constraints represent variable domains. If a domain turns out to be empty, this indicates a
type error and we expect the reasoner to detect this. Hence, it is very important for the constraint system to
handle primary constraints as “cleverly” as possible. For this, we formulated rules to describe the following
interactions on primary constraints:

• Two upper bounds on a variable should be replaced with their intersection.

• Two lower bounds on a variable should be replaced with their union.

• If a variable has an upper and a lower bound such that no type satisfies both, then the clash should
be made explicit by setting the upper bound to the empty set.

• Upper and lower bounds can be polymorphic, i.e., they might contain other variables. From the fact
that the lower bound must be a subtype of the upper bound, we can propagate constraints to the
variables appearing in the bounds.

Secondary constraints connect different variables and restrict several domains. There are two ap-
proaches for reasoning over such constraints: 1) We can use multi-headed rules to capture the interactions
of several constraints or 2) we only provide single headed rules, in which case constraints interact only
through the narrowing of domains. Unfortunately, it is not realistic to capture all interactions of secondary
constraints as that would require exponentially many rulesin the number of constraints. Hence, we only
describe (fully) the interaction of secondary constraintswith primary constraints, i.e., we formulate rules
of the form: if certain arguments of the constraints are within a certain domain, then some other argument
can be restricted. E.g., if there is an expressionx+y and we know that the arguments are numeric values,
then the result must be either integer or float. If the second argument later turns out to be float, then the
result must be float. At this point, there is nothing more to beinferred and the constraint can be eliminated
from the store.

Our aim is to eventually eliminate all secondary constraints. If we manage to do this, the domains
described by the primary constraints constitute the set of possible type assignments to each expression. In
case some domain is the empty set, we have a type error. Otherwise, we consider the program type correct.

If the upper and lower bounds on a variable determine a singleton set, then we say that it isinstantiated.
If all arguments of a secondary constraint are instantiated, then there are two possibilities. If the instan-
tiation satisfies the constraint, then the latter can be removed from the store. Otherwise, the constraint
fails.

Error Handling As we parse the input program, we generate constraints and add them to the constraint
store. The production rules automatically fire whenever they can. If some domain gets restricted to the
empty set, this means that the corresponding expression cannot be assigned any type, i.e., we have a type
error. At this point we mark the erroneous expression, as well as the primary constraints whose interaction
resulted in the empty domain. This information – along with the position of the expression – is used to
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generate an error message. The primary constraints are meant to justify the error. Once the error has been
detected and noted, we roll back to the addition of the last constraint and simply proceed by skipping the
constraint. This way, the type analyser can detect more thanone error during a single run.

Labeling Eventually, after all constraints have been added, we obtain a constraint store such that none of
the rules can fire any more. There are three possibilities:

• There were some discovered errors. Then we display the collected error messages and terminate the
type inference algorithm.

• There were no type errors found and only primary constraintsremain. In this case the domains
described by the primary constraints all contain at least one element. Any type assignment from the
respective domains satisfies all constraints, so the type analyser stops with success.

• No type errors were found, however, some secondary constraints remain. In order to decide if the
constraints are consistent, we dolabeling.

Labeling is the process of systematically assigning valuesto variables from within their domains. The
assignments wake up production rules. We might obtain a failure, in which case we roll back until the
last assignment and try the next value. Eventually, either we find a type assignment to all variables that
satisfies all constraints or we find that there is no consistent assignment. In the first case we indicate that
there is no type error. In the second case, however, we showedthat the type constraints are inconsistent, so
an error message to this effect is displayed. Due to the potentially large size of the search space traversed
in labeling, it looks very difficult to provide the user with aconcise description of the error.

7.6 Summary

In this chapter we presented our methods developed for checking Q programs for type correctness. This
work involved the design of a type language with which programmers can add type annotations to their
programs. Our first algorithm is capable of analysing a Q program that contains a ground type declaration
for each variable and discover any type mismatches. Afterwards, we designed a more involved method that
can infer the possible types of all program expressions without any information provided by the program-
mer. This method proceeds by transforming the initial task of type inference into a constraint satisfaction
problem, which is solved using a production system.

All our algorithms have been implemented in a tool calledqtchk, based on the Constraint Handling
Rules extension of the Prolog language. A detailed description of our tool will be provided in Chapter 8.
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Chapter 8

The qtchk Static Type Inference Tool
for the Q Functional Language

In this chapter we present a Prolog program calledqtchk that implements the type analysis described in
Chapter 7. In Section 8.1 we give an overview of the system architecture. Afterwards, in Section 8.2,
we discuss the implementation of the constraint satisfaction problem. Section 8.3 presents how we imple-
mented error handling. Section 8.4 discusses labeling. In Section 8.5 we summarize the major difficulties
that we came across with during the development ofqtchk. In Section 8.6 we briefly evaluate our tool,
based on test results.

8.1 Architecture

The type analysis can be divided into three parts:

• Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree structure.

• Pass 2: post processing
Some further transformations make the abstract syntax treeeasier to work with.

• Pass 3: type checking proper
The types of all expressions are processed, type errors are detected.

Abs Abs

TreeTree

Q program

Type comments

Lexical

Analyser Analyser

Syntactic Post

Processing

Errors

Type

Reasoning

types

Built-in Func

Figure 8.1: Architecture of the type analyser

The algorithm is illustrated in Figure 8.1. The analyser receives the Q program along with the user
provided type declarations. The lexical analyser breaks the text into tokens. The tokeniser recognises
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constants and hence their types are revealed at this early stage. Afterwards, the syntactic analyser parses
the tokens into an abstract syntax tree representation of the Q program. Parsing is followed by a post
processing phase that encompasses various small transformation tasks.

In the post processing phase some context sensitive transformations are carried out, such as filling in
the omitted formal parameter parts in function definitions;and finding for each variable occurrence the
declaration the given occurrence refers to.

Finally, in pass 3, the type analysis component traverses the abstract syntax tree and imposes constraints
on the types of the subexpressions of the program. This phasebuilds on the user provided type declarations
and the types of built-in functions. The latter are listed ina separate text file, that is parsed just like any
Q program. The predefined constraint handling rules triggerautomatic constraint reasoning, by the end of
which each expression is assigned a type that satisfies all the constraints.

Each phase of the type analyser detects and stores errors. Atthe end of the analysis, the user is presented
with a list of errors, indicating the location and the kind oferror. In case of type errors, the analyser also
gives some justification, in the form of conflicting constraints.

8.2 Representing variables and constraint reasoning

All subexpressions of the program are associated with CSP variables. In case some constraint fails, we
need to know which expression is erroneous in order to generate a useful error message. If the arguments
of the constraints are variables, we do not have this information at hand. Hence, instead of variables we use
identifiersID = id(N,Type,Error) which consist of three parts: an integerN which uniquely identifies
the corresponding expression, the type properType (which is a Prolog variable before the type is known)
and an error flagError which is used for error propagation. We use the same representation for type
variables in polymorphic types, e.g. the typelist(X) may be represented bylist(id(2)1).

Constraint reasoning is performed using the Constraint Handling Rules library of Prolog. CHR has
proved to be a good choice as it is a very flexible tool for describing the behaviour of constraints. Any
constraint involving arbitrary Prolog structures could beformulated. We illustrate our use of CHR by
presenting some rules that describe the interaction of primary constraints. Our two primary constraints are

• subTypeOf(ID,L): The type of identifierID is a subtype of some type inL, whereL is a list of
polymorphic type expressions.

• superTypeOf(ID,T): The type of identifierID is a supertype of typeT, a polymorphic type expres-
sion.

With polymorphic types we can restrict the domain by a type expression containing the – not yet known –
type of another identifier. If the type of such an identifier becomes known, the latter is replaced with the
type in the constraint. For example, consider the followingtwo constraints:

subTypeOf(id(1),[float,list(id(2))])

superTypeOf(id(1),tuple([id(3),int])

Suppose the types ofid(2) and id(3) both turn out to beint. Then the above two constraints are
automatically replaced with constraints:

subTypeOf(id(1),[float,list(int)])

superTypeOf(id(1),tuple([int,int])

Due to the lower bound,float can be eliminated from the upper bound. This is performed by the following
CHR rule:

superTypeOf(X,A) \ subTypeOf(X,B0) <=> eliminate_sub(A, B0, B) |
create_log_entry(eliminate_sub(X,A,B0,B)), subTypeOf(X, B).

1In order to make this and the following examples easier to read, we will write id(N) instead ofid(N,Type,Error).
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Here we make use of the following Prolog predicates:

• eliminate_sub(A,B0,B): The list of upper boundsB0 can be reduced to a proper subsetB based
on lower boundA.

• create_log_entry(X): We assert a log entry used for creating error messages.

Consequently, we obtain:

subTypeOf(id(1),[list(int)])

superTypeOf(id(1),tuple([int,int])

In another example, we show how two upper bounds on the same identifier are handled. Suppose we
have the following constraints:

subTypeOf(id(1),[float,list(int)])

subTypeOf(id(1),[tuple([int,int]),func(int,float)])

The upper bounds trigger the following CHR rule:

subTypeOf(X,T1), subTypeOf(X,T2) <=> type_intersection(T1,T2,T) |
create_log_entry(intersection(X,T1,T2,T)),
subTypeOf(X,T).

The predicatetype_intersection(T1,T2,T) imposes the constraint thatT is the intersection ofT1 and
T2. We obtain a single upper bound:

• subTypeOf(id(1),[tuple([int,int])])

8.3 Error Handling

During constraint reasoning, a failure of Prolog executionindicates some type conflict. In such situations,
before we roll back to the last choice point, we remember the details of the error. We maintain a log that
contains entries on how various domains change during the reasoning and what constraints were added to
the store. Furthermore, to make error handling more uniform, whenever secondary constraints are found
violated, they do not lead to failure, but they reduce the domain of a variable contributing to the failure of
the constraint to the empty set. Hence, we only need to handleerrors for primary constraints. Whenever a
domain gets empty, we mark the expression associated with the domain and we look up the log to find the
domain restrictions that contributed to the clash. We create and assert an error message and let Prolog fail.
For example, the following message

Expected to be broader than (int -> numeric) and
narrower than (int -> int)

file:samples/s1.q line:13 character:4
{[x] f[x]}
^^^^^^^^^^

indicates that the underlined function definition is erroneous: the return value is numeric or broader (in-
ferred from the type off), although it is supposed to be narrower than integer (inferred from a type decla-
ration).

8.4 Labeling

After all constraints are added to the constraint store, we use labeling to find a type assignment to each
program expression (i.e., to each identifier associated with a node of the abstract syntax tree) that satisfies

85



the constraints. This involves another traversal of the abstract syntax tree to make sure no program expres-
sion is left without a type assignment. We select the next identifier X to be labelled and set its domain to
a singleton set, based on its current domain. We implementedthis by adding a new constraintlabel(X).
This constraint triggers the narrowing of the domain ofX through the following CHR rules:

label(X) <=> id_known_type(X,_) | true.
label(X), superTypeOf(X,A), subTypeOf(X,L) <=>

label_upwards(X,A,L,Type),
hasType(X,Type).

label(X), superTypeOf(X,A) <=>
label_upwards(X,A,[any],Type),
hasType(X,Type).

label(X), subTypeOf(X,L) <=>
label_downwards(X,L,Type),
hasType(X,Type).

label(X) <=>
label_downwards(X,[any],Type),
hasType(X,Type).

First, we check if the type ofX is already known. If so, we do nothing. Otherwise, we have four cases
based on the presence or absence of a lower and upper bound:

• If we have a lower and an upper bound, we nondeterministically select a type from the domain. We
start from the lower bound and successively try the broader types. This directionality is comfortable
for implementation, because while a type might have many subtypes (e.g. any tuple of integers is a
subtype of the type ‘list of integers’), it has only few supertypes.

• If only a lower bound is present, we set the upper bound toany and proceed as in the previous case.

• If only an upper bound is present, we start from that type and go successively to its subtypes.

• If there is neither a lower, nor an upper bound, then we assumean implicit upper boundany and
proceed as above.

Note that thehasType/2 constraint, used above in the labeling code, translates to an upper and a lower
bound:
hasType(X,Y):- subTypeOf(X,[Y]), superTypeOf(X,Y).

8.5 Difficulties

In this section, we discuss some difficulties that we had to overcome during the implementation of the type
inference tool. These problems arose on the one hand from some special features of the Q language, and
on the other hand from some limitations of the CHR library used.

8.5.1 Handling Meta-Constraints

As we described earlier, several built-in functions of Q have a special behaviour, called item-wise extension.
We discuss the implementation of this feature now.

Let us consider, for example, the constraintsum which captures the relation between the arguments
and the result of the built-in function ‘+’. If some of the arguments turn out to be lists, then the rela-
tion should be applied to the types of the list elements. We could capture this by adding adequate rules
to thesum constraint. However, the rules describing the list extension behaviour would have to be re-
peated for each built-in function, which is counter-productive. Instead, we introduced a meta-constraint
list_extension/3.

Consider a binary built-in functionf , which extends item-wise to lists in both arguments and which
imposes constraintsCs on its atomic arguments and result. Suppose thatf has arguments identified byX, Y
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and result identified byZ. We cannot add the constraints ofCs to the constraint store until we know that the
arguments are all of atomic type. Instead, we use the meta-constraintlist_extension(Dir,Args,Fun),
whereDir specifies which arguments can be extended item-wise to lists, Args is the list of arguments on
which the list of constraints2 imposed by functionFun, will have to be formulated.

Hence, the constraintlist_extension(both,[X,Y,Z],+) is added in our example. If later the in-
put arguments are inferred to be atomic, then the meta-constraint list_extension/3 adds the atomic
constraintsCs and removes itself:

subTypeOf(X,Ux), subTypeOf(Y,Uy) \
list_extension(both,[X,Y,Z],Fun) <=> nonlist(Ux), nonlist(Uy) |
list_ext_constraints(Fun,[X,Y,Z],Cs), ( foreach(C,Cs) do C ).

Here, the complicated part is to find the arguments of the proper constraints imposed by the given built-in
function. We solved this by asserting the relevant information in thelist_ext_constraints predicate.
E.g. in the case of the Q function ‘+’ we have the following fact:

list_ext_constraints(+, [A,B,C], [sum(A,B,C)]).

If, on the other hand, some argument turns out to be a list, themeta-constraint is replaced by another
one. For example, if we know that the types ofX andY arelist(A) andlist(B), then the type ofZ
must be a list as well and we replace thelist_extension constraint with the following two constraints:
list_extension(both,[A,B,C],+) andhasType(Z,list(C)).

In fact, thelist_extension meta-constraint could have been avoided, had CHR been more flexible:
the difficulty arose from the fact that it is not possible to refer to a constraint in a CHR rule head by
supplying a variable holding its name and a list of its arguments (cf. thecall/N built-in predicate group of
Prolog).

To express item-wise extension, it would be more convenientto write generic rules where the name
of the involved constraint can also be a variable (this is in fact what thelist_extension meta-constraint
simulates).

For example, in the case of unary functions, where the corresponding constraint has two arguments
(the identifiers of the input and the output), item-wise extension could be implemented using the following,
quite natural “meta-rule”3:

call(Cons,A,B) <=> is_list(A,X), is_list_extensible(Cons) |
call(Cons,X,Y), hasType(B,list(Y)).

whereis_list_extensible(Cons) succeeds exactly whenCons has the list-extension behaviour and
is_list(A,X) means that the type ofA is list(X).

8.5.2 Copying Constraints over Variables

Local variables are made globally unique by the parser. Thismeans, that variables with the same name have
the same value, so we can constrain their types to be the same.However, each occurrence of a variable
that holds a polymorphic function can have a different type assigned. Consider, for example, the following
three lines of a program:

f:{[x] x+2} (1)
...
f [2] (2)
...
f [1.1f] (3)

In the first line,f is defined to be a function having a single argumentx which returnsx+2. This means
that the type off is a (polymorphic) function which mapsA to B (A -> B), where a secondary constraint

2Note that there are several built-in functions, whose type is described using more than one constraint.
3Here we assume that CHR supports meta-constraints in rule heads using thecall/N formalism of Prolog.
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sum(A, int, B) holds between the argument and the result. In (2) and (3) there are two different applied
occurrences off, which specialise thissum constraint in two independent ways. In these examplesf is
applied to an integer and to a float, therefore the types of thesecond and third occurrence off areint ->
int andfloat -> float.

The above example shows that if a variable holds a (polymorphic) function then we cannot assume
that the type of an applied occurrence is the same as that of the defining occurrence. We introduced the
“specialisation” relationship to capture the connection between the defining and an applied occurrence of
the same variable. A type is a specialisation of another if itis obtained by substituting zero or more type
variables with (possibly polymorphic) types.

Specialisation could be seen as yet another constraint between two types, for which the natural imple-
mentation would be as follows:

1. At the defining occurrence of a variable, post the relevanttype constraints.

2. At the applied occurrence of a variable, make a replica of the type constraints posted for the variable
and apply them with fresh type variables.

This approach requires that the CHR library provide means for accessing the constraints that involve
a specific argument, a feature similar to thefrozen(X, Goals) built-in predicate of SICStus Prolog.
Unfortunately, the CHR implementations we used do not have this feature. This means that a Q variable
holding a polymorphic function has to be treated specially:the constraints involving its type have to be
collected and remembered, so that they can be accessed at theapplied occurrences of the given Q variable.

8.5.3 Handling Equivalence Classes of Variables

The constraint system yields lots of equalities. For example, two occurrences of the same (non-function-
valued) variable give rise to an equality constraint. One way to handle this is to propagate all primary
constraints between equal variables, i.e. wheneverX = Y, Y inherits all primary constraints ofX and the
other way round. For example, a simple implementation of propagating the upper bounds in the equality
constraint (eq/2) would be the following:

eq(X,Y), subTypeOf(X, T) ==> subTypeOf(Y,T). (1)
eq(X,Y), subTypeOf(Y, T) ==> subTypeOf(X,T). (2)

Unfortunately, this solution is rather inefficient, since all reasoning is repeated at each variable occurrence.
Moreover, we have found cases which lead to an infinite propagation of CHR constraints. In the following
paragraph we outline an example of this.

As we have seen in Section 8.2, two upper bounds on a variable are replaced with their intersection.
Let us suppose that variableA has two upper boundslist(X) andlist(Y). There is an intersection rule
which replaces these two with the upper boundlist(Z), whereZ is a new variable andZ ≤ X andZ ≤ Y
also have to be satisfied. Consider the following state of theconstraint store:

eq(id(1), id(2)),
subTypeOf(id(1), [list(id(3))]),
subTypeOf(id(2), [list(id(4))]).

First, the equality rule can fire, yielding two new upper bounds onid(1) andid(2). Now, the intersection
rule can merge upper bounds on the same variable to create a new one, which can be propagated to the
other variable by the equality rule again.

It is easy to see that the above constraint store results in aninfinite firing sequence. Consider the
following conditionC: either one of the variables has two upper bounds that have not yet been merged by
the intersection rule, or else there is an upper bound on one variable that has not yet been propagated to the
other by the equality rule. IfC holds, then at least one rule can fire (intersection or equality). However,C
is an invariant condition, it remains true when any of these rules fire if it was true before. SinceC holds in
the initial store, the rules will never stop firing (regardless of the rule execution order).

The problem is caused by repeating the reasoning at each equal identifier. We solved this by introducing
a directionality to the constraint propagation: we take a strict total order on identifiers and only propagate

88



constraints towards the smaller identifier. The smallest ina set of equal identifiers thus represents the whole
set in the sense that it accumulates all constraints.4 Once the type of the smallest identifier becomes known,
it gets propagated back to the other identifiers. Hence, instead ofeq(X,Y) we introduced the constraint
represented_by(X,Y), whereY ≤ X holds. Furthermore, for all constraintsC we have a new rule, which
states that ifX is represented byY andX occurs inC, then it should be substituted withY. As we could not
formulate meta-constraints with CHR, we had to provide propagation rules for every single constraint. For
example, in case of the constraintsum we needed the following code:

represented_by(A,B) \ sum(A,C,D) <=> sum(B,C,D).
represented_by(A,B) \ sum(C,A,D) <=> sum(C,B,D).
represented_by(A,B) \ sum(C,D,A) <=> sum(C,D,B).

This yielded lots of new rules, however, it was easy to generate them automatically, using a small Prolog
program.

There are efficiency problems even with this solution. Suppose we have the following constraint:
c(id(2)) and a propagation ruleR, whose head matches the above constraint (possibly involving other
constraints) and the body of the rule contains a new CHR constraint: d(id(2)). If id(2) later turns out to
be equivalent toid(1), then we substituteid(2) with id(1) in every constraint that containsid(2). This
yields a store with constraints:

c(id(1))
d(id(1))

The propagation ruleR might fire now, which can infer the second constraintd(id(1)) again. In order
to avoid further cumulation of repeated inferences, we added idempotency rules for every constraint, i.e.,
some rules constantly monitor the store for duplicate constraints to be eliminated.

Unfortunately, idempotency rules do not fully solve the problem. Duplicate constraints might still
yield redundant inferences in case these inference rules fire before the idempotency rules eliminate their
premises. Consider, for example, the following constraintstore:Ci for all 1≤ i ≤ n. Furthermore, let us
suppose that we have propagation rulesRj : Cj => Cj+1 for all 1≤ j ≤ n− 1. Suppose that constraint
C1 is inferred redundantly (twice). If the rulesRj fire before the idempotency rules, then it is possible
that we infer all constraintsCi twice, before eliminating the duplicates. This results in 2n inference steps
instead of the optimal 1 (in case the duplicateC1 is eliminated immediately when it appears). This problem
occurs because programmers have no control over the firing order of CHR rules with different heads. We
identify this as a major shortcoming of CHR and believe that giving the programmers more elaborate tools
to specify firing priorities would often help in improving the efficiency of CHR applications.

8.5.4 Labeling

The implementation of labeling posed several challenges. We noticed that the order in which identifiers are
selected is crucial for efficiency. For example, it is important to label subexpressions first and then find the
type of a complex expression. Another example is function application, where labeling should first assign
a type to the input and then the type of the output is typicallyautomatically inferred by the constraints.
Consequently, labeling involves a traversal of the abstract syntax tree, and at each node we decide the
order in which expressions are labelled based on the syntactic construct involved. Often we had to rely on
heuristics as it was hard to guess what order would work best in practice.

The next difficulty arises when we already know which identifier to label, and we have to choose a
value. The set of all types is infinite, so we cannot try all values for a variable during labeling, hence we
made some restrictions. First, if there is an unbounded variableX, we only try terms of depth at most
two. Hence, we donot replace it withlist(list(int)). We can make this restriction because our
constraints do not distinguish between deeply embedded types. If the unboundedX appears in constraint
c and there is a substitution ofX with depth greater than two that satisfiesc, then we can generalise it to a
substitution of depth two that also satisfiesc. For example, ifX =tuple([int,list(float)]) satisfies
c thenX =tuple([int,any]) is also a solution. IfX does not satisfy this property with respect toc, then

4This is similar to how Prolog handles the unification of two variables.
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as soon asc is added to the store, we add a bound toX. If, for example,c forcesX to be a list of lists, then
we add the upper boundsubTypeOf(X,[list(list(A))]), and hereA will be the unbounded variable
which needs not be labelled with deep types. During labeling, we first assign a typeT to A, and then use
the ground upper boundlist(list(T)) to make a finite choice for the type ofX.

Unfortunately, even if we have a ground bound onX, we might still have an infinite search space.
This is because tuples can have arbitrarily many arguments.Suppose we know thatX is a subtype of
list(int). ThenX can betuple([int]), tuple([int,int]), tuple([int,int,int]) etc. Labeling
through all the different kinds of tuples only makes sense ifit can happen that some tuple types satisfy
a constraint, while others do not. For this reason, we made sure that for all such constraints explicit
bounds indicate the possible tuple types. Hence, if not all lists of integers are accepted, the constraint will
generate either a lower bound (such assuperTypeOf(X,tuple([int,int]))) or an upper bound (such as
subTypeOf(X,[tuple([int]),tuple([int,int,int])])). Consequently, if neither the lower nor the
upper bound ofX contains a tuple type, then we do not assign a tuple type to it,we only trylist(int).
If, however,X also has a lower boundtuple([int,int]), then we try bothtuple([int,int]) and
list(int).

The main challenge of labeling comes from the fact that it aims to traverse a huge search space. The ab-
stract syntax tree can have many nodes even for moderately long programs, hence we have many identifiers.
Besides, Q programs are typically full of ambiguous expressions (in terms of type), so without labeling,
very few types are known for sure. All this amounts to labeling being the bottleneck of type inference.

A solution to this problem would be to find a good partitioningof the program, such that not all the
tree is labelled together, but in smaller portions. Consider, for example, two function definitions. The first
definition contains an expressionE1 that allows many different types. Labeling assigns one possible type
to E1 and then starts labeling the second function definition. Suppose the second definition contains a type
error at expressionE2 which leads labeling to failure. Hence, we backtrack to the choice point atE1 and
assign another possible type toE1. However, this type has nothing to do with the type mismatch –since
it occurs in a different function definition, – and we get failure again atE2. This cycle is repeated until
all possible types forE1 are tried and only then do we conclude that the program contains a type error.
This procedure could be made more efficient by placing a cut after labeling the first function definition,
thus eliminating the irrelevant choice point. Realizing that the types of expressions in one piece of code
are independent from those of another can lead to much smaller fragments to be labelled, which has the
potential to drastically reduce the time spent on labeling.Dependency analysis ([1]) could be used to find
a code partitioning. Also, some kind of intelligent backtracking ([6]) algorithm could be used to avoid
unnecessary choice points. However, adapting these techniques to the Q language requires further work.

8.6 Evaluation

qtchk runs both in SICStus Prolog 4.1 [49] and SWI Prolog 5.10.5 [54]. It consists of over 8000 lines of
code.5 Q has many irregularities and lots of built-in functions (over 160), due to which a complex system
of constraints had to be implemented using over 60 constraints. The detailed user manual forqtchk can be
found in [13] that contains lots of examples along with the concrete syntax of the Q language.

The best way to evaluate our tool would be on Q programs developed by Morgan Stanley, our project
partner. However, we could not obtain such programs due to the security policy of the company. Instead,
we used user contributed Q examples, publicly available at the homepage of Kx-System [9]. This test set
contains several (extended) examples from the Q tutorial and other more complex programs. Table 8.1
summarizes our findings.

Table 8.1: Test results.

All Type correct Restrictions Labeling timeout Type error Analyser error
128 43 (33.6%) 43 (33.6%) 32 (25%) 5 (3.9%) 5 (3.9%)

5We are happy to share the code over e-mail with anyone interested in it.
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We used 128 publicly available Q programs. Of this 43 were found type correct. As explained in
Subsection 7.2, we made some restrictions on the Q language,following the requirements of Morgan
Stanley. 43 programs were found erroneous due to not fulfilling these restrictions. Most of the error
messages arose from the same variable used with different types. Unfortunately, there is no way for the
type analyser to lift this restriction as it defies the very goal of type checking.

The test set that we used often contained code fragments, instead of full programs: we found several
cases that a function is called but defined in another file thatwas not included among the examples. In such
programs the lack of information often resulted in an extremely large search space to be traversed during
labeling. In 32 programs labeling could not find any solutionwithin the given time limit (1000 sec), partly
for the former reason. We believe, however, that on full programs that actually contain all necessary type
information,qtchk can perform type analysis in acceptable time. Unfortunately, the available test set has
not yet allowed us to ascertain about this.

We were happy to find 5 genuine errors in the test set. These arein the following programs:run.q6.
mserve.q7. oop.q8 quant.q9 anddgauss.q10. We have found 5 programs containing some language
element that our tool cannot handle well. We are in the process of eliminating these problems.

8.7 Summary

In this chapter we presented theqtchk type inference tool, developed to detect type errors in Q programs.
The tool takes an input Q program, parses it into an abstract tree representation and then tries to assign a
type to each subexpression in a coherent manner. This is achieved by rephrasing the task as a constraint
satisfaction problem, which is solved using constraint logic programming and in particular the Constraint
Handling Rules extension of Prolog.

CHR has proved to be a good choice as it is a very flexible tool for describing the behaviour of con-
straints. In CHR, arbitrary Prolog structures can be used asconstraint arguments, therefore it was natural
to handle the special domain defined by the type language.

However, we also had negative experiences with CHR. As described in Section 8.5, it often would be
more convenient if we could write “meta-rules” in CHR. The need to access the constraint store also arose
in some situations. For efficiency reasons, we believe it would often be useful to be able to influence the
firing order of rules with different heads. Furthermore, thelong and tiring process of debugging our CHR
programs was seriously hampered by the lack of a tracing tool.

We have found that our program is a useful tool for finding typeerrors, as long as the programmers
adhere to some coding practices, negotiated with Morgan Stanley, our project partner. Unfortunately, it
turns out that many publicly available programs do not respect these practices. Nonetheless, we believe that
the restrictions that we impose on the use of the Q language are reasonable enough for other programmers
as well, and our tool will find users in the broader Q community.

6http://code.kx.com/wsvn/code/contrib/cburke/qreference/source/run.q
7http://code.kx.com/wsvn/code/kx/kdb+/e/mserve.q
8http://code.kx.com/wsvn/code/contrib/azholos/oop.q
9http://code.kx.com/wsvn/code/contrib/gbaker/common/quant.q

10http://code.kx.com/wsvn/code/contrib/gbaker/deprecated/dgauss.q
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Summary and List of Contributions

I have presented our results in the fields of Description Logic data reasoning and static type inference.
Although these domains are different in many ways, they bothrequire some sort of automated reasoning.
Our algorithms exploit and extend a variety of techniques oflogic programming, and hence it was very
natural to choose Prolog as an implementation language. Theimplemented systems – DLog andqtchk –
demonstrate that the built-in inference mechanism of Prolog can be extended to solve various reasoning
tasks.

In the following, I summarise my personal contributions to our results. I also indicate my relevant
publications.

Thesis 1.I designed a transformation scheme from Description Logic axioms to first-order clauses that are
function-free. I implemented all methods in the DLog Description Logic reasoner. [58, 55, 56, 65, 59]

Thesis 1.A.I designed a first-order resolution calculus calledmodified calculus, which is a modified ver-
sion of basic superposition. I proved that the calculus is sound, complete and terminating forALC H I Q
clauses, which constitute a sublanguage of first-order logic. This result is what makes the two-phase rea-
soning algorithm of the DLog system possible: the complex reasoning over the TBox becomes independent
of the potentially large ABox. [55, 56, 59]

Thesis 1.B.I designed a transformation that maps aR I Q knowledge base into anALC H I Q knowledge
base by eliminating complex role hierarchies. I proved thatthe transformation is sound, i.e., the initial
knowledge base is satisfiable if and only if the transformed knowledge base is. Thanks to this transfor-
mation, any of the numerous techniques that were designed for reasoning over theALC H I Q language
became available for the more expressiveR I Q language as well. [55]

Thesis 1.C.I designed the DL calculus, which decides the consistency ofa SH Q terminology. I proved
that the calculus is sound, complete and always terminates.The DL calculus provides an interesting alter-
native to the tableau method. [58, 65]

Thesis 1.D.I implemented the modified calculus, along with the transformation fromR I Q to ALC H I Q
in the TBox saturation module of the DLog data reasoner. Thisconstitutes the first phase of our reasoning
algorithm.

Thesis 2. I proved the soundness of loop elimination, a crucial optimisation technique for PTTP related
theorem proving. [68, 69]

Thesis 2.A.I identified the three features in logic programs that can lead to infinite execution: function
symbols, proliferation of variables and loops. I showed that from these only loops can occur in DLog
programs. From this follows that the loop elimination optimisation makes DLog reasoning terminating.
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[68, 69]

Thesis 2.B.I gave a rigorous proof of the soundness of loop elimination,based on a novel technique called
flipping, which identifies alternative proofs of the same goal in PTTP programs. From this result follows
that for any statement that can be proved by PTTP, there is a proof that contains no loops. [68, 69]

Thesis 3. I designed a static type analysis algorithm to check programs written in the Q language for
type correctness. I also implemented this algorithm in the type analysis module of theqtchk system.
[61, 14, 64, 63, 15]

Thesis 3.A.I designed a method for type checking: based on type annotations of program variables pro-
vided by the user, the algorithm determines the types of morecomplex expressions. [61, 14]

Thesis 3.B.I designed a method to move from type checking to type inference: no type annotations are re-
quired and the algorithm tries to infer the possible types ofall expressions. This is achieved by transforming
the task of type inference into a constraint satisfaction problem. [64, 63, 15]

Thesis 3.C.I implemented both type checking and type inference in the type analysis component of the
qtchk system. The implementation uses constraint logic programming and in particular the Constraint
Handling Rules extension of Prolog. [61, 14, 64, 63, 15]

94



Bibliography

[1] Todd M. Austin and Gurindar S. Sohi. Dynamic dependency analysis of ordinary programs.
SIGARCH Comput. Archit. News, 20(2):342–351, April 1992.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2004.

[3] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov,
editors,Handbook of Automated Reasoning, volume 1, chapter 2, pages 19–100. North Holland,
2001.

[4] Leo Bachmair and Harald Ganzinger. Strict basic superposition. Lecture Notes in Computer Science,
1421:160–174, 1998.

[5] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson and Andrei
Voronkov, editors,Handbook of Automated Reasoning, pages 19–99. Elsevier and MIT Press, 2001.

[6] Andrew B. Baker. Intelligent backtracking on constraint satisfaction problems: Experimental and
theoretical results, 1995.

[7] S. Bechhofer, R. Moller, and P. Crowther. The dig description logic interface. InIn Proc. of Interna-
tional Workshop on Description Logics, 2003.citeseer.ist.psu.edu/690556.html.

[8] Roland N. Bol, Krzysztof R. Apt, and Jan Willem Klop. An analysis of loop checking mechanisms
for logic programs.Theor. Comput. Sci., 86:35–79, August 1991.

[9] Jeffry A. Borror. Q For Mortals: A Tutorial In Q Programming. CreateSpace, Paramount, CA, 2008.

[10] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.ACM
COMPUTING SURVEYS, 17(4):471–522, 1985.

[11] Alain Colmerauer and Philippe Roussel.The birth of Prolog. ACM, New York, NY, USA, 1996.

[12] Patrick Cousot. Abstract interpretation.ACM Comput. Surv., 28(2):324–328, June 1996.

[13] János Csorba, Péter Szeredi, and Zsolt Zombori.Static Type Checker for Q Programs (Reference
Manual), 2011. http://www.cs.bme.hu/∼zombori/q/qtchk_reference.pdf.

[14] János Csorba, Zsolt Zombori, and Péter Szeredi. Using constraint handling rules to provide static
type analysis for the q functional language. InProceedings of the 11th International Colloquium on
Implementation of Constraint and LOgic Programming Systems (CICLOPS 2011), 2011.

[15] János Csorba, Zsolt Zombori, and Péter Szeredi. Pros and cons of using CHR for type inference. In
Jon Sneyers and Thom Frühwirth, editors,Proceedings of the 9th workhop on Constraint Handling
Rules (CHR 2012), pages 16–31, September 2012.

[16] Bart Demoen, M. García de la Banda, and P. Stuckey. Type constraint solving for parametric and
ad-hoc polymorphism. InProceedings of Australian Workshop on Constraints, pages 1–12, 1998.

95



[17] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and constraint logic
programming.ACM Trans. Program. Lang. Syst., 22(5):861–931, September 2000.

[18] Melvin Fitting. First-order logic and automated theorem proving. Springer-Verlag New York, Inc.,
New York, NY, USA, 1990.

[19] Th. Fruehwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot,
editors,Journal of Logic Programming, volume 37(1–3), pages 95–138, October 1998.

[20] Donald F. Geddis.Caching and non-Horn Inference in Model Elimination Theorem Provers. PhD
thesis, Stanford University, USA, June 1995.

[21] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, BijanParsia, Peter Patel-Schneider, and Ulrike
Sattler. OWL 2: The next step for OWL.Web Semant., 6:309–322, November 2008.

[22] V. Haarslev and R. Möller. Optimization techniques forretrieving resources described in OWL/RDF
documents: First results. InNinth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, KR 2004, Whistler, BC, Canada, June 2-5, pages 163–173, 2004.

[23] V. Haarslev, R. Möller, R. van der Straeten, and M. Wessel. Extended Query Facilities for Racer
and an Application to Software-Engineering Problems. InProceedings of the 2004 International
Workshop on Description Logics (DL-2004), Whistler, BC, Canada, June 6-8, pages 148–157, 2004.

[24] Pascal Van Hentenryck. Incremental constraint satisfaction in logic programming. InICLP, pages
189–202, 1990.

[25] R. Hindley. The principal type-scheme of an object in combinatory logic.Transactions of the Ameri-
can Mathematical Society, 146:pp. 29–60, 1969.

[26] Ian Horrocks. Reasoning with expressive description logics : Theory and practice.Language, pages
1–15, 2002.

[27] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language.Web Semantics: Science, Services and Agents on the World Wide
Web, 1(1):7 – 26, 2003.

[28] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion axioms. In Georg
Gottlob and Toby Walsh, editors,IJCAI, pages 343–348. Morgan Kaufmann, 2003.

[29] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A description logic with transitive and converse
roles, role hierarchies and qualifying number restrictions. LTCS-Report 99-08, LuFg Theoretical
Computer Science, RWTH Aachen, Germany, 1999.

[30] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning for Description Logics around SHIQ in
a resolution framework. Technical report, FZI, Karlsruhe,2004.

[31] Mark P. Jones. Typing Haskell in Haskell. InHaskell Workshop, 1999.

[32] Balázs Kádár, Gergely Lukácsy, and Péter Szeredi. Large scale semantic web reasoning. InProceed-
ings of the 3rd International Workshop on Applications of Logic Programming to the Web, Semantic
Web and Semantic Web Services (ALPSWS2008), Udine, Italy, pages 57–70, December 2008.

[33] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. InIn Proc. KR08, 2008.

[34] R. Kowalski and D. Kuehner. Linear resolution with selection function.Artificial Intelligence, 2:227–
260, 1971.

[35] Kx-Systems. Representative customers .http://kx.com/Customers/end-user-customers.php.

[36] Tobias Lindahl and Konstantinos F. Sagonas. Practicaltype inference based on success typings. In
Annalisa Bossi and Michael J. Maher, editors,PPDP, pages 167–178. ACM, 2006.

96



[37] Gergely Lukácsy and Péter Szeredi. Efficient description logic reasoning in Prolog: the DLog system.
Theory and Practice of Logic Programming (in press), April 2009. http://arxiv.org/abs/0904.0578.

[38] Gergely Lukácsy and Péter Szeredi. Efficient Description Logic reasoning in Prolog: The DLog
system.Theory and Practice of Logic Programming, 9(03):343–414, 2009.

[39] Gergely Lukácsy, Péter Szeredi, and Balázs Kádár. Prolog based description logic reasoning. In
Maria Garcia de la Banda and Enrico Pontelli, editors,Proceedings of 24th International Conference
on Logic Programming (ICLP’08),Udine, Italy, pages 455–469, December 2008.

[40] Simon Marlow and Philip Wadler. A practical subtyping system for Erlang.SIGPLAN Not., 32:136–
149, August 1997.

[41] Boris Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.

[42] Alan Mycroft and Richard A. O’Keefe. A polymorphic typesystem for Prolog.Artificial Intelligence,
23(3):295–307, 1984.

[43] A. Newell and H.A. Simon.Human Problem Solving. Prentice Hall, Englewood Cliffs, 1972.

[44] Francois Pottier and Didier Remy. The essence of ML typeinference.Advanced Topics in Types and
Programming Languages, pages 389–489, 2005.

[45] ISO Prolog standard, 1995. ISO/IEC 13211-1.

[46] J. A. Robinson. A machine-oriented logic based on the resolution principle.J. ACM, 12(1):23–41,
1965.

[47] Tom Schrijvers. Constraint handling rules. In Maria Garcia de la Banda and Enrico Pontelli, editors,
ICLP, volume 5366 ofLecture Notes in Computer Science, pages 9–10. Springer, 2008.

[48] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and application.
In First Workshop on Constraint Handling Rules: Selected Contributions, pages 1–5, 2004.

[49] SICS. SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science, September
2010.
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html.

[50] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A
practical OWL-DL reasoner.Web Semant., 5(2):51–53, 2007.

[51] Mark E. Stickel. A Prolog technology theorem prover: a new exposition and implementation in
Prolog.Theoretical Computer Science, 104(1):109–128, 1992.

[52] Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X) solving.Journal of Func-
tional Programming, 18:251–283, March 2008.

[53] TIOBE. TIOBE programming-community, TIOBE index, 2012. http://www.tiobe.com.

[54] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.TPLP, 12(1-
2):67–96, 2012.

[55] Zsolt Zombori. Expressive description logic reasoning using first-order resolution.Journal of Logic
and Computation. Submitted for publication.

[56] Zsolt Zombori. Efficient two-phase data reasoning for description logics. InIFIP AI, pages 393–402,
2008.

[57] Zsolt Zombori. Efficient two-phase data reasoning for description logics. In Max Bramer, editor,
IFIP AI, volume 276 ofIFIP, pages 393–402. Springer, 2008.

97



[58] Zsolt Zombori. A resolution based description logic calculus. Acta Cybern., pages 571–588, 2010.

[59] Zsolt Zombori. Two phase description logic reasoning for efficient information retrieval. In Lora
Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije,Heiner Stuckenschmidt, Liliana Cabral,
and Tania Tudorache, editors,ESWC (2), volume 6089 ofLecture Notes in Computer Science, pages
498–502. Springer, 2010.

[60] Zsolt Zombori. Two Phase Description Logic Reasoning for Efficient Information Retrieval . In
John Gallagher and Michael Gelfond, editors,Technical Communications of the 27th International
Conference on Logic Programming (ICLP’11), volume 11 ofLeibniz International Proceedings in
Informatics (LIPIcs), pages 296–300, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[61] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Checking for the Q Functional Language
in Prolog. In John Gallagher and Michael Gelfond, editors,Technical Communications of the 27th
International Conference on Logic Programming (ICLP’11), volume 11 ofLeibniz International Pro-
ceedings in Informatics (LIPIcs), pages 62–72, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[62] Zsolt Zombori, János Csorba, and Péter Szeredi. Statictype checking for the q functional language
in prolog. In John P. Gallagher and Michael Gelfond, editors, ICLP (Technical Communications),
volume 11 ofLIPIcs, pages 62–72. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[63] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Inference as a Constraint Satisfaction
Problem. InProceedings of the TAMOP PhD Workshop: TAMOP-4.2.2/B-10/1-2010-0009, Leibniz
International Proceedings in Informatics (LIPIcs), Budapest, Hungary, 2012.

[64] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Inference for the Q language using
Constraint Logic Programming. In Agostino Dovier and VítorSantos Costa, editors,Technical Com-
munications of the 28th International Conference on Logic Programming (ICLP’12), volume 17 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 119–129, Dagstuhl, Germany, 2012.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[65] Zsolt Zombori and Gergely Lukácsy. A resolution based description logic calculus. InDescription
Logics, 2009.

[66] Zsolt Zombori, Gergely Lukácsy, and Péter Szeredi. Hatékony következtetés ontológiákon. In17th
Networkhop Conference 2008, Budapest, Dunaújváros, 2008.

[67] Zsolt Zombori and Péter Szeredi. Szemantikus és deklaratív technológiák oktatási segédlet. Course
handout.

[68] Zsolt Zombori and Péter Szeredi. Loop elimination, a sound optimisation technique for pttp related
theorem proving.Acta Cybernetica, 20(3):441–458, 2012.

[69] Zsolt Zombori, Péter Szeredi, and Gergely Lukácsy. Loop elimination, a sound optimisation tech-
nique for pttp related theorem proving. InHungarian Japanese Symposium on Discrete Mathematics
and Its Applications, pages 503–512, Kyoto, Japan, 2011.

98



Appendix A

ALCHQ tableau rules

In this appendix we provide the rules of the tableau method. Even though the TBox reasoning starts out
from anSH Q knowledge base, we quickly eliminate transitivity axioms during preprocessing and obtain
an ALC H Q knowledge base. Accordingly, the rules provided in FiguresA.1 and A.2 are those for the
ALC H Q language. This appendix is not meant to explain how the tableau works. Instead, we provide it
to make explicit what sorts of tableau rules we assume. For a comprehensive treatment ofSH I Q -tableau,
we refer the reader to [29].

⊓-rule

Condition: (C1⊓C2) ∈ L(x), x is not indirectly blocked and{C1,C2} 6⊆ L(x).

New state T′: L ′(x) = L(x)∪{C1,C2}.
⊔-rule

Condition: (C1⊔C2) ∈ L(x), x is not indirectly blocked and{C1,C2}∩L(x) =
/0.

New state T1: L ′(x) = L(x)∪{C1}.
New state T2: L ′(x) = L(x)∪{C2}.
∃-rule

Condition: (∃R.C) ∈ L(x), x is not blocked and
x has noR-neighboury for whichC∈ L(y).

New state T′: V ′ =V ∪{y} (y 6∈V is a new node),

E′ = E∪{(x,y,}), L ′((x,y,)) = {R}, L ′(y) = {C}.
∀-rule

Condition: (∀R.C) ∈ L(x), x is not indirectly blocked, and
x has anR-neighboury for whichC 6∈ L(y).

New state T′: L ′(y) = L(y)∪{C}.

Figure A.1: The transformation rules of theALC H Q tableau algorithm, part 1.
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⊲⊳- rule

Condition: (⊲⊳ nR.C) ∈ L(x), where⊲⊳ is one of the symbols≥ or ≤, x is not
indirectly blocked, andx has anR-neighboury for which{C,∼C}∩
L(y) = /0.

New state T1: L ′(y) = L(y)∪{C}.
New state T2: L ′(y) = L(y)∪{∼C}.
≥-rule

Condition: (≥ nR.C) ∈ L(x), x is not blocked, and it is not the case that
there exist nodesy1, . . . ,yn such that no two of them are identifiable,
and
for everyi, yi is anR-neighbour ofx, andC∈ L(yi) holds.

New state T′: V ′ =V ∪{y1, . . . ,yn} (yi 6∈V new nodes),

E′ = E∪{(x,y1, ,) . . . ,(x,yn,}),
L ′((x,yi ,)) = {R}, L ′(yi) = {C}, for everyi = 1≤ i ≤ n,

I ′ = I ∪{yi 6 .= y j | 1≤ i < j ≤ n}.
≤-rule

Condition: (≤ nR.C) ∈ L(x), x is not indirectly blocked,
x hasn+ 1 R-neighboursy0, . . . ,yn such thatC ∈ L(yi) holds for
everyi,
and there existyi andy j that are identifiable.

For every(0≤ i < j ≤ n), whereyi andy j are identifiable, let{y,z} = {yi,y j} so
thatx is not a successor ofy:

New state T i j : L ′(z) = L(z)∪L(y),

L ′((x,y,)) = /0,

L ′((z,x,)) = L((z,x,))∪ Inv(L((x,y,))) if x is a successor ofz,

L ′((x,z,)) = L((x,z,))∪L((x,y,)) if x is not a successor ofz,

I ′ = I [y→ z] (each occurrence ofy is replaced byz).

Figure A.2: The transformation rules of theALC H Q tableau algorithm, part 2.
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Appendix B

Syntax of the Q Type Language

We provide the concrete syntax of the type language that we designed for the Q language. Note that all type
expressions can be enclosed in parentheses, to improve readability, or to specify precedence (in the case
of functions). Formally, this means that each syntactic rule whose head is of the form ‘xxxtype’ should
be implicitly extended with a first alternative ‘"(", xxx type, ")" |’. To illustrate the point we have
carried out this extension for the first rule,type expr, as shown by the text in italics.

type expr =
"(", type expr, ")"
| atom type

| type variable
| list type
| tuple type
| stuple type
| dictionary type
| record type
| table type
| function type
| "any"
| "cond"
| "id"
| "stuple" ;

atom type =
"boolean" | "byte" | "short" | "int" | "long"

| "real" | "float" | "numeric"
| "char" | "string" | "symbol" | "hsymbol"
| "month" | "date" | "datetime" | "minute" | "second" | "time"
| "timestamp" | "timespan" ;

type variable =
? any Q identifier starting with a capital letter ?;

list type =
"list", "(", type expr , ")" ;

tuple type =
"tuple", "(", type expr, ";", type expr , ")" ;
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stuple type =
"stuple", "(", symbol, ";", symbol , ")" ;

dictionary type =
"dict", "(", type expr, ";", type expr, ")"

record type =
"record", "(", column names types, ")" ;

table type =
"table", "(", "[", [column names types], "]", column names types, ")" ;

function type =
type expr, "->", type expr ;

column names types =
column name type, ";", column name type ;

column name type =
column name, ":", type expr ;
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