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Abstract

This dissertation is about automated reasoning. We presasbning algorithms and ways in which such
algorithms can be useful for knowledge intensive appliceti We will discuss two main topics. The
first topic is Description Logic reasoning. Description iagy(DLs) is a family of logic languages, a
knowledge representation formalism that is widely usedbigitding domain ontologies. We developed
various reasoning algorithms that allow for querying DLaagjies, as well as checking the consistency
of an ontology. The second topic is type inference for fuorei languages. Here, the task is to analyse
an input program and discover as many errors as possiblenipittime, to make program development
easier. These topics seem very different at first sight,H®yt &re quite similar at their cores: in both cases
we start out from some initial knowledge (a set of DL axiomgha first case, an input program and a
set of type restrictions in the second), and we aim to disceame logical properties of the input through
automated reasoning.

The results related to these topics have been implementwbisoftware systems. We built a DL
data reasoner called DLog and a type inference tool for ther@tional language callegt chk. After
presenting the theoretical foundations and algorithms;gmert on the developed systems as well.
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Chapter 1

Introduction

Reasonings the magic word that binds the chapters of this thesis hegeReasoning is the ability to use
available knowledge to infer something true that has nohIstgted explicitly. Today, there are numerous
information based systems that aim to represent knowladgeniachine processable way. For such sys-
tems, automated reasoning support is very important:atalifor discovering hidden knowledge, as well
as hidden errors in the knowledge base. Besides, autonesedning can be used to answer complex user
queries.

In this dissertation | will present work related to two maipics. The first topic is Description Logic
reasoning. Description Logics (DLs) is a family of logic tarages, a knowledge representation formalism
that appeared in the early 1990’s and gained wide populdwityng the past two decades. These languages
were designed with the intention to provide a convenieritftrdouilding domain ontologies, while having
clear and well defined semantics. DL ontologies form thesaihe Semantic Web initiative. They also
play an important role in creating a unified vocabulary fordimal applications. There are several futher
domains, such as software verification and configuratioroafpiex systems, where Description Logics
were successfully deployed. For all such knowledge intenapplications, efficient reasoning support
plays a crucial role and the success of DLs is strongly tiethéoavailable reasoning algorithms. We
developed various reasoning algorithms that allow for giogr DL ontologies, as well as checking the
consistency of an ontology.

Our second topic is type inference for functional languagesre, the task is to analyse an input
program and discover as many errors as possible in compike to make program development easier.
Although our methods can be applied for functional languaggeneral, we formulate them in the context
of the Q language. Q is a vector processing language thateguban 2003. It serves as a query language
for kdb+ database. Q allows for extremely fast processirngrge arrays of numeric data and has gained
popularity in the financial sector over the past decade. By, several large investment banks (Morgan
Stanley, Goldman Sachs, Deutsche Bank, Zurich Financialigretc.) store and manipulate their data
using Q. Q has a particularly terse syntax that allows forlémgnting complex calculations quickly,
however, it is very challenging to find programming errorsit@matic error detection can hence be greatly
beneficial for the Q programming community.

These topics seem very different at first sight, but they aitecsimilar at their cores: in both cases
we start out from some initial knowledge (a set of DL axiomgha first case, an input program and a
set of type restrictions in the second), and we aim to disceame logical properties of the input through
automated reasoning.

In the following, | list the main research objectives. Thiddllowed by an overview of the dissertation,
where | also highlight my own results. Afterwards, | list mykgications. A precise formulation of my
theses will be provided at the very end of the dissertation.

1.1 Problem Formulation

This section summarises the main research objectivesabalted in the dissertation.



Large scale Description Logic reasoning Description Logics is an important and widely used fornmalis
for knowledge representation. While existing reasoningpsut for Description Logics is very sensitive
to the size of the available data, there are lots of appticaiomains — such as reasoning over the web
— that has to cope with really huge amounts of data. The godli®fvork is to explore novel reasoning
techniques that are applicable in such situations. Inqad, it is crucial that the reasoner be not affected
by the size of irrelevant data and to find a way to transfornn gaeries into direct database queries.

1. The primary goal of my work is to find a tranformation schesfi®escription Logic axioms into
function-free clauses of first-order logic.

2. This transformation should primarily target tsié/ I Q Description Logic language.

3. After a successfu§ # 1Q transformation, the results should be extended to incatpanore refined
language elements, such as complex role inclusion axioms.

4. The results should be implemented in the DLog data reagayistem.

Optimised PTTP execution The Prolog Technology Theorem Prover (PTTP) is a completedider
theorem prover built on top of Prolog. This technique playsaportant role in the DLog reasoner, hence
any optimisations to this technique have the potential éatly increase the performance of DLog.

1. Some of the PTTP implementations use an optimisatioad&bp elimination. However, the sound-
ness of this optimisation has not yet been proved. My goal twadnd a rigorous proof of the
soundness of loop elimination.

Static Type Analysis for the Q functional language Q is a dynamically typed functional programming
language with a very terse and irregular syntax. While thglage is widespread in financial applications,
there is no built-in support for debugging and compile-tidetection of errors, which makes program
maintenance very difficult. The goal of this work is to praxi@ with a tool that discovers static type
errors in compile-time.

1. The first task is to examine the possibility of static typelgsis of Q programs. This task also
involves identifying the type discipline that should be@wetd on Q programmers.

2. Devise an algorithm to verify the correctness of user e type information.

3. Devise an algorithm that discovers as many type erroressilge, without any input from program-
mers.

4. Implement all the algorithms in a tool that can be deployeshdustrial environment at Morgan
Stanley Business and Technology Centre, Budapest.

1.2 Thesis Overview

Part 1, which consists of Chapters 2-5, presents our work d@vothe field of Description Logic reasoning.
Part 2 deals with our results related to type analysis andistsof Chapters 6-8.

Chapter 2

This chapter contains all necessary background informdkiat will be important for understanding the
first part of the thesis. We first introduce resolution theoproving and logic programming. Afterwards,
we summarise the Description Logic formalism.



Chapter 3

In this chapter we present two reasoning calculi that candeel fior deciding the consistency of a DL
knowledge base. The first calculus, that we will refer to a&sntiodified calculuss based on first-order
resolution and supports th@£C#H 1Q DL language. We show how this calculus can be used for a two-
phase data reasoning, which scales well and allows for néagover really large data sets. Using well
known techniques that reducegsd{ I Q knowledge base to an equisatisfialde CH 1Q knowledge base,
we easily extend our results to te#/ I Q language, which is the most widely used DL variant.

Result 1.A: | designed the modified calculus. | proved that it is soundyglete and always termi-
nates.

Afterwards, we present a transformation that reduces gkegfeconsistency checking of7 Q knowl-
edge base into that of adLCH IQ knowledge base. The benefit of this reduction is that therladisk
can be solved using our modified calculus. Our results yieleh scaling reasoning algorithm for the

R 1Q language.

Result 1.B: 1 designed theR 1Q to ALCH I1Q transformation. | showed that the transformation
preserves the satisfiability of the knowledge base.

In the end of this chapter, we introduce a second calcullect#the DL calculus which is defined
directly on DL expressions, without recourse to first-oldgic. The DL calculus decides the consistency
of a$# Q terminology.

Result 1.C:1 designed the DL calculus. | proved that it is sound, congpéetd always terminates.

Chapter 4

In this chapter we present an important optimisation temimfor the Prolog Technology Theorem Prover
(PTTP), calledoop elimination This technique allows for avoiding certain kinds of infeniboping in the
reasoning process and is the single most important optiimisgor PTTP. We give a thorough proof of the
soundness of loop elimination.

Result 2: | proved that loop elimination is sound, i.e., that it can bg®yed without missing a
valid solution.

Chapter 5

In this chapter we present the DLog data reasoner systencdhdie used to quer® 7Q DL knowledge
bases with really large data sets.

Result 1.D: | implemented the TBox saturation module of the DLog systetnich performs the
first phase of reasoning.

Chapter 6

In this chapter we give some background about type inference

Chapter 7

In this chapter we present a reasoning algorithm that weldpeed to analyse programs written in the Q
programming language for type correctness. We first preséypie checker that builds on user provided
type information. Afterwards, we introduce a type infereradgorithm that can detect type errors even
without any user provided information.

Result 3.A: | designed a type checking algorithm for the Q language.

Result 3.B: 1 designed a type inference algorithm for the Q language.



Chapter 8
We present thgt chk type inference tool that analyses Q programs and discoyeesarrors.

Result 3.C: | implemented both type checking and type inference in tipe gnalysis module of
theqt chk system.
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Chapter 2

Introducing Resolution and Description
Logics

This chapter contains background information that will bsartant for understanding the subsequent
chapters. First, in Section 2.1 we present first-order tigwl, its connection to the Prolog programming
language and the Prolog Technology Theorem Prover (PTTH3rwards, in Section 2.2 we introduce
the Description Logic language family. In Section 2.3 weetlyi present previous work done in applying
resolution for description logic reasoning.

2.1 Resolution and the Prolog Language

Resolution is one of the first and most widely used methodgraring first order theorems. In this section
we briefly introduce resolution and some of its variants. eAftards, we present a logic programming
language called Prolog that is based on resolution. In faetexecution of a Prolog program corresponds
to a resolution proof search for a sublanguage of first-dadge that consists of Horn clauses only. Finally,
we present the Prolog Technology Theorem Prover, a full dirder theorem proving technology that is
built on top of Prolog. The definitions in this section will mportant for understanding Chapter 3, where
we present some resolution calculi specialised for DesoripLogic reasoning and also for understanding
Chapter 4, which discusses an improvement on PTTP.

2.1.1 Resolution Theorem Proving

Resolution [46] is a powerful method for proving first-ordeeorems. Directly, it is used to check the
satisfiability of a set of first-order clauses, i.e., whethere is a model satisfying all the clauses. However,
all common reasoning tasks — such as entailment analysis becaasily reduced to satisfiability checking.

Clausesare first-order formulae satisfying the following propesti all variables are universally quan-
tified, all quantifiers are at the beginning of the formula &ne quantifier-free part is a disjunction of
literals, i.e., possibly negated atomic predicates. It is well kndwat any set of first-order formulae can be
translated into a set of clauses (for example, see [18])tteserves the satisfiability of the initial formula
set; in other words they amqjuisatisfiable Since all variables in clauses are universally quantifiteid,
customary to omit the quantifiers. We will do so in the follogi

Resolution defines two inference rules, callgidary Resolutiorand Positive Factoring presented in
Figure 2.1. In the figure, the clauses above the bar are tmaiges of the inference and the clause under
the bar is the conclusiom. is themost general unifieof B andC, i.e., a variable substitution to terms that
satisfies two properties: (1) after the substitutibandC are identical, i.e.Bo = Co, and (2)o is a most
general substitution that satisfies (1). In Figure 2.2, lusiitate the application of the the two inference
rules. On the left side the Binary Resolution rule is used@mthe right side the Positive Factoring rule
fires. The most general unifier is the same in both examplagablay is mapped tok and every other
variable is mapped to itself.



AVB -CvD AvBVC
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Figure 2.1: Binary Resolution and Positive Factoring

AX)VB(X) ~B(y)VD(y) AX)VB(X)VB(y)VD(y)
A(X)VD(x) A(X)VB(x)VD(x)

Figure 2.2: Examples illustrating the Binary Resolutiod &wositive Factoring inference rules

Theorem 1. Binary Resolution and Positive Factoring yield a calculbattis soundand complete This
means that a set of clauses is inconsistent if and only iktleea finite series of clauses ©;, ...,Cy =0,
where(] denotes the empty clause, such that each clause is eithembenef the initial clause set or is
obtained as a conclusion of Binary Resolution or Positivetseng with premises selected from preceding
clauses.

A proof of Theorem 1 can be found, for example, in [46].

Linear resolution As Theorem 1 indicates, resolution captures logical entilt very well. However,
finding a deduction of the empty clause to show inconsisteacybe rather tedious as we are given no
guidance as to what clauses should be resolved in what dfdeddress this, various selection strategies
have been devised, among thénear resolution

Linear resolution is motivated by the idea that if we add aistato a set of clauses that is considered
consistent, then we only have to check the interactionsttigabew clause can have with the rest. Hence,
in the first step, we resolve the new clause with some othdriraeall subsequent steps, one of the premises
will be the conclusion of the preceding step. Unfortunatedyile in linear resolution the number of pos-
sible deductions is greatly decreased, we lose completehrigsvever, linear resolution remains complete
for a restricted type of clauses that contain at most ondipediteral, calledHorn clauses Besides, as it
is shown in [34], linear resolution can be extended with &égue calledancestor resolutiorfsee below
in Subsection 2.1.3) which yields a complete calculus fentthole of first-order logic.

Ordered Resolution Ordered resolution [5] refines this technique by imposingater in which the
literals of a clause have to be resolved. This reduces thetsspace while preserving completeness. Itis
parametrised with aadmissible ordering:) on literals and @&election function

Basic Superposition Basic superposition [4] is an extension of ordered resmutihich has explicit
inference rules for handling equality. The rules are sunsedrin Figure 2.3, wherg|, is a subexpression
of E in positionp, E[t], is the expression obtained by replaciaf in E with t, C andD denote clauses,
A and B denote literals without equality arid is an arbitrary literal. The necessary conditions for the
applicability of each rule are given in the following list:

Hyperresolution: (i) o is the most general unifier such thgo = B;o, (ii) eachA;o is maximal
in Cia, and there is no selected literal (€ \V A;)o, (iii) either every-B; is selected, on=1 and
nothing is selected andB;0 is maximal inDa.

Positive factoring: (i) 0 = MGU(A, B), (ii) Ac is maximal inCa and nothing is selected ifo Vv
Bo v Co.

Equality factoring: (i) 0 = MGU(s,9), (ii) to ¥ so, (iii) t'c # So, (iv) (s=t)o is maximal in
(Cvs =t')o and nothing is selected (CVs=tVs =t')o.

Reflexivity resolution: (i) o = MGU(s,t), (ii) in (CVs#t)o either(s# t)o is selected or nothing
is selected an@s # t)o is maximal inCao.

Superposition (i) 6 = MGU(s,E|p), (i) to * so, (iii) if E= 'w=V andE|p is inw thenvo ¥ wo
and(so =t0) ¥ (wo = vo), (iv) (s=t)o is maximal inCo and nothing is selected {(€ Vv s=t)o,

10



(C1VA7)...(CaVAn)  (DV-B1V---V—Bp)

Hyperresolution (C1V-VCaVD)O

Positive factoring ’;XSXS

Equality factoring %

.. . C\/S#t
Reflexivity resolution o

(Cvs=t) (DVE)

Superposition (CVDVETt]p)o

Figure 2.3: Inference rules of Basic Superposition

(v) in (DVE)o eitherEo is selected or nothing is selected aid is maximal,(vi) E|p is not a
variable position.

An important feature of basic superposition is that it remaomplete even if we do not allow super-
position into variables or terms substituted for variablesr this reason we keep track of such positions,
by surrounding them with ’[ ]’ and refer to them aariable positionsr marked positionsSo, for instance,
applying substitutiom = {x/g(y)} to clauseC = R(x,y) V P(x) results inCo = R([g(y)],y) V P([g(y)]).

2.1.2 Programming in Prolog

Prolog [45] is a declarative programming language equippiéida built-in logical inference mechanism
that corresponds to linear resolution. This mechanism isptete for Horn clauses, which correspond
directly to Prolog rules. A rule has three parts: a head éoimizithe only positive literal, the symbdl-’

and a body which is the list of negative literals without rtema separated by commas. So, for instance,
the Horn claus®(X) v =Q1(X) V =R(X,Y) VvV =Qz(Y) corresponds to the Prolog rule

P(X): — Q:i(X), R(X,Y), Q2(Y).

The semantics of this rule is as follows: if all atoms in thelypare true, then so is the atom in the head. A
Prolog program is a set of rules that can be used to prove § qten, calledgoal. The program will try

to unify the goal with some rule head, and in case of a suagassification, it will recursively try to prove
each statement in the body. If the goal matches more thanubmbead, then the program remembers this
by creating a so calledhoice pointand proceeds with the first matching rule. If we manage toyuhié
goal with a bodiless rule head, then the goal is proved. Ifriference fails, because there is no matching
rule head, then we roll back to the last choice point and prdeéth the next matching rule. This algorithm
corresponds to linear resolution that starts from the negatf the query and that is always resolved in
its first literal. This mechanism is very efficient in thattiads out from the goal and examines only those
rules that have a potential to answer it.

2.1.3 Prolog Technology Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) weaslajeed by Mark E. Stickel in the late
1980's [51]. PTTP is a sound and complete first-order thegmamwer, built on top of Prolog. An arbitrary
set of general clauses is transformed into a set of Hornselthat correspond to Prolog rules. Prolog
execution on these rules yields first-order logic reasaning

In PTTP, to each first-order clause we assign a set of Housels the so-callecbntrapositives The
first-order clausé; VLo V- - -V Ly hasn contrapositives of the form, < —L4, ..., -k 1,7k 1,---,Ln,
for each 1< k < n. Having removed double negations, the remaining negatom&liminated by intro-
ducing new predicate names for negated literals. For eaatiqgate nam® a new predicate nhameot P
is introduced, and all occurrences-aP(X) are replaced witmot P(X), both in the head and in the body.
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The link between the separate predic&®esdnot P is provided usingncestor resolutiorsee below. For
example, the claus&(X) v =B(X) vV —R(X,Y) is translated into three Prolog rules, each with differeie r
head:

A(X) - B(X), RIXY).
not _B(X) c- not_A(X), RIXY).

not R(X Y) :- not_A(X), B(X.

Thanks to using contrapositives, each literal of a firsteorause appears in the head of a Horn clause.
This ensures that each literal can participate in a reswigiep, in spite of the restricted selection rule of
Prolog.

Next, let us see how PTTP implements positive factoring. pdgp we want to prove the goaland
during execution we obtain the subgea\. What this means is that by this time we have inferred a rule,
according to which if a series of goals starting with is true, therA follows:

A<+ not_A, Py, PQ, ... Pg.
The logically equivalent first-order clause is
AVAV =P V-P2V-- v =B

from which we see immediately that the two occurrence cin be unified, so there is no need to prove
the subgoatot _A. This step is calledncestor resolutiofi34], which corresponds to the positive factoring
inference rule. Ancestor resolution is implemented in &yddy building anancestor listwhich contains
openpredicate calls (i.e. goals that we started but have notishiéd proving).

Ancestor resolution is the inference step that checks ifatteestor list contains a goal which can be
matched with the negation of the current goal. If this is thee; then the current goal succeeds and
the unification with the ancestor element is performed. Nioé¢ in order to retain completeness, as an
alternative to ancestor resolution, one has to try to pregetrrent goal using normal resolution, too. This
is important if the ancestor element contains variablesaadifferent proof can yield a different variable
substitution.

There are two further features in the PTTP approach. Forstyoid infinite loops, iterative deepening
is used instead of the standard depth-first Prolog searategyr. Second, in contrast with most Prolog
systems, PTTP uses occurs check during unification, i;eexample termX and f (X) are not allowed to
be unified because this would result in a term of infinite depth

To sum up, PTTP uses five techniques to build a first-orderrémeqrover on the top of Prolog:
contrapositives, renaming of negated literals, ancestwlution, iterative deepening, and occurs check.

2.2 Description Logics

Description Logics (DLs) [26] is family of logic languagesgigned to be a convenient means of knowledge
representation. These languages can be embedded intorfiestiogic, but — contrary to the latter — they
are mostly decidable which gives them a great practicalieqpility. Description Logics provide the
logical background for the Web Ontology Language (OWL 273 ®WL2 [21]).

A DL knowledge bas& B consists of two parts: the TBox (terminology box) and the ABassertion
box). The TBox contains universal knowledge that holds ipec#ic domain. The ABox stores knowledge
about individuals. We refer to the TBox part of the knowletigse a¥ B, and to the ABox a&B4.

The main building blocks of a DL knowledge base aomceptsthat represent sets of individuals and
rolesthat represent binary relations, i.e., sets of pairs ofviddials. Complex concepts and roles can be
built from simpler ones using concept and role constructtirs set of available constructors determines
the expressivity of the language and naturally defines aulageg family. In the following we introduce the
most important DL languages. These definitions will be int@atrfor understanding Chapter 3, where we
present various calculi to perform Description Logic redng.

12



2.2.1 TheAL language and its extensions

The 4L language allows for describing simple relationships betweoncepts and roles. In particular,
we can state that two concepts are identical or that one pbica subset of another. These statements
constitute the TBox. Besides, the ABox holds assertiorimgtthat some named individual belongs to the
extension of a concept or that the relationship represdntedrole holds between two named individuals.

The syntax of the? £ language is given with respect to a 9étof individual names, a sé{(- of atomic
concept names and a s&f; of atomic role names. From these, we define the set.6fconcepts to be
the smallest set such that 1) every concept name is a coreptand_L are concepts, and 3)@,D are
conceptsAis an atomic concept aridlis a role, then-A, CMD, YR.C and3R.T are also concepts.

Leta, b be individual name<;, D concept names ariRla role name. A1 L TBox is a list of axioms of
the formC = D (concept equivalence axigmandC C D (conceptinclusion axiojnAn 4 £ ABox contains
axioms of the fornC(a) andR(a,b).

The semantics ofl L is defined as follows:

Definition 1 (interpretation) An interpretation I= (A',-') consists of a seA' called thedomainof | and

a valuation-' which maps every concept to a subsef\bf every role to a subset @' x A' and every
individual name to a member & such that, for all concepts @ roles RS and nonnegative integers n,
the following equations hold, whet& denotes the cardinality of a set S:

T = A
1= 0
(-A) = ANC!
(CnD)' = c'nD'
(VRC)' = {x|vy:(xy)eR —yeC'}
(BRT) = {x|3y:(xy)eR'}

An interpretation Isatisfies

e terminology7 if and only if C C D' foreach CC D € 7 and C = D' for eachC=D € 7. In this
case we say that | is a model Bt

e ABoxA4 if and only if d € C' for each Qa) € 2 and(a',b') € R for each Ra,b) € 4. In this case
we say that | is a model of.

A knowledge bas&B is said to besatisfiablein case there exists an interpretatiowhich is a model
of KBy andKBg.

A concept equivalence axio®= D is logically equivalent to two conceptinclusion axiorist D and
D C C. Consequently, without loss of generality, we will somedgitreat the TBox as containing concept
inclusion axioms only.

Let R be a role name and b individual names. Ifa',b') € R for some interpretatioh, then we say
thatb' is anR-successoof a in that interpretation. When it leads to no misunderstageia will simply
say thatb is anR-successor ad.

Several language extensions exist for thé language, which add new concept constructors. Each
extension has a letter associated with it and the name oft@maad language is obtained by adding the
corresponding letters to th@ L prefix. So, for exampled L extended withC and Q yields the4LCQ,
language. In the following, we introduce the most importanguage extensions.

C The 4L language only allows negation in front of atomic concept. &&ea lift this restriction, by
allowing negation to be applied to any concept. Thus we olited 4 £ language.
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U This extension introduces the union constructdy, {.e., a concept can be the union of two concepts.
The syntax and semantics of this language extension is:

(CuD)' = c'uD!

E The simple existential restrictiodR.T) in 4L allows for describing individuals who appear in the
domain of some relatioRR. With full existential restriction §R.C), we can also prescribe that tie
successors be in some conc€ptSyntactically, what changes is that we allow arbitraryeapts in place
of the T concept:

(3RC)' = {x|3y:(xy)eR rnyecC'}

A.  We add unqualified number restrictions of the fqrnR) and(> nR) that define the set of individuals
having at least or at mostR-successors:

(<nR) = {x]#{y| (xy) eR'} <n}
(>nR) = {x|#{yl (xy) R} >n}

Q. Qualified number restrictions extend unqualified numberic®ns. We can provide a concept that
theR-successors have to satisfy:

(<nRC)' = {x|4{y| (xy) eR nyeC'} <n}
(>nRC)' = {xIt{ylxy)eRryeC'} =n}

One can easily show that the expressive power of full negdtid is equivalent to that of the union
constructor (Z) and full existential restriction%) using De Morgan like equivalences, hence we have
ALC=ALUE=ALCE=ALCU=ALCUE. AL , ALE andALU are real sublanguages @i/ C
and all these languages are extended by\thend Q extensions.

2.2.2 TheSHIQ language

The 4 L language family presented in the previous section is raingple, which makes reasoning rather
straightforward. However, there are many domains that cdy lme described using more sophisticated
language constructs. In this section we introducest€l Q language that is probably the best known DL
variant, thanks to a good compromise between complexityeapdessivity. We define the language as a
series of language extensions, introducing$hg #, S# I andS# 1Q languages.

S This language extends tb&L C language with transitivity axioms of the forfirangR) for some role
R. Such an axiom is satisfied by all interpretations where a transitive role.

SH The #H extension introduces role hierarchies. The knowledge base&ontain axioms of the form
SC RwhereSandR are roles, which expresses that the relation represent8asty subset of the relation
represented bR, i.e.,(SCR)! & S CR. Given a knowledge base KB, we will call the set of all role
inclusion axioms thé&Box(KBg ). Note that defined this way, the RBox is part of the TBox.

SHI So far, we only saw constructors for concepts, that is, wédodescribe complex concepts, but not
roles. Now, we introduce the inverse role construckr)( This is an important extension since ontology
developers often need to refer to the inverse of some role:

(R7)| = {(va) | (Y7X) € RI}
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SHIQ TheSHIQ language is obtained by extendigg{ I with qualified number restriction).
This language has been the most important DL language oasheécade — it also forms the logical basis
of OWL1, the first Web Ontology Language — and only recently &tiention shifted towards even more
expressive variants. The subsequent chapters will deaflgreith $#/ 1 Q reasoning, hence we now repeat
and summarize the definitions that make up this language:

Definition 2 (S#H1Q ). Let A be a set of concept names afg a set of role names. The set of roles is
Ng U{R™ | Re A\ }. We define the function Inv on roles such thafRjv= R if Re Nrand InR ") =
R.

A role inclusion axiomRIA) is an expression of the formRS, where RS are roles. Aransitivity
axiomis of the form Tran&R) where R is a role. AS# 1Q-role hierarchyalso called as# 1Q RBox, is
a set of role inclusion axioms together with a set of tram#itiaxioms. For an RBog we define=* to be
a transitive-reflexive closure @f over® U{Inv(R) C Inv(S)|RC Se R }. Role S is called aub-roleof R
if SC* R. Arole issimpleif it has no sub-role S such that Trai® € R.

The set ofs # 1 Q-concepts is the smallest set such that 1) every concept isaaneoncept, 2)I and
1 are concepts and 3) if © are concepts, R is arole, S is a simple role and n is a nonnegatteger,
then CLD, CMD, —-C,VRC,dR.C, < nSC and> nSC are also concepts.

A general concept inclusion axiom (GCI) is an expressiomefform CC D for two S I Q-concepts
C,D. ASH IQ-terminology also called as# IQ TBox is a set of GCls, extended witts &/ 7 Q RBox.

LetA; ={a,b,c,...} be a set of individual names. fassertioris of the form Qa), R(a,b), a=b or
a#bforabe Aj, arole RandS# IQ-conceptC. ABox is a set of assertions.

A SH 1Q knowledge base KB can be broken into two parts: an ABox;(kiBd a terminology (KB).
The part of the terminology that relates to roles is called thle hierarchy (K& ).

The semantics o # 1Q is defined as follows:

Definition 3 (interpretation) An interpretation I= (A',-") consists of a seA' called thedomainof | and

a valuation.' which maps every concept to a subsefbfevery role to a subset &' x A' and every
individual name to a member & such that, for all concepts,® roles RS and nonnegative integers n,
the following equations hold, whe& denotes the cardinality of a set S:

R)' = {xy) | () €R'}

T = o'

1= 0

(_|C)I _ AI\CI
(CnbD)' = c'nD!
(CuD) = c'uD!
(VRC)' = {x|vy:(xy)eR —yeC'})
(3RC)' = {x|3y: (xy)eR rnyecC'}
(<nRC)' = {x|#{y| xy)eRAyeC'} <n}
(>nRC)' = {x|#{y| (xy) eRAyeC'} >n}

An interpretation Isatisfies

e role hierarchy® if and only if $ C R' for each SC Re ® and R is transitive for each Tran®) € X..
In this case we say that | is a model ®f

e terminology7 if and only if it satisfies the contained role hierarchy and € D' for each GCI
CLC D e 7. Inthis case we say that | is a modelbf

e ABoxA if and onlyifd € C' foreachQa) € 4, (a',b') € R for each Ra,b) € 4, a =b' for each
a=be 4andd #b' for each a# b € 4. In this case we say that | is a model.af

A SH1Q knowledge bas&B is said to besatisfiablen case there exists an interpretatlomhich is a
model ofKB; andKB.
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2.2.3 TheR I1Q language

In SH 1Q we only allowed RIAs of the forn$C R for (possibly inverse) roleR andS. Besides, we could
declare that some roles are transitive. With transitivity,can make statements likéhe friend of a friend

is a friendor thatlf A is located in B and B is located in C then A is located irHowever, often it would
also be convenient to be able to say things Tike wife of a friend is a friend as wadl thatlf A is located

in B and B is a subdivision of C, then A is located inlOmight also be useful in an ontology of family
relations to say thathe mother of a spouse is a mother-in-lavotivated by these examples, we introduce
generalised RIA

Definition 4 (generalised role inclusion axiomf generalised role inclusion axiom (RIA) is of the form
w C R where R is an atomic role name and=ws, 0 S0... S, i.e., w is obtained by composing n roles. A
generalised role hierarchy is a set of generalised RIAs.

In the following, when it leads to no ambiguity, we will in@dite composition of roles by simply writing
them after each other, i.e., insteadSfo S, we will write §S,. RestrictingR to atomic roles is no real
restriction and is only meant to make the syntax simpler. eNbat the axionw C R is equivalent to
Inv(w) C Inv(R), hence we can always choose the one in which the right haadssah atomic role name.
In the presence of generalised RIAs, there is no need fasitiaty axioms, since the RIRRL Rcaptures
the transitivity ofR.

Introducing generalised RIAs 64 1Q leads to undecidability in general ([28]). However, we will
focus on an important decidable subcase, when the rolerbigrés regular.

Definition 5 (regular role hierarchy)Let < be a strict partial order on roles. A generalised RIA of the
form wC R is<-regular if

e w=RRor

e W=R" or

e W=5%...Syand$S<Rforie {1...n}or
e W=RSS...Syand $<Rforie {1...n} or
e w=5%...5Rand $<Rforie {1...n}

A generalised role hierarchy is regular if there exists dcttpartial order < such that each RIA ix-
regular. The semantics is defined analogously#61Q, i.e., a modell satisfies a RIAVC R if w/ C R!.
The Description Logie® 7Q? is obtained fron®s # I Q by replacing role hierarchies and transitivity axioms
with regular role hierarchies.

With the change of the role hierarchy, the definition of semples changes as well:

e Every role name that does not occur on the right hand side dfaisksimple.
e Arole name R is simple if, for each RIADWR, w = S for some simple role S.

e Aninverse role Sis simple if S is simple.

2.2.4 The reasoning task

We list the most important DL reasoning tasks:
1. Is a set of DL axioms satisfiable? In other words, can onedinebdel that satisfies all the axioms?
2. Is an axiom logically entailed by some set of axioms?

3. Is one concept subsumed by another, i.e., is it true thainalividual that belongs to the first neces-
sarily belongs to the second?

INote that® I Q is sometimes defined to only allow RIAs where the left hane siohtains at most two roles. Our more general
definition follows [28].
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4. Are two concepts equivalent, i.e., do they have the saremsions in all interpretations?
5. Are two concepts disjoint?
6. Is a concept satisfiable with respect to a TBox?

For sufficiently expressive languages, one can easily shatthese reasoning tasks can be reduced to each
other. In particular, all reasoning problems can be re@uas satisfiability checking.

Theorem 2. For any DL language that contains full negation (frofiC C upwards), the following reason-
ing tasks can be reduced to satisfiability checking:

1. Is axiom Q logically entailed by the set of axioms KB?
2. Is concept C subsumed by concept OH{D)?

3. Are concepts C and D equivalent?

4. Are concepts C and D disjoint?

5. Is concept C satisfiable with respect to TBOR

Proof. (1) Qs logically entailed byKB exactly wherKBU {—Q} is not satisfiable. (2F is subsumed by
D exactly whenCr—D) is not satisfiable. (3F andD are equivalent exactly when neith@m —D) nor
(DM —C) is satisfiable. (4€ andD are disjoint exactly whe(CrD) is not satisfiable. (5) Take a roR
that appears neither ifi nor inC. Let us consider a new TBoX' = 7 U{T C 3RC}. Given thatRis a
new role name, it is easy to see that the newly added axiononll introduce inconsistency to the TBox
if C is unsatisfiableC is satisfiable in the presence of TB@xif and only if 7’ is consistent. O

Thanks to Theorem 2, we can afford to address only satisfiabllecking when we build algorithms
for DL reasoning. We will do so in the rest of the dissertation

2.3 Resolution Based Reasoning for Description Logics

In [41] a resolution based theorem proving algorithm for§# 7Q DL language is presented. Our results
presented in Chapter 3 provide various extensions to thaighm.

In the first step, transitivity axioms are eliminated, at thgpense of adding some new GCls. The
language obtained frod\# I Q by eliminating transitivity is calledl LCH IQ. . The obtainedALCHIQ,
knowledge base is not logically equivalent to the origina chowever [41] proves that the two knowledge
bases are equisatisfiable.

In the following definition,NNF(C) denotes the negation normal form ©f i.e., negation is pushed
inwards to atomic concepts.

Definition 6 (concept closure)For a SH 1Q knowledge base KRlos(KB) denotes the smallest set of
concepts that satisfies the following conditions:

e ifC C D e KB, then NNE-CLID) € clogKB);

e ifC =D e KB, then NNE-CLID) € clogKB) and NNK—-DLIC) € clogKB);
o ifC(a) € KB then NNRC) € closKB);

e if C € clogKB) and D is a subconcept of C thendclog KB);

e if (< NRC) € clogKB) then NNF-C) € clogKB);

¢ if VRC e clogKB), SC* R, and TrangS) € KBy, thenvVS.C € clogKB).

We call clogKB) theconcept closure of KB
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Definition 7 (Q(KB)). For anyS# IQ DL knowledge base KB)(KB) is an4LCH IQ knowledge base
constructed as follows:

e Q(KB)s is obtained from KB by removing all axioms TraifiR) and adding for each concept
VR.C € clos(KB) and role S such that §* R and TrangS) € KBy the axiomvR.C C VS.(VS.C);

e Q(KB)4 =KBg4
Proposition 1. KB is satisfiable if and only f2(KB) is satisfiable.
Proof. See [41]. O

After eliminating transitivity axioms, the knowledge basegether with the negation of the query
is transformed into a set of first-order clauses with a charetic structure. These are referred to as
ALCHIQ clauses and are summarised in Figure 2.4, where:

e P(t) is a possibly empty disjunctiof)Py(t) V- - -V (=)Py(t) of unary literals;

P(f(x)): is a possibly empty disjunctiofy (f1(x)) V.-V Pn(fa(X));

e tis aterm thatis surely not marked,;

[t] is a term that is surely marked;

<t>is a term that may or may not be marked,;

#e{=#}

Figure 2.4:4LCH1Q clauses

ﬁR(Xv y) N S(ya X) (c1)
—R(X,y) VS(x,y) (c2)
PO VR(x, < f(x) >) (c3)
POJ VR([F(¥)], X) (c4)
P1(X) VP2(< f(x) >) vV /(< fi(x) > # < fj(x) >) (c5)
Pl(X)\/Pz([g(X)])VF’s(< f(lo0) >) V(<ti > #<t;>) (c6)
wheret; andt; are of the formf ([g(x)]) or of the formx

)V V(ERY)VV Payi) v (Vi =) (c7)

i=1 i=1 ij=1

R(<a>,<b>)VP(<t>)v\/(<t>#<t;>) (c8)

wheret,t; andt; are either a constant or a terfig[a])

The reasoning task is reduced to deciding whether the adutdirst-order clauses are satisfiable. This
is answered using basic superposition (see Subsectidr) 2xtended with a method calldécomposition
[41] shows that the set I LCH IQ clauses is bounded and that any inference with premises feda
a subset N ofa LCH IQ results in eithei) an 2LCH1Q clause or(ii) a clause redundant in2Nor
(iii) a clause that can be decomposed to, i.e., substituted withab&C# I Q clauses without affecting
satisfiability. These results guarantee that the saturafian2LCH I Q set terminates.

2A redundant clause is a special case of other clauses in Neankiecremoved.
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2.3.1 Separating TBox and ABox Reasoning

The drawback of the resolution algorithm outlined abovéé it can be painfully slow. In general, resolu-
tion with saturation is a bottom-up strategy and computdsgilcal consequences of the clause set, many
of which are irrelevant to deciding our question. It wouldrbee to be able to use some more efficient,
query oriented, top-down mechanism. Unfortunately, suebhmanisms are available only for more restric-
tive languages, such as Horn Clauses. One can get arourmtabiem by breaking the reasoning into two
tasks: first perform a saturation based preprocessing tocgedhatever could not be deduced otherwise
and then use a fast top-down reasoner.

Note that complex reasoning is required because of the (IiBsx) of the knowledge base and that
in a typical real life situation there is a relatively smaBdx and a large ABox. Furthermore, the rules in
the TBox are likely to remain the same over time while the ABaxa can change continuously. Hence we
would like to move forward all inferences involving the TBorly, perform them separately and then let
the fast reasoner (whatever that will be) do the data relstegas when a query arrives.

In the framework of basic superposition, when more than nfezénce steps are applicable, we are free
to choose an order of execution, providing a means to achiievdesired separation. Elements from the
ABox appear only in clauses of type (c8). [41] gives two intpat results about the role of ABox axioms
in the saturation process:

Proposition 2. An inference fromaLCH IQ clauses results in a conclusion of tyfe8) if and only if
there is a premise of type8).

Proposition 3. A clause of typéc8) cannot participate in an inference with a clause of typ4é) or (c6).

In light of Proposition 2, we can move forward ABox independeasoning by first performing all
inference steps involving only clauses of type (c1) — (c41] fcalls this phase the saturation of the TBox.
Afterwards, Proposition 3 allows us to eliminate clausetypé (c4) and (c6). Besides making the clause
set smaller, this elimination is crucial because in the iiaing clauses there can be no function symbol
embedded into another (this only occurred in clauses of (6. The importance of this result comes
out in the second phase of the reasoning, because the &adatdown mechanisms are rather sensitive
to the presence of function symbols.

By the end of the first phase, DL reasoning has been reducedcididg the satisfiability of first-
order clauses of type (cl1) - (c3), (c5), (c7) and (c8), whemxefurther inference involves at least one
premise of type (c8). For the second phase, i.e., data reas@hl] uses a Datalog engine which requires
function-free clauses. Therefore (unary) functionaltiefes are transformed to new binary predicates and
new constant names are added: for each conatantl each functiori the new constards is introduced
to represent (a). Note that this transformation requires processing thel@/ABox.
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Chapter 3

Resolution based Methods for
Description Logic Reasoning

In this chapter we present our results related to resolutased Description Logic reasoning. After an
overview of related work, we present a resolution calcutuSéction 3.2 that is a modified version of
basic superposition. This calculus is specialised4drC# I Q reasoning. In Section 3.3 we extend these
results to theR 1Q language by giving a transformation that maps g&¥Q DL knowledge base to an
equisatisfiable LC# 1Q knowledge base. Section 3.4 presents our work that aimspmire efficiency
by moving the resolution based reasoning from the level st-Grder clauses to DL axioms, i.e. define a
calculus directly on DL expressions.

3.1 Related work

Description Logic languages are used more and more frelyfenknowledge representation, which cre-
ates an increasing demand for efficient automated DL reagoriihe Tableau Method [2] has long pro-
vided the theoretical background for DL reasoning and myistiag DL reasoners implement some of
its numerous variants. The typical DL reasoning tasks cametheced to consistency checking and this is
exactly what the Tableau Method provides. While the Tablésmlf has proven to be very efficient, the
reduction to consistency check is rather costly for somsariag tasks. In particular, the ABox reasoning
taskinstance retrievatequires running the Tableau Method for every single irthliai that appears in the
knowledge base. Several techniques have been developeakitableau-based reasoning more efficient
on large data sets, (see e.g. [22]), that are used by theddtttie-art DL reasoners, such as RacerPro [23]
or Pellet [50].

Other approaches use first-order resolution for reasomngesolution-based inference algorithm is
described in [30] which is not as sensitive to the increagbh®fABox size as the tableau-based methods.
The system KAON2 [41] is an implementation of this approgmoviding reasoning services over the
description logic languagé# 1Q. The algorithm used in KAON2 in itself is not any more effidiéor
instance retrieval than the Tableau, but several stepsr¥raive only the TBox can be performed before
accessing the ABox, after which some axioms can be elimina¢eause they play no further role in the
reasoning. This yields a qualitatively simpler set of axéomhich then can be used for an efficient, query
driven data reasoning. For the second phase of reasoningNRABes a disjunctive datalog engine and
not the original calculus. Thanks to the preprocessingpygameswering is very focused, i.e., it accesses as
little part of the ABox as possible. However, in order forsttn work, KAONZ2 still needs to go through the
whole ABox once at the end of the first phase.

Reading the whole ABox is not a feasible option in case thexABdigger than the available memory
or the content of the ABox changes so frequently that onfithé&Box access is an utmost necessity.
Typical such scenarios include reasoning on web-scaleng description logic ontologies directly on top
of existing information sources, such as in a DL based in&iom integration system.
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During the past years, we have developed a DL ABox reasonieddalog [39], that can be freely
downloaded fromht t p: // dl og- r easoner . sour cef or ge. net, which is built on principles similar to
those of KAON2. We only highlight two main differences. Einsstead of a Datalog engine, we use the
reasoning mechanism of the Prolog language [11] to perfoensécond phase (see [37]). Second, we use
a modified resolution calculus (see [57]) that allows us tdgeen more inference steps in the first phase,
thanks to which more axioms can be eliminated, yielding aanesimpler set of axioms to work with in
the second phase. The important difference is that whileafiproach of [41] can only guarantee that
there are no nested functional symbols, our calculus eashat no function symbols remain at all. This
makes the subsequent reasoning easier and we can perfarsefhauery driven reasoning without any
transformation that would require going through the ABogrewonce.

3.2 Translating an 4L C# IQ TBox to function-free clauses

Following the framework presented in Section 2.3, we bréakreasoning task into two parts: the first
phase works only with the terminology part (TBox) of the khedge base and the second phase consti-
tutes the data (ABox) reasoning. Note that complex reagasirequired due to the complex background
knowledge stored in the TBox, while in a typical real lifeusition there is a relatively small TBox and a
large ABox. Furthermore, the rules in the TBox are likely éonain the same over time while the ABox
data can change continuously. Hence, if we manage to mowaifdrall inferences involving the TBox
only and perform them separately, then the slow reasonigrighm required by the complexity of the
TBox does not take unacceptably much time due to the potlgriage size of the ABox. Furthermore,
these inferences need only to be performed once, in a pregsing phase. Afterwards, the second phase of
reasoning can be performed by a fast and focused data reaEachl time queries arrive, only the second
phase is repeated, to reflect the current state of the ABox.

The input of the reasoner is a DL knowledge base and we wargdide whether the knowledge base
is satisfiable. As we have seen in Theorem 2, this is suffiég@rgolving all other DL reasoning tasks. In
the first step we translate the knowledge base into a s@taf# 1 Q clauses, as presented in Section 2.3.
We know that anySsH I Q knowledge base can be translated imta CH 1 Q, clauses, hence the calculus
to be presented supports thig{ 1Q language.

Instead of the standard basic superposition calculus dfd®e2.3, we introduce a new, slightly mod-
ified calculus, that allows us to perform more inference®iefaccessing the ABox. This is not just a
mere regrouping of tasks, we will see that the algorithm poed a crucially simpler input for the second
phase, allowing for more efficient data reasoning algorighithe improvement is achieved by eliminating
function symbols from the clauses derived from the TBox.

3.2.1 Where Do Functions Come From?

The initial S# 1Q DL knowledge base contains no functionglowever, after translating TBox axioms
to first-order logic, we have to eliminate existential quférs using skolemisation which introduces new
function symbols. For example, consider the following axivhich states that rich people have a rich
parent:

RichC (3hasParentRich)
This can be expressed using the following existentiallyngjiad first-order formula:
Yx(—Rich(x) v dy(hasParenfx,y) A Rich(y)))

Resolution requires that first-order formulae be trandlato clause form, which involves eliminating
existential quantification at the expense of introducimget functions. We obtain:

—-Rich(x) v hasParentx, f (x))
=Rich(x) v Rich(f (x))

1Altough constants are sometimes treated as nullary funstjmbols, we will not do so. Hence, whenever we refer to fonct
symbols, constant symbols are not considered.
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The ABox remains function-free, hence everything that ikrtow about the functions is contained in the
TBox. This means we should be able to perform all functidates reasoning before accessing the ABox.

3.2.2 The Modified Calculus

We modify basic superposition presented in Section 2.3 teyiat the necessary conditions to apply each
rule. The new conditions are given below, with the newly abticienditions underlined:

HyperresolutionTBox: (i) g is the most general unifier such ti#at = B0, (ii) eachAjo is maximal
in Cio, andeither there is no selected literal {€; V Aj))o or A; containsa function symbol, (iii)
either every-B; is selected, on = 1 and—B;0 is maximal inDo (iv) noneof the premiseontain
constants.

HyperresolutionABox: (i) g is the most general unifier such that = B;g, (ii) eachA;o is maximal
in Cia, and there is no selected literal (€ \V A;)g, (iii) either every-B; is selected, on=1 and
nothing is selected andB;0 is maximal inDg, (iv) eachA; is ground,(v) Dg is function-free.

Positive factoring: (i) 0 = MGU(A,B), (ii) Ac is maximal inCo andeither nothing is selected in
Ao Vv Bo v Cao or A containsafunctionsymbol.

Equality factoring: (i) 0 = MGU(s,S), (ii) ta i so, (iii)) t'c ¥ Sa, (iv) (s=t)o is maximal in
(Cvs =t')o andeither nothing is selected o ors=t v s =t containsafunctionsymbol.

Reflexivity resolution: (i) 0 = MGU(s,t), (ii) in (CV s#t)o either(s#t)o is selectedor s#t
containsafunctionsymbol or nothing is selected afisl-~ t)o is maximal inCo.

Superpositiont (i) 0 = MGU(s,E|p), (i) to # so, (iii) if E= 'w=V andE|p= w|y thenvo ¥ wo
and(so =to) # (wo = vo), (iv) (s=t)o is maximal inCo andeither nothing is selected €V s=
t)o or s=t containsafunctionsymbol,(v) in (D V E)o eitherEo is selected or nothing is selected
andEa is maximal,(vi) E|, is not a variable position.

Note that hyperresolution is broken into two rules (HypsotationTBox and HyperresolutionABox)
which differ only in the necessary conditions. In the follog by original calculuswe refer to the basic
superposition presented in Section 2.3 andrmdified calculusve mean the rules of basic superposition
with the restrictions listed above.

We illustrate the difference between the two calculi usimrgnll example. Suppose we know that
people have at most one child and we also know that everybasig ltlever child. We have the following
axioms:

T
T

(< 1hasChildT)

-
C (3hasChildClever

From these we obtain three first-order clauses:

(1)hasChildx, f(x))
(2)Clever(f(x))
(3)—hasChildx,y) v —hasChildx,z) vy =z
For any childb, i.e., for anyhasChilda, b) axiom in the ABox, we can dedu@levei(b) using the original

basic superposition calculus through the following stepe (elevant inference rule is indicated after the
conclusion):

(4)hasChilda,b)
(5f(a)=b Hyperresolution(3,1,4)
(6)Clever(b) Superposition(5,2)
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What basic superposition cannot deduce is the generahatevery child is clever. This, however, is easy
with the modified calculus:

(7)—hasChildx,y) Vy = f(x) HyperresolutionTBox(3,1)
(8)—hasChildx,y) v Clevery) Superposition(7,2)

From the newly deduced general rule, we can easily obtaidléverness ol using HyperresolutionABox
with premises (8) and (4).

The benefit of the modified calculus is that once we deducev@xan dispose of (1), (2) and (7), the
clauses containing function symbols. When we start addiegdBox clauses to the reasoning, the TBox
has reduced to the following axioms:

(3)—hasChildx,y) vV —hasChildx,z) vy =z
(8)—hasChildx,y) v Clevery)

In the following we prove that the new calculus can be usedleeshe reasoning task.
Proposition 4. The modified calculus remains sound and complete.

Proof. The inference rules of basic superposition are all valichéf/e do not impose any restrictions on
their applicability. Since in the new calculus only the citioths are altered, it remains sound.

The modifications that weaken the firing requirements of @aouly extend the deducible set of clauses,
so they do not affect completeness.

In case of hyperresolution, let us first consider only the nendition(iv) and disregard conditiofv)
on HyperresolutionABox. A hyperresolution step in its amig form has a main premise of type (c7),
some (possibly zero) side premises of type (c3) — (c4) ancdgpussibly zero) side premises of type (c8).
This one step can be broken into two by first resolving the meemise with all side premises of type (c3)
and (c4) (by one HyperresolutionTBox inference step) aed tiesolving the rest of selected literals with
side premises of type (c8) (applying a HyperresolutionABtep). A hyperresolution step in the original
calculus can be replaced by two steps in the modified one,rapleteness is preserved.

All that remains to be proved is that conditiGr) on HyperresolutionABox does not invalidate com-
pleteness. For this, let us consider a refutation in theimalgcalculus that uses a hyperresolution step.
If all side premises are of type (c3) and (c4) then it can bestwibed with a HyperresolutionTBox step.
Similarly, if all side premises are of type (c8), then we chamge it to HyperresolutionABox, as clauses
of type (c7) are function-free, satisfying conditi¢r). The only other option is that there are both some
premises of type (c3) and of type (é8)The result of such step is a clause of the following type:

P1(x) vV \/ Pa(a) v \/ Pa([fi(X)])V
vV (@ =a)v\/([fix)] = [f;0) v V([fix] = a)

At some point each function symbol is eliminated from thausi&(by the time we reach the empty clause
everything gets eliminated). In the modified calculus wd W able to build an equivalent refutation
by altering the order of the inference steps: we first applpétyesolutionTBox which introduces all
the function symbols, but none of the constants, then weglfdrward the inference steps that eliminate
function symbols and finally we apply HyperresolutionABdxe intermediary steps between Hyperreso-
lutionTBox and HyperresolutionABox are made possible Bamieakening of the corresponding necessary
conditions. Notice, that by the time HyperresolutionABsxpplied, functions are eliminated so condition
(v) is satisfied.

We conclude that for any proof tree in the original calcul@soan construct a proof tree in the modified
calculus, so the latter is complete. O

Proposition 5. Saturation of a set ol LCH 1 Q clauses using the modified calculus terminates.

2|t is shown in [41] that clauses of type (c8) and (c4) partitipg in an inference result in a redundant clause so we need n
consider this case.
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Proof. We build on the results in [41], that®# I Q knowledge base can be transformed into first-order
clauses of type (c1) — (c8) and that clauses of type (c8) éteedbrmC(a), R(a,b), -S(a,b),a=bora+#b,

i.e., initially they do not contain any function symbols. Wi also use the fact that in the original calculus
any inference with premises taken from a subset [ afC# 1 Q results in eithe(i) anALCH I Q clause

or (ii) a clause redundant in N diii)) a clause that can be substituted with @ CH I Q clauses via
decomposition.

All modifications (apart from breaking hyperresolutionartvo) affect clauses having both function
symbols and selected literals, in that we can resolve witHitéral containing the function symbol before
eliminating all selected literals. Such a clause can oniseasis a descendant of a HyperresolutionTBox
step. After applying HyperresolutionTBox, we can obtaia tbllowing clauses:

P1(x) vV \/ (=ROGY)) V \/ Pa(yi) v \/ Pa([fi ()])V (c9)
vV =y) vV X)) = [F0D vV ([H] = ;)

In the following, it will be comfortable for us to consider luase set that is somewhat broader than (c9),
in which function symbols can appear in inequalities as vildlis set is:

P1(x) v \/ (=R Y1) v\ Pa(yi) v \/ Pa([fi (0)]) v (c10)
\/\/(yi :yj)\/\/(< fi(x) >#< fj(X) >)\/\/(< fi (X) >#yj)

where #c {=,#}. Of course, every clause of type (c9) is of type (c10) as well.

Let us see what kind of inferences can involve clauses of (gh@). First, it can be a superposition
with a clause of type (c3) or (c5). In the case of (c3) the assioh is decomposed (in terms of [41]) into
clauses of type (c3) and (c10), while in the case of (c5) wainla clause of type (c10). Second, we can
resolve clauses of type (c10) with clauses of type (c10) B). (The conclusion is of type (c10). Finally,
we can apply HyperresolutionABox with some side premisethefformR(a, by;), but notice that only if
the literals with function symbols are missing. The resutifitype (c8). This means that during saturation,
we will only produce clauses of type (c1) — (c8) and (c10).

Itis easy to see that there can only be a limited number okelsof type (c10) over a finite signature.
Hence the modified calculus will only generate clauses frdinite set, so the saturation will terminate.

O

3.2.3 Implementing Two-Phase Reasoning

We will use the modified calculus to solve the reasoning tadkvd phases. Our separation differs from
that of [41] in that function symbols are eliminated durimg ffirst phase, without any recourse to the
ABox. Our method is summarised in Algorithm 1, where steps (B) constitute the first phase of the
reasoning and step (4) is the second phase, i.e., the datmiag. Note that one does not necessarily have
to use the modified calculus for the second phase: any calthéu more effectively exploits the fact that
no function symbols remain is applicable.

Algorithm 1 S# 1Q reasoning

1. Transform the&s# 1Q knowledge base to a set of clauses of types (c1) — (c8), whauses of type
(c8) are function-free.

2. Saturate the TBox clauses (types (c1) — (c7)) with the fremtitalculus. The obtained clauses are of
type (cl1) —(c7) and (c10).

3. Eliminate all clauses containing function symbols.

4. Add the ABox clauses (type (c8)) and saturate the set.

To show that our method is adequate, we first formulate tHeviirhg proposition:
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Proposition 6. A function-free ground clause can only be resolved with tionefree clauses. Further-
more, the resolvent is ground and function-free.

Proof. It follows simply from the fact that a constaatcannot be unified with a ternfi(x) and from
condition(v) on HyperresolutionABOX. O

We are now ready to state our main claim:
Theorem 3. Algorithm 1 is a correct, complete and finige// I Q DL theorem prover.

Proof. We know from Proposition 5 that saturation with the modifiattalus terminates. After saturating
the TBox, every further inference will have at least one psenof type (c8), because the conclusions
inferred after this point are of type (c8) (Proposition 6)om this follows, (using Proposition 6) that
clauses with function symbols will not participate in anyther steps, hence they can be removed. In light
of this and taking into account that the modified calculusagect and complete (Proposition 4), so is
Algorithm 1. O

By the end of the first phase of reasoning, we obtain clausteedbllowing types:

_'R(Xa y) v S(yv X) (Cll)
jR(xa y) \ S(Xa y) (C12)
P(x) (c13)
P1(X) vV \/(=ROGY)) vV Pa(y) vV (v =) (c14)
| | 1,]
(—)R(a,b) (c15)
C(a) (c16)
a=b (c17)
a#b (c18)

We have completely eliminated function symbols and are reaaly to start the data reasoning.

3.2.4 Benefits of Eliminating Functions

The following list gives some advantages of eliminatingdiion symbols before accessing the ABox.

1. It is moreefficient. Whatever ABox independent reasoning we perform afterrftpaccessed the
data will have to be repeated for every possible substitudforariables.

2. ltis safer. A top-down reasoner that has to be prepared for argumentaioang function symbols
is very prone to fall into infinite loops. Special attenticgewls to be paid to ensure the reasoner does
not generate goals with ever increasing number of functombels.

3. We getequality handling for free. In the resulting TBox only clauses of type (c14) tzimequality
that can be eliminated by a mere check whether two constamtsthe ABox refer to the same object
which is usually well known by the creators of the databasgtehat equality treatment in general
makes the reasoning task much more complex. This is why wéchask basic superposition.

4. ABox reasoning without functions gualitatively easier. Some algorithms, such as those for Dat-
alog reasoning are not available in the presence of funsiarbols. We have seen in Section 2.3.1
that [41] solves this problem by syntactically eliminatifughctions, but this has two drawbacks:
first, equality reasoning is required (an introduced cartstaght be equal to an ABox constant) and
second, this transformation requires scanning througiwtiede ABox, which might not be feasible
when we have a lot of data.
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3.2.5 Summary

In this section we have presented a saturation algorithnfo 7 1 Q, clauses that can be used to trans-
form aSH 1Q TBox to a set of function-free clauses. The transformatioimdependent of the ABoX,
and hence of the size of the ABox. It can be seen as a prepiogdes ABox reasoning and hence any
resolution based ABox reasoning algorithm can make use ®h# main benefit is that without functions
the ABox reasoning can be more focused, i.e., less sensitive size of the ABox.

3.3 Reduction of R 71Q DL reasoning to ALCH 1Q DL reasoning

R I1Q is a Description Logic language that is obtained by extemdify 1 Q with complex role inclusion
axioms. This extension significantly increases the expreg®wer of the language and is particularly im-
portant in medical ontologies. It is well known that the cdexgity of reasoning also increases, namely by
an exponential factor. We designed an algorithm that mapsRafiQ knowledge base into an equisatisfi-
ableaLCH IQ knowledge base, which 7 I Q without transitivity axioms. The transformation time is
exponential in the size of the initial knowledge base, hétniseasymptotically optimal. The transformation
provides a means to redugel Q reasoning to2LCH I1Q reasoning.

Most of the definitions that will be introduced in the follavg are based on [28], which gives a tableau
procedure for deciding® /Q. For each roleR, the authors define a non-deterministic finite automaton
(NFA) that captures the role paths that are subsumdrl Byhese automata are used during the construction
of a tableau, to “keep track” of role paths. In the following will show that the automata can be used
to transform the initial 7 Q knowledge base to an equisatisfialdle C# I Q knowledge base. The main
benefit is that the treatment of the role hierarchy becom@spandent of the tableau algorithm. Hence,
any algorithm that decides satisfiability for &v.C# 1Q knowledge base can be used for satisfiability
checking of a® 1Q knowledge base. In particular, the two phase reasoningitigothat we presented
in Section 3.2 is applicable. This result extends the ingngjliage of the DLog reasoner frgft 1Q to

RIQ.
3.3.1 Building automata to represent RIAs

In this subsection we define a scheme for constructing finiteraata to represent regular role hierarchies.
We use the same construction as presented in [28].

Definition 8 (Ar, Ar, Br). Let R be a regular role hierarchy. For each role name R occurring®n
the NFA A is defined as follows: fcontains a single initial statesiand a single final stategfwith the

transition ir R fr. Moreover, for each i R € R, Ar contains the following transitions:

1. ifw=RR, then A contains & = ir,

A
1@
E3
|o
5

e
o

2. iffw=9§...§ and S #R# S, thenmcontainshiiwi

TR ; E: S ¢1 2 2 So¢n
3. ifw=RS...§ then AR contains g = iy — f; = f5... = fy = fr
4. ifw:&...&Rthen/ﬁcontainskiiwi fvlvif\,%i

where all ﬂv, iw are assumed to be distinct.

Next, we introduce mirrored copies of automata, where alhsitions go backwards and the initial and
final states are switched. Formally, in the mirrored copy nfNFA we carry out the following modifica-
tions:

o final states are made non-final but initial

e initial states are made non-initial but final

" . . .. Inv(S
e each transition p§> g is replaced with transition qu p
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e each transition p8—> g is replaced with transition e|8—> p.
We define NFAAAR as follows:
e ifR" CR¢ R thenAr = Agr.

e ifRTCReR thenAg is obtained as follows: first, take the disjoint union qf With a mirrored
copy of &. Second, makeithe only initial state, & the only final state. Finally, for/fthe copy of

fr and i; the copy ofg, add transitionsg AN fk, TR i, iR 5 frand R & iR
Afterwards, the NFAs @Bare defined inductively ovex:
e if Ris minimal w.r.t.<, then we set B:= A:R
e otherwise, R is the disjoint union of\g with a copy B of Bs for each transition p§> q in Ag with

S+# R. Moreover, for each such transition, we agittansitions from p to the initial state ingand
from the final state of Bto ¢, and we makezithe only initial state andg the only final state in B

Finally, the automaton B- is a mirrored copy of B.
Proposition 7. For each role Re X the size of B is bounded exponentially in the size®f
Proof. See [28]. O

Definition 9 (Bgr(q,*), Br(x,q)). We denote by &q,*) the automaton that differs fromgBonly in its
initial state, which is g. Analogously/B«,q) differs from B only in its final state, which is q.

Proposition 8. For a regular role hierarchy® and interpretation I, | is a model & _if and only if, for each
(possibly inverse) role S occurring R, each word we L(Bs) and eachix,y) € w!, we havex,y) € Sl

Proof. See [28]. O

Proposition 8 states that two individuals &eonnected exactly when there is a role pathetween
them accepted bBs. This result gives us a key to handle value restrictions.p8ag individuak satis-
fies someS-restriction. If this is a maximum restriction<(kSC), thenS must be a simple role and the
restriction effects only the immediate neighbourscofThis case is already treated i#/ 71Q. If it is a
minimum restriction & kSC), the restriction can be made true by adding s@seccessors . The only
problematic case is universal restrictiorS(C), because finding alb-successors might be rather difficult.
However, Proposition 8 tells us that it is the role paths dibed byBs that we need to check to look for
S-successors.

3.3.2 A Motivating Example

Before formally defining the transformation of automataeyated from the role hierarchy into axioms, we
try to give an intuition through a small example. Supposertie hierarchy of a knowledge base consists
of the single axiom

PQCR

whereR, P, Q are role names. One of the things that this axiom tells usistttase an individuadsatisfies
VR.C for some concep, then the individuals connectedxdahrough aP o Q chain have to be i€. This
consequence can be described easily by the following GCI:

YRCLC VPVQ.C
or equivalently, we can introduce new concept names to aeoidhuch nesting of complex concepts:

VRCLC X1
X1 EVP.Xo
X CVQ.C
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Of course, these axioms only provide for the correct propagaf concepC and a new set of similar
axioms is required for all other concepts. However, we oelgdito consider the universal restrictions that
appear as subconcepts of some axiom in the knowledge basse €bncepts can be determined by a quick
scan of the initial knowledge base. For example, if the TBaxtains the following GCls:

DCVRC
TCEVRD

then, only concept€ andD appear in the scope of a univer&atestriction. Let us add a copy of the above
GCls for bothC andD and eliminate the role hierarchy. We obtain the followingokB

DCVRC TCVRD
VRCLC X; VRDLCY;
X1 EVPX2 Y1 EVPY,
X2 CVQ.C Y, CVQ.D

The two knowledge bases have different signatures and heveedifferent models, however they are
equisatisfiable. We will prove this by showing that a modedioé knowledge base can be constructed from
a model of the other.

3.3.3 Translating automata to concept inclusion axioms

In this subsection we formally define the transformationagular role hierarchy into GCls. In the end we
obtain an4 LCH I Q knowledge base. We make use of the notion of concept closlog K B)) provided
in Definition 6. The transformation itself is analogous tavhimansitivity axioms were eliminated from
SH1Q (Definition 7). Here, the situation is more complex as we hiaveake into consideration more
sophisticated role paths.

For each conceptR.C € clogKB) and each automaton statef Bg, we introduce a new concept
nameXsrc). The concepts associated with the initial and final stateBgadre denoted witiX(sianrc)
andXstoprc), respectively.

Definition 10 (Q(KB)). For any® IQ DL knowledge base KB)(KB) is an2LCH IQ knowledge base
constructed as follows:

e Q(KB) is obtained from KB by removing all RIAs \iC R such that R is not simple and adding for
each conceptR.C € clogKB) the following axioms:

1. VRCC X(startrC)
2. Xpre) C Xqre) for each p& g€ Br
3. Xpro) C VS Xgre) for each p3 g € Br
4. Xstoprc) EC
e Q(KB); =KBjy
Proposition 9. The size of2(KB) is bounded exponentially in the size of KB.

Proof. We know from Proposition 7 that the size of edthis bounded exponentially in the size 6By
and consequently in the size KB. So for each concepfR.C € clogKB) we introduce at most expo-
nentially many new GCls of type 1-4. The sizeabdsKB) is linear inKB, so the total number of GCls
introduced is at most exponential in the size<ds. O

The following proposition will be useful for proving th&B andQ(KB) are equisatisfiable.

Proposition 10. Let KB be someR IQ knowledge base and | be a model®fKB). Assume thatt €
(YR.C)' and there is somp and role path we L(Br) such that(a,B) € w'. Thenp € C'.
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Proof. Letw=5§%...S,, where§ is possibly are transition. Letstart = bg, by, ... b, = stopbe states of
Br along thew path. Sincda,B) € W', there are individuale = ap,a;,...a, = B such thata;_1,a) € S.
Note that in cas& = € thenagj_1 = g;.

We show inductively thag; € X('bi‘RQ for all 0 <i < n. For this we use the axioms added in the

construction ofQ(KB). The axiom of type 1 ensures that the base case h(l(l(d{i)(('start RC)’ i.e.,ap €
ngo‘Rq. For the inductive step, suppose first tifats ane transition. Therg; = a_1. By the inductive
hypothesis;_1 € X('bF1 RC)’ and the corresponding axiom of type 2 ensuresahatx('bi RC)" In the other

case, whel§ is not ane transition, the same argument referring to a corresporakigg of type 3 ensures
thata, € X('bi.RC).

Hence we know thaa, € X('bn RC)’ i.e,Be X('stopR o) This, together with the axiom of type 4 ensures
thatp e C'. O

We are ready to formulate the main claim of this section:
Theorem 4. KB is satisfiable if and only f2(KB) is satisfiable.

Proof. (=) Let| be a model oKB. We extend this model to an interpretatidmf Q(KB). I’ differs from
I only in the interpretation of the new concepigrc):

XéR£>:{y|3ﬂxe(VRCwaﬂwel(BR@gQ)“my>ewﬂ»)}

We prove that’ is a model ofQ(KB), by showing that the axioms added in the definitiorfx{kB) are
true. We consider the four cases separately:
1. VRC C Xstartre)

Suppose € (VR.C)". Then, by choosing =y andw = €, we can apply the above definition to show
thaty € X('stan’R’C).

2. X(p-R,C) - X(q,R,C)

Suppose € X('D‘RQ. Then, there is somee (YRC)" and somav € L(Br(x, p)) such thatx,y) e
w!'. Sincep < q € Bg, it also holds thatv € L(Bgr(*,q)). Hence, the same andw testify that

II

ye X(q‘R!C).
3. Xpre) E VSXgRe)

!

Supposeg € X(ID,R-,CV Then, there is somee (YRC)" and somav e L(Bg(x, p)) such thatx,y) €

w!’. Letzbe someS'-successor of, i.e., (y,2) € s, Sincep 3 g € Bg, it also holds thaivSe
L(Br(*,0)). Hencex andwStestify thatz € X(lc;‘R,C)' This holds for allS'-successors of, hence

II

y€VSXlre)

4. X(stopR,C) C C
SUPPOSY € X{onrc)- Then, there is somee (VRC)" and somev € L(Bg) such thatx,y) € w'".

Sincel andl’ only differ in the extension of new concepts, we also haeg VR.C)' and(x,y) € w!.
From the latter, we infer using Proposition 8 tiaty) € R’. Sincex € (VYR.C)', it follows thaty € C'
and from that we conclude that C".

(<) Letl be a model of2(KB) andl’ an interpretation constructed franas follows:
o A'=n;

e For each individuah, a' = a';

e For each atomic concepte clogKB), Al = Al;

e Foreachrol®® R' = {(x,y) | Iwe L(Br)({x,y) e W)}
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By construction and referring to Propositionl8satisfies the role hierarch¢Bg . SinceR € L(Br), we
haveR' C R'. Furthermore, iRis simple therR =R'".
For concepts irlosKB), we define the strict partial order: C <D if and only if C or NNF(C) occur

in D. We will use induction onq to show that for each € clogKB), D' € D". For the base case, i.e.,
whenD is an atomic concept or a negated atomic concept, this fellownediately from the definition of
I”. We now turn to the inductive step:

e ForD = C;MC,, assume that € (C1M1Cy)' for somea. Then,a € C] anda € Ch. By the inductive
hypothesisa € C!' anda € C}, soa € (C;NCy)"".

e ForD =C; LUCy, assume that € (C1|_|C2)' for somea. If a € C}, then by induction we also have
a € Cl'; if o € C), then by induction we also haeec C} . Either way,a € (CLIC)"".

e For D = 3RC, assume thatt € (JRC)'. Then,p exists such thata,B) € R andp € C'. By
induction, € C". SinceR' C R, we have(a,B) € R”, soa € (3RC)"".

e ForD = (> nRC), assume that € (> nRC)'. Then, there are at leastistinct domain elements
Bi such that(a, Bi) € R andp; € C'. By induction,B; € C"'. SinceR' C R', we have(a,Bi) € R,
soa € (>nRC)".

e ForD = (< nRC), we haveR = R sinceRis simple. LetE = NNF(-C). Assume that € (>
nRC)', buta & (> nRC)". Then, there existg such that(a,B) e R ,p£C',BeC", ie.,pcE
andp ¢ E". However, sinc& e clogKB), by induction we hav@ € E", which is a contradiction.
Hencea € (< nRC)".

e ForD =VRC, assume thatt € (YRC)', buta ¢ (YRC)"". Then someB exists such thata,B) €
R’ andp ¢ C"". By the definition ofR" there is somav € L(Br) such that(a,B) € w'. Using
Proposition 10, it follows tha € C'. By induction,C' C C", sop € C"", which is a contradiction.
Hencea € (VRC)".

O

3.3.4 Summary

In this section we defined a transformati@ithat maps an arbitrar® I Q knowledge base to adLCHIQ,
knowledge base. Theorem 4 states that the transformatisepes satisfiability. We also showed that the
transformation increases the size of the TBox with at mos#quonential factor (Proposition 9). This is
asymptotically optimal:ALCH 1Q . is known to be ExpTime-hard whil& 7Q is 2ExpTime-hard ([33]),
soR IQ is indeed exponentially harder tha.CH Q.

Using this result, any algorithm that decides satisfigbflir 2LC#H 1Q, can decide satisfiability for
R IQ. In particular, the modified calculus presented in Subse@i2.2 is applicable.

3.4 A Resolution Based Description Logic Calculus

In this section we present a reasoning algorithm, cdllectalculus which decides the consistency of a
SH Q TBox. The novelty of this calculus is that it is defined ditgain DL axioms. Working on this
high level of abstraction provides an easier to grasp algorivith less intermediary transformation steps
and increased efficiency. As we showed in Theorem 2, suchgamitdm can be used for solving all other
TBox reasoning tasks as well.

In Subsection 3.4.1 we present the DL calculus that perfammsistency check for 84 Q TBox.
Afterwards, in Subsection 3.4.2 we prove termination ofdlgorithm. In Subsection 3.4.3 we prove the
soundness of the DL calculus. In Subsection 3.4.4 we pratethie calculus is complete. Subsection 3.4.5
discusses the possibility of extending the DL calculus tmABeasoning. Finally, Subsection 3.4.6 con-
cludes by giving a brief summary of our results.
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3.4.1 DL Calculus

The algorithm can be summarized as follows. We determing afssoncepts that have to be satisfied
by each individual of an interpretation in order for the TBxbe true. Next, we introduce inference
rules that derive a new concept from two concepts. Usingrtfegénce rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and adatisequent to the knowledge base. We also
apply redundancy elimination: whenever a concept extendthar, it can be safely eliminated from the
knowledge base [3]. It can be shown that saturation term@matVe claim that the knowledge base is
inconsistent if and only if the saturated set contains thptgrmoncept ().

Preprocessing

We first eliminate transitivity from the knowledge base, asspnted in Section 2.3. Next, we internalize
the TBox, i.e., we transform all GCls into a set of concepas tave to be satisfied by each individual. For
instance, the axior® C D is equivalent to the axiom C —C LI D, which amounts to saying thailCLID
has to be satisfied by all individuals.

Internalization is followed by structural transformati@hich eliminates the nesting of composite con-
cepts into each other. 84 Q expression that appears in the TBox can be of arbitrary cexitgl i.e., all
sorts of composite concepts can appear within another ppn@éis makes reasoning very difficult. To
solve this problem, we eliminate nesting composite corscepod each other by introducing new concept
symbols that serve as names for embedded concepts. Fdsdetai[41].

Finally, we make a small syntactic transformation: cons&®C and3R.D are replaced with equiva-
lent concept$< OR.—C) and(> 1R D), respectively. As a result, we obtain the following typesafcepts,
whereL is a possibly negated atomic concept & arbitrary role:

LiuloU--- UL
Ly (Z kRLz)
Liu (S nRLz)

Notation

Before presenting the inference rules, we define some impbmnbtions. Aliteral concept(typically de-
noted withL) is a possibly negated atomic conceptbdol conceptontains no role expressions (allowing
only negation, union and intersection). We use capitadtetrom the beginning of the alphabatB,C...)

to refer to bool concepts. In the following, we will alwayssame that a bool concept is presented in a
simplest disjunctive normal form, i.e., it is the disjurmctiof conjunctions of literal concepts. So for exam-
ple, instead oALJALI (B —-BrC) we write A, andAm —A is replaced withL. To achieve this, we apply
eagerly some simplification rules, see later. When the émfes rules do not preserve disjunctive normal
form (DNF), we will use the explicitinf operator:

dnf(All_lB)l_ldnf(Azl_lB) if A=AUA,
dnf(ANB) = < dnf(AMB;) Ldnf(AMNBy) if B=B1UB;
(AMB) otherwise

The dnf operator is defined only for concepts that are the intersealf two concepts. The bool
concepts in the premises are always in DNF and the conclasiotains either the union or the intersection
of such concepts. The union of two DNF concepts is also in DNWesonly need to apply thénf operator
to transform the intersection of two DNF concepts.

Ordering

Let - be a total ordering, called@recedenceon the set of (atomic concept, atomic role, natural number,
logic) symbols, suchthat>-<>R>=n>C> > U= > T = L for any atomic conceft, atomic role
nameR and natural numbaer; furthermore for any two natural numbers~ n, if and only if ny > np. We
define a correspondirigxicographic path ordering-|, (see [3]) as follows:

32



s=f(s1,...,Sm) >1po 9(t1,...,tn) =t if and only if

1. f>gands>poti, foralli with 1 <i <n; or

2. f =gand, for somg, we have(sy,...,sj_1) = (t1,...,tj-1),Sj >ipo tj, @nds =po tx, for all k
with j <k <n; or

3. ) Ipot, for somej with 1 < j <m.

In order for the above definition to be applicable, we treatospt(> kSA) as >(k,S,A) and concept
(< nRD) as<(n,R D). If the precedence is total on the symbols of the languag®, the lexicographic
path ordering is total on DL expressions. For simplicity,efen write- instead of-|p, When it does not
lead to confusion. Note a couple properties of our ordetiag will be useful later:

1. A>-conceptis greater than ary-concept or any bool concept.
2. A <-conceptis greater than any bool concept.
3. C1 = (< mRy.Ay) is greater tha€; = (< naRz.Ap) if and only if:

e Ry >Roor
e Ri=Ryandn; > nyor
e R =Ry, n1=nyandA; >~ Ay

Definition 11 (maximal concept) Given a set N of concepts, concept®l ismaximalin N if C is greater
than any other conceptin N.

Since the ordering- o is total, for any finite sel there is always a unigue concépe N that is maximal
in N.

SH Q-concepts

A derivation in the DL calculus generates concepts that aveengeneral than the ones obtained after
preprocessing. We call this broader et/ Q-conceptsdefined as followsQ, D, E stand for concepts
containing no role expressions):

C (bool concepts
Cu|_|(<nRD) (< -max concepts
cu (|_|(§ nRD)) U (= kSE) (> -max concepts

where bool concept8, D, E are in DNF. Note two important properties 8/ Q -concepts:
1. ASH Q-conceptis a disjunction that contains at most areoncept.

2. There are no nested concepts containing role expressiena concept embedded intg>aconcept
or a<-conceptis always a bool concept.

According to the ordering defined above, eatltoncept is greater than any bool concept, so the maximal
disjunct in a<-max concept is a<-concept. Similarly, any>-concept is greater than any- or bool
concept, so the maximal disjunct inZ&max concept is @&-concept. This is the rationale for naming
these concepts-max and>-max, respectively. Obviously, any concept obtained giteprocessing is a
SH Q-concept:

Proposition 11. For any S# Q knowledge base KB, if we apply the preprocessing transftioms de-
scribed above on KB, we obtain a setf{ Q-concepts.
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Inference Rules

The inference rules are presented in Figure 3.1, wkgi®;, E; are possibly empty bool concepti\
stands for an arbitrarg H Q-concept that can be empty as well. Some of the rules do neepre the
disjunctive normal form (DNF) of bool concepts. In such casee use thelnf operator as defined above.
Note that two disjunctive concepts are resolved along tlesipective maximal disjuncts and the ordering
that we imposed on the concepts yields a selection funct®ince the ordering is total, we can always
select the unigue maximal disjunct to perform the inferestep.

C1|_|(D1|_|A) C2|_|(D2|_|ﬁA)
Cluc,
whereD1 MAis maximal inC; LI (D1 M A)
andD; M —Ais maximal inCz LI (DM —A)
C WU (> nRD)
WU (> nRdnf(DME))
whereE is obtained by using Rulel on premisg@andD
WU (<nRC) WU (>kSD)
WL LUWL U (> (k—n)S.dnf(DM—C))
n<k SC*R, (< nRC) is maximal inW; L (< nRC)
and(> kSD) is maximal inW, LI (> kSD)
WL U (< nRC) W, L (> kSD)
WL UWL U (< (n—K)R.dnf(CM—D)) U (> 1S.dnf(DM-C))
n>k SC*R, (< nRC) is maximal inWy LI (< nRC)
and(> kSD) is maximal inW, LI (> kSD)

Rulel

Rule2

Rule3

Rule4

Figure 3.1: TBox inference rules of the DL calculus

Along with the inference rules, we use a further set of rues we callsimplification rulesand which
are shown in Figure 3.2. These rules only have one premisehwhiredundant in the presence of the
conclusion and hence can be eliminated. In other words, ithplification rules are used to simplify
concepts and do not deduce new concepts. Simplificatios anteapplied not only t6#4 Q-concepts, but
also to subconcepts appearingsiff Q -concepts. For example, S1 is used to replace the cocept | A
with CUA, but also to replacé€> nR(CUAUA)) with (> nR(CUA)).

Rulel corresponds to the classical resolution inferendeRarie2 makes this same inference possible
for entities whose existence is required byconcepts. Rule3 and Rule4 are harder to understand. They
address the interaction betweenconcepts and<-concepts. Intuitively, if some entity satisfiessnRC
and also satisfies kSD, then there is a potential for clash if concetandD are related, more precisely
if D is subsumed b¥. In such case® M —C is not satisfiable, which either leads to contradiction if
n < k (Rule3) or results in a tighter cardinality restriction & tentity (Rule4). If severat-concepts and
a <-concept are inconsistent together, then eaetoncept is used to deduce<aconcept with smaller
cardinality (Rule4) until the<-concept completely disappears from the conclusion (Rwded we obtain
the empty concept.

Saturation

We saturate the knowledge base, i.e., we apply the rulegur&i3.1 to deduce new concepts as long as
possible. Before adding the consequent to the concept setagerly apply the simplification rules of
Figure 3.2 to make the concept as simple as possible. We dinthe consequent is alwayss& Q-
concept.
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CuLuy---UL
CuL
CUDU(DME)
Cub
CUDU(-DME)
CuDUE
cubu-D
——
CU(DNEMN-E)
C
WU(>nR1)
W
WU (<nRL1)
——

S1
S2
S3
S4
S5
S6

S7

Figure 3.2: TBox simplification rules of the DL calculus

Proposition 12. The set ofS# Q-concepts is closed under the inference rules in Figure 8d the sim-
plification rules in Figure 3.2.

Proof. Consider Rule1D; M A is maximal inC; LI (D1 MA) which is only possible i€; does not contain
any >- or <-concepts. Hence it is a bool concept. Analogously, the tfaa@t D, 1 —A is maximal in
Co U (D2M—A) ensures that, is another bool concept. Bool concepts are in DNF. The carmfus the
disjunction of two bool concept€( LICy) which is also in DNF and hence is a bool concept.

Rule2 resolves a bool concept with>amax concept. We have just seen that resoiingnd D by
Rulel yields a bool concept. We take the conjunction of thiscept and another bool conceptii E)
which is not in DNF, but it yields a bool concept once we applydnf operator. Hence the conclusion is
a>-max concept.

In Rule3, the maximal disjunct of the first premisg s nRC), so it does not contain any-concept.
The second premise isa-max concept and contains exactly oreconcept, namely> kSD). The
conclusion contains one-concept and is &-max concept. Again, theénf operator is used to ensure that
the bool concept appearing in thedisjunct of the conclusion is in DNF.

In Rule4, the maximal disjunct of the first premise(is NRC), so it is a<-max concept and does
not contain any>-concept. The second premise contains exactly afmncept, sd\b contains ng>-
concept. Consequently, the conclusion will contain onlg bAconcept and all subconcepts insideand
<-concepts are bool concepts. We obtain-anax concept.

Simplification rules S1-S5 eliminate some disjuncts or aganfs from bool concepts in DNF. The con-
clusion is always a simpler bool conceptin DNF. S6 elimisate unsatisfiable branch from a disjunction,
turning a>-max concept either to a bool concept or teanax concept. In case of S7, the premise is a
tautology and can be safely eliminated. O

3.4.2 Termination

The following proposition — along with Proposition 12 — eresithat the DL calculus terminates.
Proposition 13. The set of alls # Q-concepts that can be deduced from any finite TBox is finite.

Proof. For any finite TBox, there can only be finitely many distincierexpressions and bool concepts.
Furthermore, note that each inference rule either leaesgrity of a number restriction unaltered or reduces
it. Soin a(< nRC) or (> nRC) expression the number of possible valuesrfoR andC is finite for a
fixed TBox. As allSs # Q-concepts are disjunctions of bosl, and>-concepts, we have an upper limit for
the set of deduciblg # Q-concepts. O
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DL calculus deduces only# Q concepts froms# Q concepts. Since there are finitely mafif Q
concepts, even if we have to deduce every possiifa) -concept, it still requires finitely many steps, so
the calculus is guaranteed to terminate.

3.4.3 Soundness

Itis straightforward to show that the simplification rules aound, i.e., if all individuals of an interpretation
satisfy the premise then they also satisfy the conclusioa.lé&ve this to the reader. The inference rules
are slightly more complex.

Theorem 5. The inference rules of the DL calculus are sound.

Proof. Consider Rulel and suppose thegatisfies both premises. Eith&ror —A is true ofx. If A(X) is
true, therx must satisfyCy, due to the second premise. Analogously;#(x) is true, therk must satisfy
C;. In either case, the conclusion holds for

We turn to Rule2. Lex be an individual. It satisfies the second premise, so either (> nRD) holds
for x. In the first case the conclusion is satisfieddin the second casehas at leash R-successors that
satisfyD. These successors also satisfy the first pren@i$arid — given that Rulel is sound — they satisfy
E. If these R-successors satisfy b@tandE, then they satisffD M E as well. So it holds fox that it has
at leasin R-successors that satigh/1E, so the conclusion is again satisfied.

For Rule3, lex be an arbitrary individual. Ik satisfies eithevw; orW,, then it satisfies the conclusion.
Otherwise x satisfies(< nRC) and(> kSD), whereSC R. So,x has at leask distinct S-successors that
satisfyD (that are R-successors as well). Of these, at masiccessors can satisdy so there are at least
k — n S-successors that satishC. From this it follows directly that the conclusion holds for

Finally, let us consider Rule4 and let agaidenote an arbitrary individual. K satisfies eithev or
Wb, then it satisfies the conclusion. Otherwiseatisfies < nRC) and(> kSD), whereSC R. So,x has
at leastk distinct S-successors that sati§ly If any of these successors satisf then the last disjunct
of the conclusion holds. Otherwise, all th&-successors satis§y; Given thatx can have no more than
successors that satigBy there cannot be more than- k successors that are not among those satistying
but they satisfyC. Hence the second to last disjunct of the conclusion holds.fo O

3.4.4 The Completeness of the DL Calculus

In this subsection we prove that the method presented ineStibe 3.4.1 is complete, i.e., whenever there
is some inconsistency in a TBdK, the empty concept is deduced. We prove completeness byirgnow
that if a saturated s&at; does not contair. then the axionT C [ | Sat; has a model. Instead of building
the model itself, we will prove that th@ LC#H Q tableau method can find one such model. In order for the
model to satisfyT C [|Satr, the concepts ifat; are added to the label of every newly created node in
the tableau.

Although the tableau rules are fairly standard, there mighémall variations. Hence, to avoid confu-
sion, in Appendix A we provide the definition of the tablealesthat we assume in the following.

Building the Tableau Tree

In the previous sections, we replacédand3-concepts with<- and>-concepts to make the presentation
of the inference rules simpler. As we turn to the tableau,éw@x, the reader might be more familiar with
the correspondiny-rule and3-rule. Hence, in the following, we will treat o< OR.C) and (> 1S.D)
concepts agvR.—C) and(3S.D), respectively.

Whenever we have several applicable tableau rules, weresting following ordering precedenae:
rules,-rule, 3-rule, >-rule, V-rule, -rule and<-rule. When applying thel-rule we proceed with the
brancR that adds the minimal possible concept to the label of a n@ieen that the tableau method is
don’t care non-deterministic with respect to these choitescompleteness of the algorithm is preserved.

3Throughout this paper, “branch” refers to a branch of theart@bleau tree, i.e., one of the tableaux resulting fronafiication
of a non-deterministic rule.
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Whenever a node contains a disjunctive conceytL/C, the branch wher€ is added to the label of
n is only examined after each disjunct\ivi that is smaller tha® has been proven unsatisfiable.clash
occurs in the tableau tree when an atomic concept name anelgtgion both appear in the label of some
node. In this case we roll back and proceed with another brafdinal clashoccurs when there are no
branches left, i.e., the tableau proves the inconsisteh8at. We show that no final clash can be reached
if Satr does not contain_.

Bool Concepts

Let us first consider the case wh8at; contains only bool concepts.
Theorem 6. If Sat; contains only bool concepts and does not contjithen no final clash is possible.

Proof. To obtain contradiction, suppose that we reach a final clagnce, for some atomic concefst
bothA and—A appear in the label of some node. This is only possib&aif contains concepts

W1=C1I_|(D1|_|A) V\/2=C2I_|(D2|_|ﬁA)

The clash is final, so there are no more branches(Da.[1A) and(D2 M —A) are maximal il andWs,
respectively, and each disjunct@ andC; leads to clashWw, andW, are resolvable using Rulel, Sat-
also contains

W=C UG,

W cannot be empty because we assumed$a#t does not contain.. The simplification rules, and in
particular S1 was eagerly applied @ andW,, so there are no other occurrencegBf M A) in C; and
(D2M—A) in C,. So the maximal disjuncts M4 andW, are strictly maximal. LeX denote the greater
concept of(D1MA) and(D2M—A). X is greater than any disjunct in eith@r or C;. This means that the
branches corresponding to all disjuncts/éfwere examined before examining the branch corresponding
to X (due to the ordering imposed on the application ofithreule). But we know that all disjuncts W

lead to clash, so a final clash must have been obtain&ll,aven before introducing to the label of the
node, which contradicts our assumption that the final clagblvedX. O

Corollary 1. If Sat; does not contain_, then the set of bool conceptsinis satisfiable.

Notice that only Rulel is used to detect the inconsistendyoofl concepts. This observation will be
useful for us later.

Corollary 2. Ifaset N of bool concepts is unsatisfiable then there is aaaepiof bool concepts p.. ph =
L such that for each jp there is an instance of Rulel with premises fromu Nos, p2...pi—1} whose
conclusion is p We call this sequence a deductionlaf

>-max Concepts
Let us now assume th&at; contains only bool concepts agdmax concepts.

Proposition 14. Let W= CU (> nRD) be a>-max concept in Sat Then D is satisfiable.

Proof. Suppose thabD is unsatisfiable. Since it is in DNF, it is the disjunction @injunctions such that
each conjunction contains some atom together with its r@gatHowever, the simplification rules are
eagerly applied on alf # Q -concepts and due to S5 all disjunctdbivere eliminated. Henc® = 1 and
W =CU(>nR_). S6 is applicable okV yieldingC, soW was removed fronsat; and replaced b¢.
This is a contradiction, sD must be satisfiable. O

Proposition 15. Let W= CU (> nRD) be a>-max concept and B- {B;} a set of bool concepts. If
{D}UB s inconsistent, then there is a deduction of C using RuteflRule2 and the simplification rules.
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Proof. We know from Corollary 2 that there is a deductipn pz. .. pn = L from {D} UB using Rulel. In
this sequence each concept has a set of premises, eithethieariginal concept set or from concepts that
were deduced earlier. Let us define tiecestorrelation as the transitive closure of the premise relation
and letdescendanbe its inverse relation. For eagh, let A; denote the set of its ancestors that are either
identical toD or are descendants &f. For eachp; such thatA; is not the empty set, replage with
CU(>nR(piM[]A)). We obtain a deduction in which each time the conclusion Js-max concept,
Rule2 is used instead of Rulel. In particulps,= L is replaced withCLI (> nR(L M[]An)), where
the >-concept is unsatisfiable, so we can dedGdeom this concept using the simplification rules (see
Proposition 14). O

Corollary 3. Let W= CU (> nRD) be a>-max concept in Satand let B= {B;} be the set of bool
concepts in Sagt. Then{D} UB is consistent.

Proof. Supposg D} UB is inconsistent. Then, from Proposition 1Zat- containsC. However,C makes
W redundant, stV was eliminated fronSat; whenC was added to it. This contradicts our assumption
thatW € Saty. O

Theorem 7. If Sat; contains only bool concepts aetmax concepts and does not contdinthen it is
consistent.

Proof. We know from Corollary 1 that the bool concepts are satisfiaBk of the>-max concepts, at least
one of their disjuncts, namely the-disjunct can be satisfied: in each node we create sepamtessors

for each>-concept, independent of each other (withgistoncepts, these successors never need to be
identified). The label of each successor is satisfiable (sepoBition 14 and Proposition 3), so the
conceptin the parent is satisfiable as well. O

<-max Concepts

We now consider a fully general saturatedSat;, that might contain bool concepts;max concepts and
<-max concepts. When we build the tableau tree dfaoncept appears in the label of a node, we possibly
have to add a new concept to the label of a nadau(e) or identify two nodes<-rule). We show that none

of these rules will lead to final clash.

Each successor node is created with an initial concept labgd: for instance, if a new node is created
due to concept 1R A, then we callA the creator concepbf the node. Whatever other concept appears
in its label (before performing any identification step)isitderived fromAm[]B;, where{B;} is the set
of bool concepts irBaty. If a node with creator concepthas to be identified with another such that the
second node contaisin its label, then identification cannot introduce new ingistency and it can be
seen as simply deleting the first node.

As previously, we are only interested in potential claslied are final. This means that the (non-
disjunctive) concepts that are involved in the clash candsermed to be the maximal disjuncts$# Q-
concepts fronBaty.

Proposition 16. Let Sat- be a saturated set of #/ Q -concepts that does not contain the empty concept
L. Let us try to build a model fof C [|Sat; using the tableau method, observing the restrictions on the
order of rules. Then we never obtain a final clash.

Proof. We know from Theorem 7 that the set of bool conceptsantax concepts is consistent. Hence,
a final clash must involve < nRD) concept. We use induction am the arity of the<-concept to show
that no final clash is possible. We first give a sketch of th@pro

1. Inthe base case of the inductive proof, we assume that veed{a OR.D) concept in the label of a
node, which is &-concept. We show that no final clash is possible that woutdaee occurred in
the absence of thig-concept.

2. In the inductive step, we assume that(alln’R.D) concepts that appear in the label of a node, no
final clash is possible as long as< n. From this we prove that the same holds for(all nRD)
concepts.
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A <-max concept can only lead to clash if the same label consaime(> n;S.A;)) concepts where
1<i<lI,§C*R We use a second, embedded inductive proof, on the nuhafer-max concepts.

(a) In the base case we assume that0 and show that no final clash is possible due to the
(< nRD) concepts, as the examined node has no successors.

(b) In the inductive step, we assume that if a label contHirsl different>-max concepts, then
the successor nodes created due to these concepts can fifiedl@rto some nodes such that
at mostn of them satisfie®. We show that this property holds if the label contdintiferent
>-max concepts.

Now we fill in the details of the proof. The base case of the ounguction is whem = 0, that is,
when we have a-concept in the label of a node. Therule fires and a new concept is added to the label
of some successors. To obtain contradiction, we assumehiisdeads to a final clash. Given a noxde
that has ars-successoy with creator concepA. This means that the label ®fcontains a concept kSA.
Furthermore, the label of also contains &-concept, which is ¢< OR.D) concept in our terminology.
SLC R, so theV-rule is applicable and putsD in the label ofy. We assumed that a clash is obtained, so
AM—-D is not satisfiable. The>--concept and-concept in the label of originate from a>-max and a
<-max concept, respectively, Bat;, that is,Sat; contains concepts

W =E L (< ORD) V =FL(>kSA)

where(< OR.D) is maximal inW, (> kSA) is maximal inV and each disjunct ik andF leads to clash.
W andV are resolvable using Rule3 and the conclusion is

EUF U (> kSdnf(An-D))

AM-Dis not satisfiable, so the DL calculus deduEesF as well (Proposition 15). However, we know that
all disjuncts inE andF lead to clash, so we obtain a final clash without4freoncept inV. Contradiction.
We now turn to the inductive step. The inductive hypothesthat a<-concept can never lead to final
clash, i.e., d< n'R.D) concept in the label of a node that is derived from the maxifiglinct of a<-max
concept ofSat; can be satisfied for alf < n. We show that this also holds far
Let some node in the tableau tree contain conceptsnRD) and (> n;S.A;), where 1<i < | and
S C* R Due to the(> njS.A;) concepts, we have already creaﬁ{-glni successors with creator concepts
A;... A, respectively.D appears in the label of ea&rsuccessor, s, together with the bool concepts
impliesD. This means thad 1 —D is unsatisfiable. Suppose that we have to perform identiicathich
leads to final clashSat; contains concepts

W =E L (< nRD) W=FU(GnSA) 1<i<l

where(< nRD) is maximal inW, (> n;S.A) is maximal inW and each disjunct & andF; leads to clash
in x. By the time a<-rule is applied, we have already performed all possibleules, due to which the
label of eachS-successor contains eith8y or —A; for all j € {1...1}. According to Corollary 3, each
creator concept is satisfiable and hence will remain saiisfiay taking its conjunction with eithek; or
—A.

We use induction oh the number of>-concepts to show that the assumption thattheoncept gives
rise to final clash leads to contradiction.

The base case (of the second, inner induction) is whef. There are n@-concepts in the label of
so there are no involved successors to be identified.

We now turn to the inductive step (of the inner induction). &gsume that if the label of contains
onlyl” < | different>-concepts then the resulting successors can be identified imodes without clash.

1. In casen > nthen Rule3 is applicable oV andW, resulting in:
EURU(> (n—n)S.dnf(A M—-D))

We know thatA; M —D is unsatisfiable, so the DL calculus deduées F (from Proposition 15).
However, all disjuncts ot andF; lead to clash irx, so we obtain a final clash even before introducing
any <- and>-concept, contrary to our assumption.
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2. If n > n, then concept®/ andW are resolvable using Rule4, resulting in
EURU(< (n—n)Rdnf(DM-A)) U (> 1§.dnf(A M-D))
Again, we know thaD M —A is unsatisfiable, so (from Proposition 15) the DL calculudutes
EURU(Z (n=n)RdAnf(DMN-A)) (3.1)

Due to thex-rule, the label of every successor contains eitharr —A;. n—n; < n, so the inductive
hypothesis holds for (3.1), i.e., all the successors whalsel lcontains bot® and—-A; can be iden-
tified into n — n; nodes by deleting some successors that are not necesseherfa this, there are
n; successors with creator concépt plus somek other successors such that tkerule putA; into
their labels.

(a) If k < n; then we can eliminate; — k nodes from those havingy, as their creator concept,
leaving exactlyn; successors whose label contafs Contrary to our assumption, we obtain
no final clash.

(b) If k> n; then each of the nodes whose creator concefst an be eliminated since there are
more them; other nodes satisfying,. All remaining successors originate from theconcepts
in Wy...W_1. However, according to the inductive hypothesis (of theeminduction), these
successors can be identified imguccessors without clash.

This concludes the second inductive proof and the first orveedls We have showed that the assumption
that a<-concept introduces inconsistency into the label of a nedds to contradiction. O

Let 7 be aS# Q TBox. LetSatr be the set of concepts obtained after performing preprowess
T and then saturating it with the DL calculus. We have showadliffat; does not contain_ then it is
possible to build a model for using the tableau algorithm. This concludes the proof ofgleteness for
the DL calculus.

3.4.5 Towards a DL Calculus for ABox Reasoning

The DL calculus imitates the modified calculus that we presgim Subsection 3.2.2. Recall however,
that the aim of that calculus was not to perform TBox reaspriot to serve as a preprocessing phase for
the ABox reasoning. The modified calculus was used to per&drinference steps that involve function
symbols. Function symbols are derived via skolemisatioamlie translate--max concepts to first-order
clauses. The question naturally arises if the DL calculus loa used in a similar way to perform all
inferences involving>-max concepts, which then can be eliminated before acapdsnABox.

Unfortunately, the answer seems to be negative, which wkillustrate through a small example.
Consider the following knowledge base:

<1Ry)
<1Ry)

TE(
TE(
TC(>19
R

n

Ry

c

c

c
c
LR

wn

By,

1(a,b)
Ro(a,c
X(b)
-X(c)

g

The ABox satisfies the TBox as long as we neglect the only axiothe TBox that yields a&-max
concept:T C (> 19). In the presence of this axiom, howevkr@ndc have to be identified into a single
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S-successor o0&, which leads to contradiction becausendc are not identifiable. Now, the question
is: what kind of axiom(s) should the DL calculus derive frame fTBox to ensure that the ABox remains
unsatisfiable even if we eliminate tlre-max concept? In this simple example, one could infer froe th
three number restrictions thRf = R, = S, which is sufficient to make the ABox inconsistent. Suppose
however, that the axiom with the-max concept is replaced with the following one:

TCCu(>19

Since(> 1S)(a) cannot be trueC(a) must be true, i.e., if we query the knowledge base for corCetbten

a should be returned. For this, however, we should infer anraxeéxpressing thafor every individual,
either it belongs to C or else all its;Rand R-successors are also S-successokd/e cannot formulate
this using DL expressiorfsThe modified calculus does not suffer from this problem, beeanuch more
can be expressed using first-order clauses. Indeed, froabihve TBox, the modified calculus infers the
following two clauses:

C(¥) vV -Ri(xy) VS(x,y)
C(¥) vV -Ra(x.y) VS(x,y)
which ensure the inconsistency of the ABox, even if we ondtakiom with the>-max concept.

It turns out that we need regular expressions on roles inrdodee able to eliminate-max concepts.
In another example, the TBox

is equisatisfiable to the following one:
TE(L2Ry)
TE(S2Ry)
SC Ry
SC Ry
TC (S 1(R1|_|ﬂR2)
TLC(<1(RM-Ry)

Allowing regular expressions on roles, however, leads ¢outhdecidability of the language in general.
It seems very difficult to extend the DL calculus in this difen. Hence, we conclude that eliminatipg
max concepts before accessing the ABox is not likely to seate@gthout recourse to first-order logic. The
DL calculus can be used for TBox reasoning, however, it isageiquate for the two-phase data reasoning
that we discussed in Section 3.2.

3.4.6 Summary

We have presented the DL calculus, a resolution based #igofor deciding the consistency ofs## Q
TBox. The novelty of this calculus is that it is defined dilgoin DL axioms. We showed that the algorithm
is sound, complete and terminates. More work needs to betdamelore the real time complexity of the
reasoning, as well as potential optimization techniques.hédpe that further research will reveal that the
DL calculus provides a reasonable alternative to the Talliéathod for certain reasoning tasks.

We have not been successful in extending the DL calculus BmxAreasoning in the way the modi-
fied calculus is used. In Subsection 3.4.5 we illustrateduph some examples why we believe that this
extension is not possible at all.

4At least not without a significant increase in the expressivf the DL language.
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Chapter 4

Loop Elimination, a Sound
Optimisation Technique for PTTP
Related Theorem Proving

In Section 2.1 we presented the Prolog Technology TheoreweP(PTTP), which is a complete first-
order theorem proving technique built on top of the Prolagglaage. The DLog system [38] that will
be presented in Chapter 5 is a specialisation of PTTP to ipdiser Logic reasoning. DLog performs
a two-phase reasoning, where the first phase is that prelsen&ection 3.2 and the second phase uses
PTTP. These systems exploit the backtracking mechanismotddPto search for a proof of the initial goal.
Efficiency is crucial since these systems typically neecare a huge search space.

Loop elimination is an optimisation technique which can makiremendous impact on the speed of
both of the aforementioned systems. This technique prevegit programs from trying to prove the same
goal over and over again, thus avoiding certain types ofiteflnops. My main contribution to this domain
is a rigorous proof of soundness of loop elimination.

Detecting loops to prune the search space for logic progiant new, see for example [8]. However,
the systems that we are interested in extend standard Pegtgution with a technique callexhcestor
resolution that corresponds to the positive factoring inference. ini¢he presence of ancestor resolution,
the considerations that trivially justify loop eliminati@lo not hold. It is easy to see that trying to prove a
goal that is identical to some goal that we are already in thegss of proving yields no useful solution and
the corresponding proof attempt can be aborted. Howeuerfat from trivial that the same holds in case
the two goals are identical onipodulo ancestor listi.e., they can be different in one of their arguments,
namely in their list of ancestors. In this chapter we provgstronger claim. We are not aware of any other
work exploring the interaction between loop eliminatior @mcestor resolution.

In Section 4.1 we examine logic programs in terms of ternnmeénd identify the sources of infinite
execution. Section 4.2 contains our main contribution: efne loop elimination and prove its soundness.
We end the chapter with some concluding remarks in Secti®n 4.

4.1 Termination of Logic Programs
Given that first-order logic is undecidable, it is not suspri that the Prolog Technology Theorem Prover

is not guaranteed to terminate. In this section we reviewnttgs in which a logic program can fall short
of termination. Afterwards, we compare PTTP and DLog witpext to termination.

4.1.1 Sources of infinite execution

We identify three sources of infinite execution:
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o If the program containfunction symbols then we might obtain terms of ever increasing depth.
Consider, for example, the following simple program:

p(X) - p(f(X).

If we attempt to provep(a) using the above rule, we will end up reducing it to the proopof(a)),
p(f(f(a))) etc. and the program will never stop.

e A proof attempt might visit infinitely many goals if an unbailed number ohew variablescan be
introduced during the proof. This happens with rules withadable occurring in the clause body,
but not in the head. For example, consider the transitivity:r

r(xy) - 1(X 2, r(ZY).

It is easy to see that a proof attempt for the gdal b) using the above rule will generate infinitely
manyr(a,V) subgoals, always with a fresh variable.

e Even if both the depth of terms and the number of variablesbeahounded, the program might
fall into aloop and attempt to prove the same goal over and over again. Forp&athe program
consisting of the following rule

p(X) - p(X).
will never terminate, even though there are no function sylsiand no new variables are introduced.

One can see easily that the above list is exhaustive. If thebeu of variables is bounded and there are
no functions, then the total set of terms is that of the vdemband the constants appearing in the program,
i.e., itis finite. Since the set of predicate names is alstefitinere can be finitely many different goals. If
there are no loops, even if a proof attempt goes though adliplesyoals (the worst case), it will eventually
terminate.

Hence, we conclude that infinite execution is due exactlyted aspects of logic programs: function
symbols, the proliferation of new variables and loops.

4.1.2 Termination in DLog

In light of the preceding subsection, let us reexamine tpaticlause set of the second phase of the DLog
data reasoner. We repeat this set here:

jR(xa y) 4 S(y7 X) (Cll)
=R(X,y) vV S(x,y) (c12)
P(x) (c13)
P10 vV (=ROGY)) Vv Pa(y) vV (i = i) (c14)
i | ]
(—)R(a,b) (c15)
C(a) (c16)
a=b (c17)
a#b (c18)

We see immediately that the absence of function symbolsrit@s one of the three sources of infinite
execution.

We shall see that new variables are not introduced, eittrer.s€cond nice property of the input clause
set is that the resulting contrapositives only contain aatieg binary literal in the body in case the head
is a negative binary literal. This means that we can only entar negative binary subgoals if the initial
query itself is a negative binary goal. I/ 1Q DL reasoning, however, negative binary queries are
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forbidden, so all contrapositives with a negative binatgréil are unnecessary and can be disposed of.
Consequently, in our logic program binary literals will grdppear positively. For proving such binary
goals only contrapositives from clauses of type c1 and c2aeagable:

r(xy) - s(XY).
r(xy) - s(Y, X).

These rules do notintroduce new variables. A proof of a lyigaal consists of applying such rules possibly
several times, until finally we obtain a matching data a&sert( a, b) , thanks to which the variables in
the binary goal get instantiated. We know that in all ruleibedhat contain binary literals every variable
occurs in some binary literal (the third nice property of @ysut clause set). These are the rules that
introduce new variables. If, however, we move the binagrdits to the front of the body, i.e., we prove
the binary goals first, by the time we reach the unary goa¢s; lecome ground. Hence, any unary goal
in the body either contains the same variable as the one ihghd — in case the rule contains no binary
predicates — or else it is ground by the time it is called. Newables may appear only for a short time
— until we prove the binary goals holding them. Hence, DLolj méver encounter infinitely many new
variables during a proof attempt.

If there are no terms of increasing depth and variables deradiferate, then the only way a DLog
program may not terminate is if it falls in an infinite loop amves the same goal repeatedly.

4.1.3 Eliminating Loops

We have seen that there are three independent featuresthatake a PTTP execution non-terminating,
of which only one, namely loops can occur in DLog programsSéation 4.2 we shall show that proofs
containing such loops are not necessary for completenéssrdsult yields an important optimization for
both PTTP and DLog, calleldop elimination General PTTP still has to cope with infinite proof attempts
(due to the other two sources) and hence has to use itera@eding, i.e., build several proof attempts
in parallel. However, even if loop elimination does not allfor changing the proof search strategy, but it
still prunes the search space significantly. In DLog, loamiglation eliminates the only remaining source
of infinite proofs. Accordingly, DLog always terminates amks the standard depth-first search strategy
of Prolog, which gives much better performance than iteeadieepening.

4.2 Loop Elimination

In this section we present the optimization heuriéhiop eliminationfor both PTTP and DLog. In the
literature, loop elimination is often referred toidentical ancestor pruningsee for example [51] or [20].
Although both PTTP and DLog employ this optimisation, thieas not yet been any rigorous proof of its
soundness. In Subsection 4.2.1 we descpito®f treesthat can be used to represent Prolog execution.
Afterwards, Subsection 4.2.2 contains the proof of soussine

Definition 12 (Loop elimination) Let P be a Prolog program and G a Prolog goal. Executing G wk.t
usingloop eliminationmeans the Prolog execution of G extended in the following waystop the given
execution branch with a failure whenever we encounter a gbo#iat is identical to an open subgoal (that
we started, but have not yet finished proving). Two goals deatical only if they are syntactically the
same.

Loop elimination is very intuitive. If, for example, we watd prove goalG and at some point we
realise that this involves proving the same gBathen there is no point in going further, because 1) either
we fall in an infinite loop and obtain no proof or 2) we manag@tove the second occurrence @fin
some other way that can be directly used to prove the firstroecce of the goaB. This is the standard
justification that we find in the literature. For example [88}s:

Identical ancestor pruning (IAP) is a powerful pruning histiz in a model elimination search.
Imagine, in the course of expanding a ME proof space for aquéat goal P, that one were to
encounter that same goal P again. One of two situations nolcst h
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1. There are no proofs of P from this database (because intitmgically follow).

2. Whether or not there is a proof using this second occueren®, there must be another
proof of the original P not using it. Also, the different pfacurs at a shallower depth.

This is true because the second occurrence must event@aflydven somehow, so this re-
cursion must bottom out. And then, by whatever proof thisoedooccurrence succeeds, an
analogous proof path must exist below the first occurrenée bf either case, it is justifiable
to prune the space below the second occurrence of P.

Things get complicated, however, due to ancestor resolulibe twoG goals have different ancestor lists
and it can be the case that we only manage to prove the s€tdné to the ancestors that the fi&stoes
not have. As it will turn out in the rest of this section, while can indeed construct a proof of the fi&st
from that of the second, this proof might have to be very déifé from the original one.

4.2.1 Proof Trees

In this subsection we introdugeoof trees that are used to represent Prolog execution. We will onfy co
sider trees in the context of a PTTP like Prolog program, npoeeisely we will assume that the program
contains all contrapositives. Each tree node has a unigue mad is labelled with a goalNane: Goal )
refers to a node calledanme and labelled with goaBoal . The root is labelled with the initial goal to be
proved. Suppose the current g@ais unified with the head of rule

G:— By,B,...,By.

In this case, the node labell€iwill have k children, each labelle®;,Bs,,..., By, respectively. In each
inference step, the validity of a goal is reduced to the Wglidf a set of goals in the children. After a
successful execution, we obtain a proof tree such that efith leaves can be considered true without
further proof. We formalise this in the following definitisn

Definition 13 (atomic proof tree) An atomic proof treeconsists of a root node labelledsAwith children
labelled B o, By, ..., Bno, whereo is a variable substitution. We say that the atomic proof tsaglid if
the corresponding Prolog program contains a rule

A:— By,B,,...,By.

A valid atomic proof tree can be seen as an instance of a ruf@oAf treeis built from atomic proof trees
by matching nodes of identical labels. A proof tregasid if all constituting atomic proof trees are valid.

Remark 1. The labels of proof trees are atomic predicates that canaontariables. Note that labels
p(X) and pY) are not identical.

Definition 14 (complete node)In a valid proof tree, a node labelled A is calledmpleteif either 1) A
can be unified with the head of a bodiless Prolog rule or 2) théenhas an ancestor labellegh (ancestor
resolution). A valid proof tree is complete if all its leafieaomplete.

To each successful Prolog execution that employs ancesgolution, we can assign a complete proof
treel In fact, the execution mechanism can be seen as a searchspabe of complete proof trees. While
standard Prolog will not necessarily traverse the wholeesgbecause it might fall into an infinite loop),
both PTTP and DLog are built so that they can enumerate alptetmproof trees. This means that it is
enough to show the existence of a complete proof tree to gtesra successful PTTP or DLog execution.

Definition 15 (flipping along a child) For an arbitrary child b of an atomic proof tree, the transfioation
flipping over along thé child is defined as follows: the root node is switched with its chiland their
labels are negated. The rest of the tree is unaltered. Thissfiormation is illustrated in Figure 4.1.

1n the Logic Programming community, it is customary to reeghe name proof tree only for complete proof trees. We ihice
the notion of completeness because we will have to refeetstthat are not fully expanded.
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Figure 4.1: Flipping over along thechild

Lemma 1. For every valid atomic proof tree, the atomic tree obtaindigiaflipping over along a child
results in a valid atomic proof tree.

Proof. Let T be an atomic proof tree with the root node labekedand children labelleBo,C; 0, ... ,CyOo.
T is an instance of the Prolog clause
A:— B,Cq,...,Ce

which is a contrapositive of the first-order cladse—-BVv —-C; V- - - VCx. Since the Prolog program contains
all contrapositives of this clause, we also have

not_B:— mnot_A,Cy,...,Ck.
an instance of which corresponds to the flipped over verdidn o O

Note that flipping over allows us to move between contrapesitof the same first-order clause.

Definition 16 (flipping along a branch)The transformatiorlipping over along the, a branchis defined
on proof trees as follows: let F be a proof tree, with a ndde A) which has a leaf descendaf@: —A).
The nodes on the path from a&oare a= xg,X1,...,%Xn_1,% = a. To this tree we assign a tre€ which
differs from F only in the subtree rooted at a. This subtreetams a branch y = x,,y1 = Xn—1,...,Yi =
Xn—i,---,Yn = X0, and the label of each of these nodes is negated. Furtherreaah yin F’ has the same
siblings as x_i;1 in F. The subtrees under the siblings are left unaltereds THainsformation is illustrated
in Figure 4.2.

)
) () () ()

O © ONO

Figure 4.2: Flipping over along th@,a) branch

Lemma 2. If we have a complete proof tree T that contains nd@es?A) and (a: —A) such tha@&is a leaf
descendant of a, then the tree obtained after flipping T atbega,a) branch is a valid proof tree.

Proof. The new downward path — a consists of atomic trees that are the flipped over versioriheof
atomic trees of the initial upward path— a. For example, the atomic tree on the left side of Figure 4.2
that consists of parent nodg and childrera’and f turns into a flipped atomic tree with parent nadand
childrenxy andf. We know from Lemma 1 that flipping over a valid atomic proeftryields another valid
atomic proof tree, hence the whole new proof tree is valid. O

a7



Remark 2. Although we obtained a valid proof tree after flipping ovée fproof tree is not necessarily
complete. This is because some ancestor lists change andhea that previously terminated in ancestor
resolution might have to be expanded further (because th@ned ancestor disappeared).

4.2.2 The Soundness of Loop Elimination

In this subsection we show that for every complete proof theg contains loops, one can construct a
complete proof tree that is loop free.

Definition 17 (loop in proof tree) A complete proof tree is said to contain a loop L if it contadngair of
nodes(p1 : P), (p2 : P), for some label P, such thab s a descendant ofipNode p is called thetop node
and node p thebottom nodeof the loop L. We define thdepthof L to be the distance ofygrom the root.

Definition 18 (bad node) A node n: N is said to beeligible for ancestor resolutioifiit has an ancestor
with label=N. If an inner node is eligible for ancestor resolution, theis called abad node

Bad nodes are called bad, because they are unnecessaslhyde There is no need to provide a proof
tree under a bad node, since it is complete even if it remalieafa

Lemma 3. If we have a complete proof tree that contains a bad node m the tree obtained after
removing the subtree under n yields a complete proof treehiclwn is not bad any more.

Proof. Removing the subtree undemakesn a leaf node. Howeven is complete due to ancestor res-
olution. The rest of the leaves are unaltered, so they reiw@implete. Hence, the new proof tree is
complete. O

Definition 19 (loop-depth) We define théoop-depthof a tree T with a pair of integer6-D,C), where D

is the minimum depth of all loops in T and C is the number of adklat are bottom nodes of some loop of
depth D. If the tree contains no loops, then its loop-depth+i®,0). Loop-depths are comparable using
lexicographic ordering, i.e., loop-dept, B) is less than loop-deptfC, D) if and only if either A< C or
else A=C and B< D.

Lemma 4. Let F be a complete proof tree with loop-depth LD that corgaihleast one loop. It is possible
to find another complete proof tre€ for the same goal (i.e., with the same label in the root) shelt the
loop-depth of Fis strictly less than LD.

Proof sketch.We pick a loop of greatest depth and try to get rid of it.
1. First, we eliminate bad nodes from the proof tree. If thimi@ates the loop, we are ready.

2. Next, we try to replace the proof at the top of the root whith proof at the bottom of the loop. If this
results in a valid proof tree, then we are again ready.

3. If the proof at the bottom cannot be moved to the top (duetestor resolution), then we flip the
tree along the branch that connects the two ends of the lo@oMa4in a valid proof tree which,
however, is not necessarily complete.

4. If a nodea becomes incomplete after flipping, this is because it losearestor that previously
allowed for ancestor resolution. In this case, however, lesthat there is another nothen the
tree with the same label, and the proof tree rootdulaetn be copied underto make it complete.

5. It can be shown that finitely many subtree copying resnleséomplete proof tree whose loop-depth
is greater than that of the initial tree.

O
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Proof. The loop-depth of is LD=(—D,C). This means that there is at least one loop of déptand
there are no loops with depth less tHanLet L be one such loop with top and bottom nodps : P) and

(p2 : P), respectively. First, we eliminate all bad nodes by remgyire subtrees rooted at the bad nodes.
According to Lemma 3, the result is still a complete prooétre

In case the elimination of the subtrees under bad nodesreltes loof, then the obtained complete
proof tree has loop-deptfi-D,Cy). In case there were no other loops of deptfin F thenD, > D.
Otherwise D, = D andC, = C — 1. In either cas¢é—D3,C;) < (—D,C), so our lemma is satisfied.

Otherwise, in the obtained tree, all nodes that are elidini@ncestor resolution are leaf nodes. The
ancestor list ofp; contains the ancestors pf plus the nodes on the path betwegnand p,. Let ANC
denote the set of nodes betwggnand p,.

In case none of the nodesANC play any role in the proof of, (i.e., they do not participate in ancestor
resolution), the proof op; can be directly replaced with that p$, eliminating loopL. This is illustrated in
Figure 4.3. We obtained a complete proof tFéeand one of the loops at minimum depth was eliminated.
The new loop-depth is less than the initial, so our lemmatisfgzd.

Figure 4.3: Replacing the proof gf with that of p,

The situation is more complicated when some nodesSNIC participate in ancestor resolution under
p2. Among these, leta: A) be the lowest one (i.e., the last one to enter the ancestpr 88mewhere
underp; there is a leafa: —A) that is complete due to ancestor resolution. Let us flip évafong the
branch(a,a). In the flipped over branch the nodes betwaesmda will appear with negated labels and
in inverse order. Afterwards, we once more eliminate all bades by removing the subtrees under them.
Nodep; is on the path betweemanda, so its label will turn to-P, which makesp; eligible for ancestor
resolution. Hence, when we eliminate badness, we elimithegesubtree undep,. As a result, loof
disappears. An example of this is shown in Figure 4.4. We kilmawflipping a complete proof tree results
in a valid proof tree, but it is not necessarily complete auese some goals that previously succeeded with
ancestor resolution might loose the required ancestoR@fark 2). This is the case when there is a node
(b : B) undera and somewhere underneath there is a {baf-B). Nodeb has to be on the path between
a anda otherwiseb will continue to be an ancestor bfand their labels will not change. There are two
possibilities:

1. Asitis illustrated in Figure 4.9 lies betweera and pz. Then,b cannot appear undgy, because
awas chosen to be the lowest node participating in ancestotutgon underp,. Hence b appears
underb, but not undep,. After flipping, bothb andb will appear undepy, so they will be eliminated
when we eliminate the badnessmf Hence, this case will not yield any incomplete leaves.

2. We illustrate the second case, namely whénhunderp, in Figure 4.6. We will treat all such nodes
together, i.e., letby : B1), (b2 : Bp),... (bx : Bx) be nodes on the path betweganda (nodesh,c on
Figure 4.6), such that eadi) has at least one leaf descend@nt: —B;). The nodes are ordered so
thatb; is the closest tg, andby is the farthest. After flipping over, the labels of these reoddl be
negated, i.e., turn teB;, respectively, and they will appear on the branch leadingtm inverted
order, i.e. bk will be the topmost, whildy; the lowest.
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Figure 4.4: Flipping over along th@,a) branch, then bad node elimination

N

) O = C
) © ) ©
O O O © O

ONO.
()

Figure 4.5: Ancestor resolution eliminates botandb
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Let us consideb;. Due to flipping over, it will lose all its previous descentkarits new descendants
will be its previous ancestors on the path betwpgmandb; along with their descendants towards
other branches. We claim that none of the new descendaltsaain have lost an ancestor which
previously allowed for ancestor resolution, i.e., none barone ofb;. This is because the lost
ancestor would have been abdye howeverb; was chosen to be the topmost one. Consequently,
the subtree unddr; after flipping has no incomplete leaves. This subtree iffits@ot necessarily
complete, because the ancestora ofight be needed for some ancestor resolution steps. Wesxpre
this by saying that the subtree undaris complete in the context of the ancestorsaofin the
following, we will always assume the same context (the atoce®fa) and will omit specifying it
whenever it leads to no misunderstanding. The labéha$ —-B1, so we have a complete proof for
-Bs (again in the context of the ancestorsadf This means that we can copy the subtree utbger
to any node(by : —Bs), thus compensating such nodes for the lost ancestor. Natevihneed to
rename the copied nodes to ensure that each node has a uaigee n

We next turn tob,. Through analogous reasoning we can see that the new leadriiemnts ob,
are either complete or else are incomplete because thepnoahcestor labelledB;. However,
by copying the subtree undbi, we have already turned such leaves into complete treesceilen
we have a complete proof tree under(in the context ofa), proving—By, which we copy to any
incomplete leafby : —=B;) (again assigning new names to the newly created nodes).

We continue the process. In tfit€ step, we have a complete proof tree unbewhich we copy

to any leaf(by : —B;). By the end of the" step, we obtain a complete proof tree. Note that we
make exactly one copying for each ldifthat lost its completeness after flipping over, so copying
terminates.

We now obtained a new proof tré€. Let us show thaE’ has the properties claimed by the lemma
being proved. Flipping over turns the labelmffrom P to —P, which makes loojh. disappear. New
loops can arise (some nodes were negated), however, nomychdn start above or pi. We show
this by contradiction. Suppose a nogle : N) above or afp; obtains a descendaf, : N) after
flipping. The labels of the nodes und®rin the new tree are either the same or the negated labels
that appeared undei before flipping. So, if a new loop appeared, it was either bisedhe bottom
node of an already existing lodp was copied or because the label of a descendant,afamely

of np, changed from-N to N. In the first case, the depth of lodp is smaller than the depth of loop
L, which is impossible becausewas chosen to be a loop of minimum depth (cf. Definition 19. of
loop-depth). In the second case, before flipping orgrvas eligible for ancestor resolution. Since
we eliminated all bad nodes; was a leaf. However, flipping over does not negate the laliééand
nodes, so we obtained a contradiction.

We conclude that the possibly arising loops are all of gredépth than the eliminated loop. Hence, the
number of loops of deptD is reduced by one, i.e., the loop-depth of the new tree istlstiess than that
of the original tree. O

Theorem 8. For every complete proof tree containing loops there is apglete proof tree that is loop free.

Proof. Using the transformation described in Lemma 4, we can creatzies of proof trees of the same

goal such that the loop-depth is always decreasing. Thendemmmponent of the loop-depth is a positive
integer (the number of loops at minimum depth) which canmatréase infinitely, so eventually the first

component will decrease as well. This means that the miniheymh of the loops increases, i.e. loops get
deeper and deeper. There are two possibilities:

1. Eventually, we manage to eliminate each loop after a finitaber of iterations. The resulting proof
tree satisfies our theorem.

2. The elimination never terminates. Since the loops arengefarther from the root, it follows that
the part of the proof tree that is loop free grows beyond amytliSuppose the initial tree contains
n distinct labels in its nodes. The transformation stepsliresflipping over, copying subtrees and
eliminating nodes, each of which either preserves nodddaiyeintroduces the negation of some
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label to a node. Hence, there can be at moddi&tinct labels, i.e., any loop free path from the root
node can be at mosh2ong. This contradicts the assumption that the loop freegfdhe tree grows
beyond any limit. Hence, all loops have to disappear aftéefinmany iterations.

O

4.3 Summary

Prolog based inference systems like PTTP and DLog can betaggdve a query goal. We have shown
is Section 4.2 that these systems need not explore prodf theé contain loops, because in case there is
a complete proof tree, there is one without loops (TheorenTBis allows for reducing the search space,
making both systems faster. Besides, loop eliminationfficgnt to make the DLog reasoner terminating,

thus allowing one to replace iterative deepening search dépth-first search, which further increases
performance.
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Chapter 5

The DLog Description Logic Reasoner

The DLog system [38] is a DL data reasoner, written in thed®ytdnguage, which implements a two-phase
reasoning algorithm based on first-order resolution, asdpiports the® I Q language. As described in
Chapter 3, the input knowledge base is first transformedfimotion-free clauses of first-order logic. The
clauses obtained from the TBox after the first phase are wdedild a Prolog program. It is the execution
of this program — run with an adequate query — that perforras#dtond phase, i.e., the data reasoning.
The second phase is focused in that it starts out from theycaret only accesses parts of the ABox that
are relevant to answering the query. The relevant part exohéed by the clauses derived from the TBox.
Hence, the performance of DLog is not affected by the presehirelevant data. Furthermore, the ABox
can be accessed through direct database queries and nébdstayed in memory. To our best knowledge,
DLog is the only DL reasoner which does not need to scan thrthugwhole ABox. Thanks to this, DLog
can be used to reason over really large amounts of data s$toegternal databases. The last stable version
of DLog that supports thé # 1 Q language is available att p: // dl og- r easoner . sour cef or ge. net .

In Section 5.1 we give an overview of the architecture of tretem. Afterwards, Section 5.2 discusses
more in depth the implementation of the TBox saturation n@duwhich performs the first phase of rea-
soning. In Section 5.3 we collect the most important tasksstill need to be done to make DLog usable
in practical applications. Finally, Section 5.4 summagisar work in the DLog project.

5.1 Architecture of the DLog System

Figure 5.1 gives an overview of DLog. The system can be uséid &® a server and as a standalone
application. It communicates through the DIG [7] interfaghich is a standardised, XML based interface
for Description Logic Reasoners. The input has three p#ressABox which can be potentially huge, the
TBox which is typically much smaller and the user queriese ABox is left unmodified and is asserted
into the Prolog modulabox. The ABox can also be provided as a database, which is cifociadally large
data sets. The content of the TBox is first transformed by B@XTsaturation module into a set of function
free clauses, which are next compiled into Prolog clausiegj@sspecialised PTTP transformation, and are
asserted into moduléhox. The last part of the input contains the user queries. Thesstance retrieval
queries or their conjunctions. The generated Prolog progsarun with the provided query as argument
and returns all solutions through a backtracking search.

The first reasoning phase is independent from the ABox and fte query. Hence, as long as the
TBox is unchanged, it is sufficient to perform the first phasky @nce, as a preprocessing step. For this
reason, its speed is not critical as it does not affect theorese time of the system when answering queries.

This dissertation only deals with the first reasoning phpeegprmed by the TBox saturation module.
For a thorough description of the whole DLog system and itig#ar the Prolog code generation module,
see [38].
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Figure 5.1: Architecture of the DLog system
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5.2 Terminology Reasoning — the First Phase

The TBox saturation module takes the TBox part of the inpdttaansforms it to first-order clauses of the
following types:

_'R(Xa y) \ S(yv X) (c11)
jR(xa y) v S(Xa y) (c12)
P(x) (c13)

Pl(x)V\/(ﬁR(Xv)’i))VvPZ(Yi)V\/(Yi =Yj) (c14)
| | 1,]

The transformation proceeds as described in Section 3.5aation 3.3 and this constitutes the first
phase of reasoning. The output clauses have a rather sigmglexswhich allows for using a highly opti-
mised variant of PTTP in the subsequent data reasoningewhese clauses and the ABox are transformed
into a Prolog program. The most important benefit of the TBaustion is that there are no function sym-
bols left in the knowledge base.

The first phase is implemented in the Prolog predieateons_t o_cl auses/ 2, which takes aR 1Q
knowledge base and generates clauses of types (c11) — fofel)gh a series of transformation steps, as
shown in Figure 5.2.

First, we eliminate from the TBox the complex role hieraeshias described in Section 3.3 and obtain
aset of2LC#H1Q axioms. The predicate call

transitive:riqg_to_al chiq(+Rl QAxi ons, - RBox, - ALCH QGCl s)

results in a set ol LCH IQ GCls and an RBox that contains neither transitivity axiomsgomplex role
inclusion axioms.
This is followed by internalisation and normalisation,lgliag a set of2£LCH I Q concepts.

dl _to fol:axi onsToNNFConcept s(+ALCHI QGCl s, - NNF)

The semantics of these concepts is that all individuals oheampretation have to satisfy all the concepts
in order for the interpretation to be a model of the TBox.

Afterwards, we eliminate the nesting of composite concigpbseach other, by introducing new concept
names for embedded concepts.

dl _to_fol:defNornfFor ns( +NNF, - Def s)

This is called structural transformation.
Next, we translate our concepts into first-order logic:

dl _to fol:toFOLLi st (+Defs,-FOL1)
dl _to fol:toFQLLi st (+RBox, - FOL2)
append(+FQOL1, +FOL2, - FQL)
The first-order formulae are turned into first-order clauses
dl _to fol:list_cls(+FQ, - FOLO auses)

We obtain a set of LCH IQ clauses (see Figure 2.4), i.e., they are of type (c1) — (c7).
This is followed by the real reasoning phase: the saturatiche 2L C# 1Q clauses by the modified
calculus presented in Subsection 3.2.2.

sat urat e: sat ur at e(+FOLC auses, - Sat ur at ed)

After saturation, no more inference steps can be performiedjclauses containing function symbols,
hence they can be eliminated.

el inminate_functions(+Saturated, - FunFree)

The remaining clauses are passed over to the Prolog transiadule which builds a Prolog program
from them based on PTTP.
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Figure 5.2: The TBox saturation module
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5.2.1 Data Representation

The input of the TBox reasoner isiaI Q terminology, represented as a Prolog[i&Cls Hbox Trbox
of three elementsGClsis a list of concept inclusion axioms of the foimpl i es(Cy, C) , whereCy,Cp
are conceptsHboxis a list of complex role inclusion axioms of the fosubr ol e( Rs R), whereRsis
a list of roles andR is a role. Trboxis the list of transitive roles. The Prolog representationotes and
concepts is defined by the functidhas follows:

DL expression Prolog Representation
RP(Re NR) = arole(R)

(R)P = inv(RP)
CP(CeNg) = aconcept (C)

TP = top

1P = bottom

(-C)P = not(CP)

(CnD)P = and([CP,DP)
(CUD)P = or([CP,D7)
(VRC)P = all(RP,CP)
(IRC)P = sonme(RP,CP)

(< NRC)P = atleast(N,RP, CP)
(> NRC)P = atnost(N, RP,CP)

For example, the DL axioni> 2hasChildClever) C (RichmHappy) is represented with the following
Prolog term:

inplies( atnost(2,arole(hasChild),aconcept(clever)),
and([aconcept (rich), aconcept (happy)]) )

After a series of transformation steps the TBox is trandlatéo a set of first-order clauses, that are
represented as lists of literals. We extend-thieinction to describe how terms and literals are represented

FOL expression Prolog Representation
FOL variable = Prolog variable
(f(X)P = fun(f, XP, M)

(C(X))P = concept (CP, XP)
(R(X,Y))P = role(R XP,YP)

(=P)P = not (PP)

The third argument of a functional term is used to indicatbéfterm is marked (see Subsection 2.1.1). If
the term is marked, its value is the temar ked, otherwise it is an uninstantiated variable. As an example,
we give the Prolog representation of the FOL cla@6e v —R(x, f(X)) V S([g(X)], X):

[ concept (aconcept(c), X),
not (rol e(arole(r), X, fun(f, X ))),
rol e(arol e(s), fun(g, X, marked), X) ]

5.2.2 Saturation

The key part of the TBox saturation module is saturatiorifitadnich performs all possible inference steps
on the input clause set. A naive first implementation coultbb@on-deterministically select two clauses,
try to resolve them and if it succeeds, then add the concalusidhe clause set. This is very inefficient,

because (1) the same inference step might be performed hemence, (2) most of the time the selected
clauses cannot together be premises of an inference and{3jrd to determine when to stop, i.e., when
the clause set is saturated.
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To make saturation more efficient, we separate the clausesio sets: the clause set SAT is saturated,
i.e., any inference with premises from SAT yields a condnghat is either in SAT or is implied by some
clause in SAT. The rest of the clauses constitute the set UNB#ially, UNSAT contains all clauses and
SAT is empty. We gradually add clauses from UNSAT to SAT amehgis collect all conclusions that can
be drawn from the newly added clause and some clause alrec@ii. These conclusions are added to
UNSAT. Saturation terminates when UNSAT becomes empty.

Before adding a clause to SAT, it is very important to perfoedundancy checking. If one clause is
a consequence of another, then the first is said to be reduaddmrtan be eliminated. For example, if we
have clause8; = P(x) andC; = P(x) vV Q(x), thenC; can be eliminated. Each claus¢hat is newly added
to SAT has to be compared with every single clause alreadyin [ C turns out to be redundant, than
it should not be added. If, on the other hand, the presenCentdikes some other clauses redundant, then
they should be eliminated from SAT.

Saturation, extended with redundancy checking is sumetasAlgorithm 2.

Algorithm 2 Saturation of2LCH IQ clauses
SAT=0

UNSAT = Input clause set
DO

IF UNSAT = 0 THEN return SAT
ELSE LETC € UNSAT

removeC from UNSAT
IsRedundant = FALSE
FOREACHCGC; € SAT
IF Gy is redundant due t68 THEN removeC, from SAT
IF Cis redundant due t6, THEN IsRedundant = TRUE
IF IsRedundant = FALSE THEN
Let RSbe the set oR such that there is a clau€e € SAT and an inference rule with
premisesC andC; and conclusiorR,, whereR, can be simplified into the logically
equivalenR
addC to SAT
addRsto UNSAT

5.2.3 Optimising saturation via indexing

Saturation can take a long time. The size of the sets SAT angATNtan grow exponential in the size of
the initial clause set. Each time we add a claOfeom UNSAT to SAT, we compare it with every clause
in SAT to see if they can participate together in an infereamue also to see if one is implied by the other.
Performance can increase greatly if we manage to narrow ttoeveet of clauses that are worth examining
for possible inferences wit@ and also to narrow down the set of clauses that have the jaitentakeC
redundant. We can achieve this through some index tables.

In our first implementation, SAT and UNSAT were stored in Bgplists. However, a Prolog list does
not allow for random access: if we want to find a particularmedat in the list, we have to go through all
the preceding elements, so it takes linear time in the sitleeolist. Hence, we decided to use the dynamic
predicate facility of Prolog for storing these sets. Ea@usEC is associated with a unique identifié ¢
and we use the following Prolog facts:

For each claus€ € UNSAT, we assert| ause: cl ause0(ID¢,C)

For each clausB € SAT, we assert| ause: cl ausel(IDp,D)
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Most Prolog implementations perform indexing on the funabtheir first argument, so if we have an
identifier ID, then we can find the corresponding clause in constant tieggrdless of the number of
clauses asserted.

When looking for resolvent clauses with some clads&e can use the maximal literal 6fto focus
our search. For example,d = AV B and literalA is greater than literaB, thenC can only be resolved
with a clause whose maximal literalisA (for a resolution step), or with a clause whose maximaldites
A = w (for a superposition step). Hence, we maintain an indexetattich allows us to look up the set of
clauses associated with a particular maximal literal. Tdiiée is implemented using the Prolog fact

clause:starts with(MaxLiteral, D)
The following Prolog code collects all clausgsfrom SAT whose maximal literal ik:

is_maximal literal(L,Cs):-
findall (C (
clause:starts with(L,1D),
cl ause: cl ausel(1D, Q)
), Cs
).

The time that this predicate uses is linear in the sizZ8obut it is independent from the size of SAT.
Another aspect of saturation that can be a serious perfareiaottleneck is redundancy checking. In
fact, it is a well known fact that modern theorem provers siyaost of their reasoning time on redundancy
checking. In return, this allows for avoiding repeated iafeces and falling into infinite loops. Hence, any
speedup in redundancy checking manifests directly in sge#tdthe whole reasoning process.
A clauseC is made redundant by some clau3ef there is a substitutiow such that the literals in
Do are a subset of the literals @©. Consequently, when we want to check if cla@sé redundant, it
is enough to focus on clauses whose predicates are a subsett af C. We maintain a lookup table
(implemented as the Prolog fadtause: i s_cont ai ned( Pred, | D)) which associates with each predicate
the clauses that contain it and another table which assscigith each clause the set of its predicates
(cl ause: al | _predicates(ID,Preds)). We first determine the set of predica@Bredsof C, collect the
clauses that contain some of these predicates and thematarthe ones that contain other predicates than
those ofC. The redundancy & is checked only with respect to the remaining clauses. Bhimplemented
in the following predicate:

narrower _predicate_set (CPreds, Ds): -
findal I (ID, (

menber (P, CPreds),

clause: is_contained(P, D)

), IDs
),
sort(1Ds, |Ds2),
findall (D, (

menber (1D, | Ds2),
clause: al | _predicates(ID, DPreds),
ord_subset ( DPreds, CPreds),
cl ause: cl ausel(ID, D)
), Ds
)

On the other hand, if we want to see what clauses are madedaduloyC, then it is enough to check
those clauses whose predicate set is a superset of tGatte#hce we collect all the clauses that contain all
the predicates dt:

broader predicate set([First|Preds],|DDs):-
findall (1D, (
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clause:is_contained(First,1D),
( foreach(P, Preds), paran(lD)
do is_contained_nochoi ce(P, | D)
)
), IDs
),
( foreach(I1D2,1Ds), foreach(1D2-D,1DDs) do clause:clausel(1D2,D) ).
broader _predicate set([],IDDs):- !, % The enpty clause makes
% everyt hi ng redundant
findall (1D-D, clause:clausel(ID D), 1DDs).

i s_contai ned_nochoice(P, 1D): -
clause:is_contained(P,1D), !.

The optimisations described in this paragraph increasedvhbrall speed of TBox saturation with two
orders of magnitude.

5.3 Future Work

One of the most urgent tasks ahead of us is extending thensysterface. Currently, we only support the
DIG ([7]) format for the input knowledge base and query. Weulddike to provide the system with an
OWL interface (see [27] and [21]). Moreover, we have alremylemented the database support ([32])
which enables really large scale reasoning, however, ithoayet been incorporated into the reasoner.
Once these tasks are done, we need to do more testing to evBluag with respect to other DL reasoners
such as RacerPro, Pellet, Hermit, KAON2.

On the theoretical side, we are curious to see how far we caméxhe expressivity of DLog beyond
R IQ, approximating, as much as possibl® OIQ (D), the language behind OWL2 ([21]).

5.4 Summary

The DLog program is in experimental stage. We implementethalreasoning algorithms and we have
prototype implementations for various further featureshsas support for ABoxes stored in database. In
the near future we plan to incorporate all our results in agear that proves useful for the DL community.
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Chapter 6

Introducing the Q Language and
Constraint Logic Programming

In the following, we present some background knowledgettietiser my find useful in the context of type
inference for the Q functional programming language, irtipalar for understanding Chapters 7 and 8. In
Section 6.1 we describe the Q functional programming lagguwehich was the target language for which
we developed a type analysis tool. In Section 6.2 we briefs@nt the constraint satisfaction problem.
In Chapter 7, we will rephrase the task of type inference asnastcaint satisfaction problem. Finally, in
Section 6.3 we present the Constraint Handling Rules laggguahich we used for implementing our type
analyser.

6.1 The Q Programming Language

Q is a highly efficient vector processing functional langetaghich is well suited to performing complex
calculations quickly on large volumes of data. Consegygmiimerous investment banks (Morgan Stanley,
Goldman Sachs, Deutsche Bank, Zurich Financial Group), ese this language for storing and analysing
financial time series [35]. The Q language first appeared @82Md is now (July 2012) so popular, that it
is ranked among the top 50 programming languages by the TIRBEramming Community [53].

Types Q is a strongly typed, dynamically checked language. Thiamaghat while each variable, at any
point of time, is associated with a well defined type, the tgpa variable is not declared explicitly, but
stored along its value during execution. The most impotiggs are as follows:

e Atomic typesin Q correspond to those in SQL with some additional date anel telated types that
facilitate time series calculations. Q has the followingat@mic typesbool ean, byt e, short,int,
| ong,real,float,char,synbol ,date,datetime, mnute,second,tine,timespan,tinmestanp.

e Lists are built from Q expressions of arbitrary types, €.4.2. 2; * abc) is a list comprising two
numbers and a symbol. However, if a variable is initialise@tlist of atomic values of the same
type, then certain operations, e.g. updating a certainefémrf the list, insist on keeping the list
homogeneous.

¢ Dictionaries are a generalisation of lists and provide the foundatiortdbtes. A dictionary is a
mapping that is given by exhaustively enumerating all dormange pairs. For examplg,a' b !
1 2) is a dictionary that maps symbdasb to integerdl, 2, respectively.

e Tablesare lists of special dictionaries callegcords, that correspond to SQL records.

e Functions correspond to mathematical mappings specified by an afgorit
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Main Language Constructs Q being a functional language, functions form the basis eflimguage.
A function is composed of an optional parameter list and aylmminprising a sequence of expressions to
be evaluated. Function application is the process of etialythe sequence of expressions obtained after
substituting actual arguments for formal parameters.

As an example, consider the expression

f: {[x] $[x>0;sqrt x;0]}

which defines a function of a single argumenteturning./x, if x > 0, and 0 otherwise. Note that the
formal parameter specificatigrx] can be omitted from the above function, as Q assumgsandz to
be implicit formal parameters. If a return value is specifitrte function evaluates to its return value,
otherwise it has no return value.

Input and return values of functions can also be functioasekample, a special group of functions,
calledadverbgake functions and return a modified version of the input. Whele Q program can be seen
as a series of complex function evaluation steps.

Some built-in functions (dominantly mathematical funogpwith one or two arguments have a special
behaviour calledtem-wise extensionNormally, the built-in functions take atomic arguments aaturn
an atomic result of some numerical calculation. Howevearséhfunctions extend to list arguments item-
wise. If a unary function is given a list argument, the reslthe list of results obtained by evaluating
each argument element. A binary function with an atom andtafgument evaluates the atom with each
list element. When both arguments are lists, the functi@rates pair-wise on elements in corresponding
positions. Item-wise extension applies recursively irecafsdeeper lists, e.§(1;2); (3;4)) + (0.1,

0.2) =((1.1;2.1); (3.2;4.2))

Although it is a functional language, Q also has imperatdaddres, such as multiple assignment vari-
ables, loops, etc.

Q is often used for manipulating data stored in tables. Tbeggthe language contains a sublanguage
called Q-SQL, which extends the functionality of SQL, wipleserving a very similar syntax.

Besides expressions to be evaluated, a Q program can csentesiledcommandsCommands control
aspects of the Q environment. Among many other tasks, theyesponsible for changing the current
context (namespace), performing various O/S level ogmratioading a file, etc.

Principles of evaluation In Q, expressions are always parsed from right to left. Fangxe, the evalua-
tion of the expressioa: 2* 3+4 begins with adding to 3, then the result is multiplied b¥ and finally, the
obtained value is assigned to variahleThere is no operator precedence, one needs to use paesithes
change the built-in right-to-left evaluation order.

Flexibility Q is an extremely permissive language: for example, it iswald to divide by zero and
built-in functions accept extreme types without runtimeoer This property of the language significantly
increases the chance of program errors that are very diffaeixplore once the program evaluation fails.
Overcoming this difficulty by developing debugging tools @is likely to greatly enhance the usability of
the language.

Type restrictions in Q The program code environment can impose various kinds tfaesns on types
of expressions. In certain contexts, only one type is althwieor example, in the do-loago|[ n; x*: 2] ,
the first argument specifies how many tinxelsas to be multiplied bg and it is required to be an integer.
In other cases we expect a polymorphic type. If, for examfulectionf takes arbitrary functions for
argument, then its argument has to be of type- > B (a function taking an argument of typeand
returning a value of typB), whereA andB are arbitrary types. In the most general case, there isrictast
involving the types of several expressions. For instancdhé expressiom : y + z, the type ofx
depends on those gfandz. A type analyser for Q has to use a framework that allows fanfdating all
type restrictions that can appear in the program.
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6.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) [24] can be desdibith a triple(X,D,C), where
e X ={xa,...,X} is a series of variables,
e D={D,...,Dn} is a series of finite sets called domains,
e variablex; can only take values from domal,

e C={cy,...,C} is a series of constraints, i.e., atomic relations whoseragnts are variables from
X

A solution to a CSP is an assignment to eack X a domain elemeny; € D;, such that all constraints
c € C are satisfied.

A valued; of a variablex; of a constraint is superfluousn case there is no assignment to the rest
of the variables ot along withx; = d; that satisfies constraist Removing superfluous values from the
corresponding domains yields an equivalent CSP.

There are two mechanisms that lead to a solution of a CSR, Easstraints constantly monitor the
domains of their variables and remove superfluous valuerigie in case constraints fail to reduce some
domain to a single value, we apply labeling: we choose abkri@aand split its domain into two (or more)
parts, creating a choice point where each branch correspgordreduced domain. Through a backtracking
search we explore the branches. During labeling, cons¢ream wake up as the domains of their variables
change and can further eliminate superfluous values. Ina&asemain becomes empty, we roll back to
the last choice point. By the end of labeling, either we findngle value for each variable such that all
constraints are satisfied, or else we conclude that the C@#satisfiable.

6.3 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) is a language embeddediihimst language. Here we only give a brief
introduction, a more detailed tutorial can be found in [4V¥lost Prolog implementations contain a CHR
extension, and CHR code is translated into Prolog code. drfdhowing, we will as assume the host
language to be Prolog.

CHR provides a very flexible tool, because arbitrary comstsacan be formulated. However, there is
no built-in constraint reasoning, it has to be provided by phogrammer in the form of rewrite rules. A
constraint can be any Prolog term except for varidbke CHR program consists of a sequence of rules,
that are simple if-then rules. Program execution is as\allo

1. There is a&onstraint storevhere constraints are accumulated. A constraint can appsarhere in
a Prolog program, instead of a predicate call. The constgeits added to the store.

2. Each CHR rule monitors the constraint store and in cadaineronstraints are present, it can fire.
The firing of a rule can result in the addition or removal of garonstraints, along with the execution
of some Prolog calls.

3. If the constraints in the store allow for no rule to fire angren execution terminates and the user is
shown the final state of the constraint store.

We illustrate the use of CHR with a simple example taken frdifi.[ The program describes how to
mix colors. We will work with six different colorst ed, yel | ow, bl ue, green, purpl e, orange. These
colors are our constraints, declared at the beginning gftbgram:

.- chr_constraint red, yellow blue.
.- chr_constraint green, purple, orange.

1Though, it can contain variables as subexpressions.
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Of course, we know that three colors are sufficient for cnepthe other three. Red and blue yield
purple, red and yellow yield orange, blue and yellow yieldegr. These are expressed using the following
CHR rules:

red, blue <=> purple.
red, vyellow <=> orange.
bl ue, yellow <=> green.

The above rules are calleimplification rules because the constraints to the left of #w sign are
simplified into the constraints to the right. The left part@led theheadthat contains all the constraints
that need to be present in the store in order for the rule to Titee right part is thdodythat holds the
constraints to be added after firing. For example, the filstean fire if we have constraintgd andbl ue
in the store. After firingr ed andbl ue are removed anplr pl e is added to the store.

We have a mixing bucket, which corresponds to the consts&ine. What happens if we pugd in the
bucket?

?- red.
red

Nothing happens,ed remains in the bucket, because the rules require two cadiset If, however, we
also add yellow:

?- red, yellow.
orange

then the second rule fires and we obtain the color (consti@iange in the bucket (store).
Now, let us add the coldir own to our palette:

.- chr_constraint brown.
The particularity obr own is that it remain®r own, no matter what color is added to it.

brown, orange <=> brown.
brown, purple <=> brown.

Notice that the constrairir own appears both in the head and in the body. For such rules, there
simplified notation:

brown \ orange <=> true.
brown \ purple <=> true.

The head has two parts: constraints that remain after firmythose that are eliminated by the rule.
Simplification rules are special cases of this rule, wheeditist part was empty. It is also possible that the
second part is empty, i.e., nothing is removed from the stéve example, the colgrel | ow might contain
some constituent that leads to the corrosion of the mixirakétu This is called aropagation rule

yel  ow ==> corrosion

Rules where neither part of the head is empty can be seen asrii@Enation of simplification and propa-
gation rules. For this reason, they are calladpagation rules

Until now, we only had atomic constraints. There is no redsorthat, any Prolog term is allowed
(except for variables). Let us add a saturation value to olors. The arity of the constraints change,
which has to be reflected in the constraint declaration:

- chr_constraint red/1, yellow 1, blue/l.
- chr_constraint green/1, purple/l, orange/l.
.- chr_constraint brown/1.
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As we mix colors, the saturation values are added:

red(X), blue(Y) <=>2Zis X+Y, purple(2).
red(X), yellowmY) <=> Z is X+Y, orange(Z2).
blue(X), yellow(Y) <=> Z is X+Y, green(Z2).

What we see here is that arbitrary Prolog code can be inserted rule body. The code is executed, while
the constraints are added to the store.

?- yellow(3), blue(4).
green(7)

Let us suppose that colors have a maximum saturation vadyel & This means that if some color has
maximum saturation, then it does not mix with any other coldris is a precondition for firing the rule,
that can be placed in the so callgdard part:

red(X), blue(Y) <=> X<10, Y<10| Zis X+Y, purple(2).
red(X), vyellow(Y) <=> X< 10, Y< 10| Zis X+Y, orange(Z2).
blue(X), yellow(Y) <=> X< 10, Y< 10| Zis X+Y, green(Z2).

The guard can contain arbitrary Prolog calls with the onktrietion that it may not bind variables from
the head. If the guard succeeds, the rule can fire and the bacgcuted.

Formal syntax After this informal introduction, we now present the preciyntax for the tree kinds of
CHR rules:

e Simplification
Hi,... . H <=> G1,...,Gj|Bl,...,Bk.

e Propagation
Hi,...,Hj==> G1,...,Gj|Bl,...,Bk.

e SimpagatiorHy,...,H\Hi11,...,Hi <=> Gq,...G;j|By,...,Bxk.
The rules consist of the following parts:

e Head:Hs,...,Hi, whereHy, is a CHR constraint

e Guard:Gy,...,Gj, whereGy is a host constraift

e Body:By,...,Bg, whereBy is either a CHR or a host constraint

The semantics and execution of the rules:

e Simplification: In case the guard is true, the head and the boel equivalent. The constraints in
the store that match the head are removed and the body istegedinis might involve adding new
constraints to the store.

e Propagation: In case the guard is true, the head impliesatig. @he body is executed.

e Simpagation: In case the guard is true, the head is equivideghe body along with the first part
of the head. The constraints in the store that match the dguam of the head are removed and the
body is executed. Note that simpagation can be expressediagphfication, since the following
two rules are equivalerit:

Headl \ Head2 <=> Body
Headl, Head2 <=> Headl, Body.

2In the case of Prolog a host constraint can be arbitrary gaéslicall.
SHowever, the rules are different in terms of efficiency, eitfte constraints iHead1 are removed and then re-added in the second
rule.
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Example We demonstrate the usefulness of CHR through a small exgonpdgam. The program com-
putes the prime numbers in the rand@e .. N}, implementing the sieve of Eratosthenes:

.- chr_constraint primes/1, prine/1l.

prinmes(1l) <=> true.

primes(N) <=> ground(N), N>1 | Mis N1, primes(M, prine(N.
prime(X) \ prime(Y) <=> Y nmod X==0] true.

The code is remarkably short. Let us see what happens if wéhadebnstrainpri mes(10) to the store.
The second rule generates constrapmtsme( 1) for all | € {2...10}. Afterwards, the first rule removes
theprimes/ 1 constraint. Finally, the third rule fires as long as it find® teonstraintspri me( X) and
prime(Y) inthe store, such thatis divisible byX, in which case it eliminateg. Only the primes remain.

?- prinmes(10).
prime(2)
prime(3)
prime(5)
prime(7)
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Chapter 7

Type Inference for the Q Functional
Language

In this chapter we present our work on designing a type aisaigsl for the Q vector processing language,
see Section 6.1. This work was carried out in the framewoik obllaborative project between Budapest
University of Technology and Economics and Morgan StanlesiBess and Technology Centre, Budapest.
We emphasize two merits of our work: 1) we provide a type |lagguhat allows for adding type declara-
tions to Q programs, making the code better documented asier¢a maintain and 2) our tool checks the
type correctness of Q programs and detects type errorsahdtecinferred from the code before execution.

The type analysis tool has been developed in two phases.elfirh phase we built &/pe checker
the programmer was expected to provide type annotatioralifeariables (in the form of appropriate Q
comments) and our task was to verify the correctness of thetations. In the second phase we moved
from type checking towardype inferencewe devised an algorithm for inferring the possible typealbf
program expressions, without relying on user provided ipf@mation. Although we no longer require
type annotations, we allow them as they provide documemtaind improve maintenance and code reuse.

The main goal of the type analysis tool is to detect type ereard provide detailed error messages
explaining the reason of the inconsistency. Our tool cap Hetect program errors that would otherwise
stay unnoticed, thanks to which it has the potential to dyeathance program development.

We perform type inference using constraint logic prograngnthe initial task is mapped into a con-
straint satisfaction problem (CSP), which is solved ushrg@onstraint Handling Rules extension of Pro-
log [19], [48].

First, in Section 7.1, we give an overview of previous workiedn the field of static type analysis.
In Section 7.2, we present some restrictions that we had po$@ on the Q language in order to make
type analysis feasible. Afterwards, in Section 7.3 we pree type language that we designed in order
to enable Q programmers to add type annotations to theirgnogy The following two sections describe
the type analysis itself. Section 7.4 shows how to check @naros for type correctness in case there is a
ground type declaration for each variable. The algorithecu$sed in Section 7.5 lifts this restriction and
allows for inferring the possible types for each programrespion without any type information provided
by the user.

7.1 Work Related to Type Inference

Static analysis of computer programs is a very broad conaegtencompasses numerous techniques.
These techniques analyse the code in compile time and tryetdiqh the runtime behaviour. Often they
aim to optimise resource consumption through better memmaryagement, reuse of previously computed
results etc. Furthermore, they can be used to automatigadljict properties of the program that hold for
all possible execution paths.

Static type analysis aims to ensure that program execufilbnaver cause an error. This is not possible
with full generality as errors may depend on particular inyalues of the program, but a large class of

71



errors may be discovered based on the types of the involvaidesions and these types are often known
already in compile time. A type represents a set of exprassiad working with types as opposed to values
is a useful abstraction that enables the early discoveryamfynprogramming errors.

A successful method for static analysis and in particulatistype analysis iabstract interpretation
[12]. In order to demonstrate a certain property of the progrwe approximate the program with a
simpler, more abstract one that shares the property to bemgmted. This involves mapping concrete
values to abstract values (types) and mapping concret@atipres to abstract operations. The benefit of
the mapping is that instead of considering all the possikéz@tion branches of the initial program, we
only need to consider groups of execution branches, sutthihaarious executions within a group cannot
be distinguished on the abstract level. Abstract integpi@t can be very fine grained or very abstract,
depending on the complexity of the property to be demoresdrat

A very different approach to type analysis is to generatestramts from the program to ensure that it
is well typed. One of the first such algorithms used for tyderence is the Hindley-Milner type system
[25]. It associates the program to be analysed with a setudtéans which can be solved by unification. It
supports parametric polymorphism, i.e., allows for usirgetvariables. The type inferred by the algorithm
for an expression is guaranteed to be the most general josgile, theprincipal type Most type systems
for statically typed functional languages can be seen amseidins of the Hindley-Milner system. Some
of the best known examples are the ML family [44] and Hask&ll][ We also find several examples of
dynamically typed languages extended with a type systeswa{y for type checking and type inference.
These attempts aim to combine the safeness of static typithgthe flexibility of dynamic typing. [42]
describes a polymorphic type system for Prolog, which igmisally the same as that of ML. Here, the
only addition to the language are type declarations, arglguiaranteed that any well-typed program will
behave identically with or without type analysis.

A major limitation of the Hindley-Milner system is that itgaires disjoint types. In such a system
one cannot have, for examplenamericand anintegertype since they are not disjoint. Another approach
to type inference which does not suffer from this limitatisrbased on subtyping [10]. Here, the input
program is mapped into type constraints of the fadnC V whereU andV are types, as opposed to
Hindley-Milner systems where we obtain constraints of tirefU = V. Subtyping systems can be seen as
generalisations of Hindley-Milner systems. [40] presentgpe checker for Erlang, a dynamically typed
functional language, based on subtyping. Several of thetaimings of this system were addressed in
[36]. Their tool aims to automatically discover hidden typrmation, without requiring any alteration of
the code. The inferred types enhance program maintenadaease by helping programmers understand
code written long ago. They introduce the notion of succgsmg: in case of potential type errors (for
example, because a variable can have two possible typesgdexicution and one leads to abnormal
behaviour), they assume that the programmer knows what htswahey only reject programs where the
type error is certain, i.e., when there is no way the programran correctly.

The Q language is similar to Erlang in that they are both dyinalty typed functional languages. The
usage of the language naturally yields many constrainteefdarmU C V for typesU,V. Still, a type
system based on subtyping is not sufficient. Due to builtiimctions being highly overloaded (ad-hoc
polymorphism), we need tools to formulate and handle viesatd complex constraints. Constraint logic
programming seems ideal for this task.

[16] reports on using constraints in type checking and arfee for Prolog. They transform the input
logic program with type annotations into another logic peag over types, whose execution performs the
type checking. They give an elegant solution to the probléhaadling infinite variable domains by not
explicitly representing the domain on unconstrained Vdeis. The way variable domains are represented
in the Q type inference tool was motivated by their work. [8&8Fcribe a generic type inference system for
a generalisation of the Hindley-Milner approach using t@ists, and also report on an implementation
using Constraint Handling Rules. The CY7) [17] framework provides constraint logic reasoning over
sets. Our solution has many similarities to CKP(T) as types can be easily seen as sets of expressions.
The main difference is that we have to handle infinite sets.
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7.2 Necessary Restrictions of the Q Language for Type Reasaqg

Q is a very permissive language. In consultation with expattMorgan Stanley we decided to impose
some restrictions on the language supported by our toolrderao promote good coding practice and
make the type analysis more efficient.

With multiple assignment variables and dynamic typing, (@ves for setting a variable to a value
of type different from that of the current value. Howeveistts not the usual practice and it defies the
very goal of type checking. Hence we agreed that each vargiduld have a single type in a program,
otherwise the type analyser gives an error message.

Other restrictions concern the type of the built-in funeso Most built-in functions in Q are highly
overloaded, thanks to which some functions do not raisg®foo certain “strange” arguments. For exam-
ple, the built-in functior ast takes a list as argument and returns the last element ofgsheHowever,
this function works on atomic arguments as well: it simpliuras the input argument. To increase the
efficiency of the type reasoner we decided to ignore somdapaeanings of some built-in functions. For
example, we neglected this special meaning of ¢ function. Consequently, we infer that the argument
of thel ast function is a list, which is not necessarily true in general.

7.3 Extending Q with a Type Language

In order to allow the users to annotate their programs witie tgeclarations, we had to devise a type
language that could be comfortably integrated into a Q @nwgrOur type language supports type poly-
morphism, i.e., the usage of type variables. Type exprassaoe built from atomic types and variables
using type constructors. The concrete syntax is providespipendix B. The abstract syntax of the type
language — which is at the same time the Prolog represemtitiypes — is as follows:

TypeExpr =
At om cTypes | TypeVar | synbol ( Name) | any
| list(TypeExpr) | tuple([TypeExpr,..., TypeExpr])
| dict(TypeExpr, TypeExpr) | func(TypeExpr, TypeExpr)

At oni cTypes This is shorthand for the 16 atomic types of Q. Furthermdrentineri ¢ keyword is
used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression with the regridthat the same variables stand for
the same type expression. Type variables make it possildlefioe polymorphic type expressions,
such agist(A) -> A(afunction mapping a list of a certain type to a value of thesgitype) and
tuple([A A B]).

synbol ( Nane) The named symbol type is a degenerate type, as it has a sistgace only, namely the
provided symbol. Nevertheless, it is important becauseademto support certain table operations,
the type reasoner needs to know what exactly the involvedbeisvare. For example, when we insert
a new record into a table, it is not sufficient to know that teeord maps symbols to the adequate
types (that of the column values), we also have to check igat@lumn names match.

any This is a generic type description, which denotes all datecires allowed by the Q language.
list(TE) The set of all lists with elements from the set representetitbby

tupl e([TEL, ..., TEW) The set of all lists of lengtlk, such that the" element is from the set
represented byE;.

di ct (TE1, TE2) The set of all dictionaries, defined by an explicit assooiabietween domain lisT(E;)
and range lisfl{ E,) via positional correspondence. For example, the dictipfianane; ‘ date) !
(*Joe; 1962) has type
di ct (tupl e([ symbol (nane), symbol (date)]), tupl e([synbol (Joe),int]))?.

170 facilitate type inference for tables, we include dethilgformation on the domain/range of a dictionary in its typ record
is a dictionary with the domain being a list of column names.)
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func(TEs, TEy) The setof all functions, such that the domain and range are fhe sets represented
by TE; andTE;, respectively.

While some type expressions correspond directly to Q laggeanstructs (such asst, di ct orfunc),
others were “discovered” in the process of trying to descbexpressions. Such are thapl e( .. .)
and synbol (...) type expressions. Some built-in functions require listuangnts with fixed length.
These lists might also have to be non-homogeneous, with spekified type for each list member. To
be able to describe the type of such functions (and that af #trgument), we introduced theupl e
type. Using thet upl e type, we can for example easily describe a function thatstakéist consisting
of an integer and a symbol and returns another list congisiftwo integers and a float: it has type
func(tuple([int,symbol]),tuple([int,int,float])).

Thesynbol (Name type was introducted to enable type checking table opersitiGor example, it
allows for deciding whether a given record to be inserted ingiven table has matching column names. A
record is a dictionary that maps column names to values. Bygsgnbol (Nam@, we can represent the
domain type of dictionaries in such a way that contains tmeesof all columns. Hence, instead of treating
dictionary(‘ name‘ age)! (‘jim2), asdict(tuple([synbol,symbol]),tuple([synbol,int])), we
represent its type ai ct (t upl e([ synbol (name), synbol (age)]), tupl e([ synbol ,int])).

Note that our type system contains non-disjoint types: fangple,i nt is a subtype ohumeric and
tuple([int,int]) is a subtype ofist(int). As we shall see later, this greatly complicates the type
analysis.

7.3.1 Type Declarations

Type annotations appear as Q comments and hence do no¢ieteith the Q compiler. A type declaration
can appear anywhere in the program and it will be attachetigcsinallest expression that it follows
immediately. For example, in the code

X +y[l$ int

variabley is declared to be an integer.

Type declarations can be of two kinds, having slightly d#fg semanticimperative(believe me that
the type of expression E is T) orterrogative(l think the type of E is T, but please do check). To understand
the difference, suppose the valuexok loaded from a file. This means that both the value and theiy/p
determined in runtime and the type checker will treat thetgfx asany. If the user gives an imperative
type declaration that is a list of integers, then the type analyser will believes thind treak as a list of
integers. If, however, the type declaration is interroggtthen the type analyser will issue a warning,
because there is no guarantee thatill indeed be a list of integers (it can be anything). Intgative
declarations are used to check that a piece of code worksdljetve programmer intended. Imperative
declarations provide extra information for the type anatys

Different comment tags have to be used for introducing the kimds of declarations. We give an
example for each:

f //$ int -> bool ean interrogative
g//t: int ->int i nperative

7.4 Type Checking for the Q Language

In this section we give an outline of the data structures dgdrithms developed for the first version of
our type analyser tool: the type checker. There are two remquents towards Q programmers: they have to
provide a type declaration for all variables and only grodadlarations are allowed, i.e., type variables are
not allowed. Both restrictions will be lifted in the type @rence algorithm to be described in Section 7.5.

We only discuss type analysis proper: details about pa®ipgograms can be found in [62]. Hence,
we assume that the input of this phase is the abstract sye&gAST), constructed by the parser. Its output
is a (possibly empty) list of type errors.

2To help readability, we often use the notatibn > B instead of unc(A, B).
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7.4.1 Type Analysis Proper

Algorithm 3 gives a summary of the type analysis componentr &m is to determine whether we can
assign a type to each expression of the program in a coheramen Some types are known from the
start: the types of variables are provided by the programfughermore, we know the types of atomic
expressions and built-in functions. The analyser infeestiipes of the other expressions and checks for
consistency.

Algorithm 3 Algorithm of the type analysis component
1. To each node of the abstract syntax tree, we assign a tyjadla

2. We traverse the tree and formulate type constraints. &t program expression there is a constraint
that can be used to determine its type based on the typesabiéxpressions. In terms of the abstract
syntax tree, these constraints specify the type of a nhodedlmsthe types of its child nodes.

3. Constraint reasoning is used to automatically

e propagate constraints,
e deduce unknown types
e detect and store clashes, i.e., type errors.
From the types of the leaf nodes, we infer the types of theinéudiate parents. This wakes up new

constraints, so in the next step we can determine the typesdss that are at most two steps away
from all their leaf descendants. Continuing this procesgsewentually find all types.

4. If there is a type mismatch, we mark the erroneous nodethAalparent nodes will also be marked
erroneous — however, we only show the smallest erroneougssipns to the user, i.e., those that
have no erroneous subexpression.

5. By the end of the traversal, each node that correspondsyjeeacorrect expression is assigned a
type. The types satisfy all constraints.

Each expression in the concrete syntax corresponds to eesutit the AST. Hence, we maintain a
variable (in mathematical sense) for each node of the the¢ stands for the type of the subtree rooted at
the node. The task of the type checker is to instantiate tHahlas to proper ground types, as described
in the type language in Section 7.3. During reasoning, thexg be situations where we can only partially
instantiate a variable, for example, we might first infet tneertain expression is a list and only later narrow
it to be a list of floats. To handle these situations, we allppetvariables in the inner representation of
types, despite the fact that the programmers are not alléovese them in the declarations.

We traverse the tree and formulate context specific conssran the type of the current node and those
of its children. For instance, in the example in Figure 7.hew we reach thepp node, we know it is
a function application, so the left child has to be of tye> b, the right child of typea and the whole
subtree of typd. In some cases the constraint determines the type of soneg widn many others it only
narrows down the range of possible values. In case of clastela the restrictions, there is a type error
in the program.

The type checker also detects hazardous code that contagrstipl type error. This is the case when
the expected type of some expression is a subtype of theadfemne. An example for this is when a
function is declared to expect an integer argument and aliniegv about the argument is that it is numeric.
We cannot determine the runtime behaviour of such a codeg $he type error depends on what sort of
numeric argument will be provided. Instead of an error, we @i warning in such cases that the user can
decide to suppress.

Constraints are handled using the Prolog CHR [48] librany. déach constraint, the program contains
a set of constraint handling rules. Once the arguments #ieisntly instantiated (what this means differs
from constraint to constraint), an adequate rule wakes hp.rlile might instantiate some type variable, it
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Figure 7.1: The abstract tree format of the expresbkidid+2)

might invoke further constraints or else it infers a typeerin the latter case we mark the location of the
error, along with the clashing constraint.

In case all variables are provided with a type declaratiamstart the analysis with the knowledge of
the types of all leaves of the abstract syntax tree. Thisdsliee a leaf is either an atomic expression or
a variable. Once the leaf types are known, propagation afstfpom the leaves upwards is immediate,
because we can infer the type of an expression from those siltexpressions. Constraints wake up
immediately when their arguments are instantiated, asw@trebwhich the type variables of the inner
nodes become instantiated.

7.4.2 Constraints

The constraints that can be used for type inference come finansources. First, we know the types of
atomic expressions and built-in functions. For exambl@,is immediately known to be a float. Similarly,
we know that the functiomount is of typeany -> int. Such knowledge allows us to set — or at least
constrain — the types of certain leaves of the abstract syrga. The other source of constraints is the lan-
guage syntax. This can be used to propagate constraintsjdethe language syntax imposes restrictions
on the types of neighbouring nodes.

Besides these type constraints, there can be type infaymptovided by the user at any level of the
abstract syntax tree.

Constraint Handling Rules To handle type constraints, we use constraint logic progreng. More
precisely, we use the Prolog CHR (Constraint Handling Rulieésary [48], which provides a general
framework for defining constraints and describing how thagract with each other. The advantage of
CHR is that the constraint variables can take values froitrar Prolog structures, so we can comfortably
represent all values that a type expression can have.

An Example Constraint We illustrate constraint handling with a small example. §ldar the expression
x iny, where the types of,y areX, Y, respectively. The n function checks if the first argument is
a member of the second. The second argument is either a lstdastionary. The type of the whole
expression is boolean and the restrictionXoi is expressed using the constradntt _|ist_c(Y, _, X),
which can be defined by the following constraint handlingsul

%dict _list_c(X AB):-

Y%either Xis alist of type Band Ais integer

%or Xis adictionary with donain type A and range type B
dict list c(dict(XVY),AB <=>A=X B=Y.

dict list _c(list(X),A B) <=>A=int, B=X

The rules remain suspended until the first argument getritiated to ali ct/ 2 orl i st/ 1 structure. The
constraint fails if the adequate types cannot be unified.
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However, these rules are incomplete in two ways. First, abave seen in Section 7.3, a list can also
be represented as a tuple. Hence, we have to add the follouleg

dict_list_c(tuple(Xs),A B) <=>
A=int, ( foreach(B,Xs), param(B) do true ).

The second problem is the lack of error handling. If the amist fails, the whole program fails. Thus,
instead of telling the user where the type error occurredhmgindicate that there is a type error, which is
not useful at all. We address this by assigning an identifieaich expression. Each time an error occurs,
we store the identifier and the kind of error. After all comsits exited, we retrieve the identifiers of the
erroneous expressions and the relevant location in theramogode. With these we can give an error
message that explains the problem. The final version of thsetaint handling rules fati ct _|i st _c:

%dict list_c(XABID):-
%either Xis alist of type Band Ais integer
%or Xis adictionary with donain type A and range type B
dict_list_c(X A B, ID) <=> nonvar(X) |

( X =dict(AB)

; X =1ist(B), A=int

; X = tuple(Xs), A=int,

( foreach(B, Xs), paran(B) do true )
; assert(q:error(type,ID,wong dict list))

), .

The constraint wakes up as soon as the first argument is fisdth Then, if it is a dictionary or a list,
we can enforce the constraint by unifying some terms. If thiiaation succeeds, the constraint exits
successfully. Otherwise, we mark that an error occurred.

7.4.3 Issues about Type Declarations

We require programmers to provide every variable with a gdotype declaration. In this subsection we
give reasons for this requirement.

The immediate benefit is that the types of all leaves of th&rattssyntax tree are known at the begin-
ning of the analysis. Without type declarations, some gairtds might remain suspended and lots of types
unknown. In this case we would have to use some sort of lalptiassign a type to each expression.

Furthermore, if the arguments of constraints are groundjaveot have to worry about the interaction
of constraints. Consider, for example the following two sipaints:

int_or float(X) <=> (X ==1int ; X=="float) | true.
int_or long(X) <=>(X==1int ; X==1ong) | true.

If these two constraints apply @ then they will not do anything as long @ss a variable, even though
there is only one solution, namelyi nt . In order for the type analyser to infer this, we have to adéw n
rule that describes the interaction of the two constrasush as

int_or_float(X), int_or_long(X) <=> X =int.

More complex constraints can interact in many differentsvagd the number of constraint handling rules
necessary for capturing all interactions can be expordntiie number of constraints. Given that we
work with more than 60 different constraints, it is not retidi to exhaustively write up all rules. If, on the
other hand, the arguments are sufficiently instantiatetittireaconstraints can wake up individually (not
knowing about the others), then we only need to provide aleaffrules for each constraint. In the above
example, ifX is instantiated, then eithei nt and both constraints exit successfully or else at least one
constraint indicates an error.

When we have a variable in a Q program, we have to copy its type fts defining occurrence to all
its applied occurrences. If the type is ground, copyingrgge since we unify the type expressions. This,
however, does not work if the type of the variable containsaides that are possibly constrained. Let
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the type off beX -> int where there is a constraint &rensuring that it is from the s¢tnt, float}.
Consider the following code:

x:f 2
y:f 3.1

If we unify the type variables for each occurrencd ofith X - > i nt, then from the first lineX will be
instantiated to nt, which will make the type checker indicate a type error ingbeond line, since it will
try to unify i nt with fl oat. What we need is separate instances of the tygdewith distinct variables,
while holding the same constraints, which is quite compéidaFortunately, this problem does not arise if
all variables are provided with a ground type declaration.

7.5 Type Inference for the Q Language

In the second phase of the development of our type analysknte set out to eliminate the two main
restrictions of the type checker: sometimes it is too busdeme for the programmers to have to provide
type declarations and sometimes it is too restrictive thatdeclarations have to be ground. In order
to find a more flexible solution, where the analyser uses whataformation is available and infers as
much as possible, we looked for a more solid theoreticaldation. In the following, we will show how
to reformulate the task of type inference as a constraimfaation problem (CSP) and then provide a
solution through this reformulation, based on logic prognmang.

7.5.1 Type Inference as a Constraint Satisfaction Problem

Type reasoning starts from a program code that can be seenamspex expression built from simpler
expressions. Our aim is to assign a type to each expressp@aepg in the program in a coherent manner.
The types of some expressions are known immediately (aterpeessions, certain built-in functions),
besides, the program syntax imposes restrictions betviiegtypes of certain expressions. The aim of the
reasoner is to assign a type to each expression that satiifilbe restrictions.

We associate a CSP variable with each subexpression of tigggon. Each variable has a domain,
which initially is the set of all possible types. Differeype restrictions can be interpreted as constraints
that restrict the domains of some variables. In this tertoigg the task of the reasoner is to assign a value
to each variable from the associated domain that satisfidgeatonstraints.

Domains Type expressions can be embedded into each othet {(esig.int),list(list(int)), etc.),
and tuples can be of arbitrary length, consequently we hdiretely many types, which makes represent-
ing domains more difficult than in a classical CSP. Furtheenihe types determined by the type language
are not disjoint. For example 1f might have typd | oat or numeric as well. It is evident that every
expression which satisfies typeoat also satisfies typeuneri c, i.e.,f| oat is asubtypeof nuneri c. We
will use the subtype relation to represent infinite domainidiy: a domain will be represented with an
upper and a lower bound.

We say that type expressidh is a subtype of type expressidp (Ty < Ty) if and only if, all expres-
sions that satisfyl; also satisfyT,. The subtype relation determines a partial ordering ovee gxpres-
sions. For example, consider thepl e([int,int]) type which represents lists of length two, where both
elements are integers. Every expression that satisfigise([i nt,int]) also satisfiesist(int), i.e.,
tuple([int,int]) isasubtypeofist(int). Foratomic expressions it is trivial to check if one type is
the subtype of another. Complex type expressions can b&etiersing some simple recursive rules. In
the following, we provide these rules:

e |ist(A) isasubtype ofist(B) exactly ifAis subtype oB.

o tuple([As,...,Aq]) is a subtype of upl e([Bs,...,Bx]) exactly if A; is a subtype oB; for all
1<i<k

o tuple([As,...,Aq) is asubtype ofi st (B) exactly ifA is a subtype oBforall 1 <i <k.

78



e func(Dji, Ry1) is a subtype of unc( D>, Ry) exactly if D, is a subtype oD andR; is a subtype of
Ro.

e dict(Dj, Ry) is a subtype ofli ct (D2, Ry) exactly if D2 is a subtype oD; andR; is a subtype of
Ro.

e synbol (Name is a subtype ofynbol .
e Everytype is a subtype afy.

The domain of a variable is initially the set of all types, alihcan be constrained with different upper
and lower bounds.

An upper bound restriction for variableis a listA= [Ay, ..., A, meaning that the upper boundXfs
U‘j‘:lAj, i.e.,X is a subtype of some elementAf Disjunctive upper bounds are very common and natural
in Q, for example, the type of an expression might have tothesdii st ordi ct . The conjunction of upper
bounds is easily described by having multiple upper boulfidee have two upper bounds= [Aq, ..., A(]
andB = [By,...,B] on the same variabl¥, this means the value of has to be inJ(A NB;), for all
1<i<kand 1< j<lI.

A lower bound restriction for variabl¥ is a single type expressigh meaning thaf is a subtype of
X. For lower bounds, it is their union which is naturally reggated by having multiple constraints:Xf
has two lower bounda andB, thenAU B has to be subtype of. We do not use lists for lower bounds and
hence cannot represent the intersection of lower boundshéé&e this representation because no language
construct in Q yields a conjunctive lower bound.

With the following example we demonstrate that lower andarfgounds are natural restrictions in Q: In
the coden: f [ b] functionf is applied tdy and the result is assigneddaoSuppose the type éfturns out to
be a map fronmuneric totuple([int, int]). We can infer that the type dfmust be at mosturreri c,
which can be expressed with an upper bound. The resttldf has the typeupl e([int,int]), which
means, that the type afmust be at leadtupl e([int,int]), which can be expressed with a lower bound.
If later the type ofa turns out to bé i st (i nt) (a list of integers) and the type bfto be e.gf | oat, then
the above expression is type correct.

Constraints After parsing — where we build an abstract syntax tree remtasion of the input program

— the type analyser traverses the abstract syntax tree ggabén constraints on the types of the subex-
pressions. The constraints describing the domain of ahar@re particularly important, we call them
primary constraints These are the upper and lower bound constraints. We wik itef the rest of the
constraints asecondary constraintsSecondary constraints eventually restrict domains bygimg pri-
mary constraints, when their arguments are sufficientlaimsated (i.e., domains are sufficiently narrow).
Constraints that can be used for type inference can origjiinain the following sources in a Q program:

Type declarations If the user gives a type declaration, the expression wilteated as having the declared
type.

Built-in functions For every built-in function, there is a well-defined relaiship between the types of its
arguments and the type of the result. These relations aressgd by adequate — sometimes quite
complicated — constraints.

Atomic expressions The types of atomic expressions are revealed already byatsep so for example,
2. 2f isimmediately known to be fd oat .

Variables Local variables are made globally unique by the parser, sablas with the same name must
have the same type. We ensure this by equating their comdsppdomains. However, care has to
be taken with polymoprhic functions. If, for example, thexa functionf that maps arbitrary input
to an integer, then its various applied occurrences mighe déferent types: irfi[ 2] andf[ '] ack]
the function will have typesnt -> int andsynbol -> int, respectively. In such cases, instead
of equality, we impose thspecialisedelation on the defining and the various applied occurrences
of the function symbol. We will discuss this later in morealkt
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Program syntax Most syntactic constructs impose constraints on the typéeea constituent constructs.
For example, the first argument of ah- t hen- el se construct must bent or bool ean. Another
example is the assignment construct. The type of the ledtisés to be at least as “broad” as the type
of the right side. It means the type of the right side is subtyfthe type of the left side.

Constraint Reasoning Constraint reasoning is based opraduction systeri#3], i.e., a set of IF-THEN
rules. We maintain aonstraint storavhich holds the constraints to be satisfied for the prograbettype
correct. We start out with an initial set of constraints. Aguction rule fires when certain constraints
appear in the store and results in adding or removing somstrzonts. We also say (with the terminology
of CHR) that each rule has a head part that holds the contstreesessary for firing and a body containing
the constraints to be added. The constraints to be remoeea smbset of the head constraints. One can
also provide a guard part to specify more refined firing cooialé.

The semantics of the constraints is given by describing tteisequences and their interactions with
other constraints. At each step we systematically checkules that can fire. The more rules we provide
the more reasoning can be performed.

Primary constraints represent variable domains. If a dorhains out to be empty, this indicates a
type error and we expect the reasoner to detect this. Heris&gry important for the constraint system to
handle primary constraints as “cleverly” as possible. R, twe formulated rules to describe the following
interactions on primary constraints:

e Two upper bounds on a variable should be replaced with thigrgection.
e Two lower bounds on a variable should be replaced with thamm

¢ If a variable has an upper and a lower bound such that no tyjsfies both, then the clash should
be made explicit by setting the upper bound to the empty set.

e Upper and lower bounds can be polymorphic, i.e., they mightain other variables. From the fact
that the lower bound must be a subtype of the upper bound, wepagate constraints to the
variables appearing in the bounds.

Secondary constraints connect different variables antligeseveral domains. There are two ap-
proaches for reasoning over such constraints: 1) We can ukielmaded rules to capture the interactions
of several constraints or 2) we only provide single headégsrun which case constraints interact only
through the narrowing of domains. Unfortunately, it is reslistic to capture all interactions of secondary
constraints as that would require exponentially many riddbe number of constraints. Hence, we only
describe (fully) the interaction of secondary constraimith primary constraints, i.e., we formulate rules
of the form: if certain arguments of the constraints are imithcertain domain, then some other argument
can be restricted. E.g., if there is an expressityn and we know that the arguments are numeric values,
then the result must be either integer or float. If the secogdraent later turns out to be float, then the
result must be float. At this point, there is nothing more tartberred and the constraint can be eliminated
from the store.

Our aim is to eventually eliminate all secondary constgirlf we manage to do this, the domains
described by the primary constraints constitute the sebs$ibple type assignments to each expression. In
case some domain is the empty set, we have a type error. Osleerme consider the program type correct.

If the upper and lower bounds on a variable determine a dimgket, then we say that itisstantiated
If all arguments of a secondary constraint are instantjatezh there are two possibilities. If the instan-
tiation satisfies the constraint, then the latter can be veehdrom the store. Otherwise, the constraint
fails.

Error Handling  As we parse the input program, we generate constraints ahthath to the constraint
store. The production rules automatically fire whenevey ten. If some domain gets restricted to the
empty set, this means that the corresponding expressigrothe assigned any type, i.e., we have a type
error. At this point we mark the erroneous expression, abagehe primary constraints whose interaction
resulted in the empty domain. This information — along with position of the expression — is used to
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generate an error message. The primary constraints ard togastify the error. Once the error has been
detected and noted, we roll back to the addition of the lasstaint and simply proceed by skipping the
constraint. This way, the type analyser can detect moredharerror during a single run.

Labeling Eventually, after all constraints have been added, we wltabnstraint store such that none of
the rules can fire any more. There are three possibilities:

e There were some discovered errors. Then we display thectedlerror messages and terminate the
type inference algorithm.

e There were no type errors found and only primary constraiensain. In this case the domains
described by the primary constraints all contain at leastalament. Any type assignment from the
respective domains satisfies all constraints, so the typlysar stops with success.

e No type errors were found, however, some secondary contnamain. In order to decide if the
constraints are consistent, we ldbeling

Labeling is the process of systematically assigning valaesriables from within their domains. The
assignments wake up production rules. We might obtain arfgilin which case we roll back until the
last assignment and try the next value. Eventually, eithefind a type assignment to all variables that
satisfies all constraints or we find that there is no condistssignment. In the first case we indicate that
there is no type error. In the second case, however, we shiaethe type constraints are inconsistent, so
an error message to this effect is displayed. Due to the paligriarge size of the search space traversed
in labeling, it looks very difficult to provide the user withcancise description of the error.

7.6 Summary

In this chapter we presented our methods developed for @€k programs for type correctness. This
work involved the design of a type language with which progregers can add type annotations to their
programs. Our first algorithm is capable of analysing a Q @wothat contains a ground type declaration
for each variable and discover any type mismatches. Aftetsyave designed a more involved method that
can infer the possible types of all program expressionsawitny information provided by the program-
mer. This method proceeds by transforming the initial tafsyjpe inference into a constraint satisfaction
problem, which is solved using a production system.

All our algorithms have been implemented in a tool cali¢gdhk, based on the Constraint Handling
Rules extension of the Prolog language. A detailed desonijgf our tool will be provided in Chapter 8.
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Chapter 8

The gt chk Static Type Inference Tool
for the Q Functional Language

In this chapter we present a Prolog program caffechk that implements the type analysis described in
Chapter 7. In Section 8.1 we give an overview of the systerhitecture. Afterwards, in Section 8.2,
we discuss the implementation of the constraint satigfaqiroblem. Section 8.3 presents how we imple-
mented error handling. Section 8.4 discusses labelingeti® 8.5 we summarize the major difficulties
that we came across with during the developmenjtahk. In Section 8.6 we briefly evaluate our tool,
based on test results.

8.1 Architecture

The type analysis can be divided into three parts:

e Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree steuctur

e Pass 2: post processing
Some further transformations make the abstract syntaxetisier to work with.

e Pass 3: type checking proper
The types of all expressions are processed, type erroreseetdd.

Built-in Func
types

Post @
Processing @

Type
Reasoning

Q program Lexical | Syntactic

Abs
—_—
Tree

I
Analyser | Analyser
I

Figure 8.1: Architecture of the type analyser

The algorithm is illustrated in Figure 8.1. The analyserrees the Q program along with the user
provided type declarations. The lexical analyser breakstéit into tokens. The tokeniser recognises
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constants and hence their types are revealed at this eagg.shfterwards, the syntactic analyser parses
the tokens into an abstract syntax tree representationeo@Qtprogram. Parsing is followed by a post
processing phase that encompasses various small trardfontasks.

In the post processing phase some context sensitive tramasfions are carried out, such as filling in
the omitted formal parameter parts in function definitioasd finding for each variable occurrence the
declaration the given occurrence refers to.

Finally, in pass 3, the type analysis component travergeatihtract syntax tree and imposes constraints
on the types of the subexpressions of the program. This fhalsks on the user provided type declarations
and the types of built-in functions. The latter are listechineparate text file, that is parsed just like any
Q program. The predefined constraint handling rules triggésmatic constraint reasoning, by the end of
which each expression is assigned a type that satisfiesatbtistraints.

Each phase of the type analyser detects and stores errdhe éd of the analysis, the user is presented
with a list of errors, indicating the location and the kindewfor. In case of type errors, the analyser also
gives some justification, in the form of conflicting constitai

8.2 Representing variables and constraint reasoning

All subexpressions of the program are associated with C8@bles. In case some constraint fails, we
need to know which expression is erroneous in order to genaraseful error message. If the arguments
of the constraints are variables, we do not have this inftionat hand. Hence, instead of variables we use
identifiersI D = i d(N, Type, Error) which consist of three parts: an integéwhich uniquely identifies
the corresponding expression, the type prdjyee (which is a Prolog variable before the type is known)
and an error flagr ror which is used for error propagation. We use the same repganfor type
variables in polymorphic types, e.g. the typest (X) may be represented byst (i d(2)1).

Constraint reasoning is performed using the Constraintdhag Rules library of Prolog. CHR has
proved to be a good choice as it is a very flexible tool for dbsuy the behaviour of constraints. Any
constraint involving arbitrary Prolog structures couldfoemulated. We illustrate our use of CHR by
presenting some rules that describe the interaction ofgiroonstraints. Our two primary constraints are

e subTypeOr (1D, L): The type of identified D is a subtype of some type in wherel is a list of
polymorphic type expressions.

e super TypeCf (1D, T) : The type of identifiet Dis a supertype of typ€&, a polymorphic type expres-
sion.

With polymorphic types we can restrict the domain by a typeregsion containing the — not yet known —
type of another identifier. If the type of such an identifiectmmes known, the latter is replaced with the
type in the constraint. For example, consider the followimg constraints:

subTypeOf (i d(1),[float,list(id(2))])
super TypeOf (i d(1),tuple([id(3),int])

Suppose the types ofd(2) andid(3) both turn out to be nt. Then the above two constraints are
automatically replaced with constraints:

subTypeOf (id(1),[float,list(int)])
super TypeOf (i d(1),tuple([int,int])

Due to the lower bound] oat can be eliminated from the upper bound. This is performedhbydllowing
CHR rule:

super TypeCf (X, A) \ subTypeCOf (X, B0) <=> elimnate_sub(A B0, B) |
create_log_entry(elimnate_sub(X A BO,B)), subTypeOf (X B).

Lin order to make this and the following examples easier td,re@ will write i d(N) instead of d(N, Type, Error).
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Here we make use of the following Prolog predicates:

e elimnate_sub(A BO,B): The list of upper boundB0 can be reduced to a proper subBdtased
on lower boundh.

e create | og _entry(X): We assert a log entry used for creating error messages.

Consequently, we obtain:

subTypeOf (id(1),[list(int)])
super TypeOf (i d(1),tuple([int,int])

In another example, we show how two upper bounds on the sanéfidr are handled. Suppose we
have the following constraints:

subTypeO (id(1),[float,list(int)])
subTypeO (id(1),[tuple([int,int]),func(int,float)])

The upper bounds trigger the following CHR rule:

subTypeOr (X, T1), subTypeCf (X, T2) <=> type_intersection(T1, T2, T) |
create_log entry(intersection(X T1,T2,T)),
subTypeO (X, T).

The predicatéype_intersection(T1, T2, T) imposes the constraint thatis the intersection of1 and
T2. We obtain a single upper bound:

e subTypeOr (id(1),[tuple([int,int])])

8.3 Error Handling

During constraint reasoning, a failure of Prolog executiahcates some type conflict. In such situations,
before we roll back to the last choice point, we remember #tail$ of the error. We maintain a log that
contains entries on how various domains change during tisoreng and what constraints were added to
the store. Furthermore, to make error handling more unifevhrenever secondary constraints are found
violated, they do not lead to failure, but they reduce the giorof a variable contributing to the failure of
the constraint to the empty set. Hence, we only need to hamdbes for primary constraints. Whenever a
domain gets empty, we mark the expression associated vattidimain and we look up the log to find the
domain restrictions that contributed to the clash. We eraad assert an error message and let Prolog fail.
For example, the following message

Expected to be broader than (int -> numeric) and
narrower than (int ->int)
file: samples/sl.q line:13 character:4

{[x] T[x]}

ANANANNANNNNAN
indicates that the underlined function definition is errmume the return value is numeric or broader (in-

ferred from the type of ), although it is supposed to be narrower than integer (iatefrom a type decla-
ration).

8.4 Labeling

After all constraints are added to the constraint store, se&labeling to find a type assignment to each
program expression (i.e., to each identifier associated avitode of the abstract syntax tree) that satisfies
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the constraints. This involves another traversal of thérabssyntax tree to make sure no program expres-
sion is left without a type assignment. We select the nexttitler X to be labelled and set its domain to
a singleton set, based on its current domain. We impleméhiethy adding a new constraihabel ( X) .
This constraint triggers the narrowing of the domairXaefirough the following CHR rules:

| abel (X) <=> id_known_type(X, ) | true.

| abel (X), superTypeO (X, A), subTypeO (X L) <=>
| abel _upwards(X, A L, Type),
hasType( X, Type).

| abel (X), superTyped (X A) <=>
[ abel _upwar ds(X, A [any], Type),
hasType( X, Type).

| abel (X), subTypeCf (X L) <=>
| abel _downwards(X, L, Type),
hasType( X, Type).

| abel (X) <=>
| abel _downwar ds(X, [any], Type),
hasType( X, Type).

First, we check if the type oX is already known. If so, we do nothing. Otherwise, we have frases
based on the presence or absence of a lower and upper bound:

¢ If we have a lower and an upper bound, we nondeterminisgisallect a type from the domain. We
start from the lower bound and successively try the broagiers This directionality is comfortable
for implementation, because while a type might have manyypels (e.g. any tuple of integers is a
subtype of the type ‘list of integers’), it has only few suyees.

¢ If only a lower bound is present, we set the upper bourahjoand proceed as in the previous case.
e If only an upper bound is present, we start from that type ansugcessively to its subtypes.

e If there is neither a lower, nor an upper bound, then we asammieplicit upper boundny and
proceed as above.

Note that thenasType/ 2 constraint, used above in the labeling code, translatea taqpger and a lower
bound:
hasType(X, Y):- subTypeOf (X, [Y]), superTypedt(XY).

8.5 Difficulties

In this section, we discuss some difficulties that we had tr@yme during the implementation of the type
inference tool. These problems arose on the one hand frore spetial features of the Q language, and
on the other hand from some limitations of the CHR librarydise

8.5.1 Handling Meta-Constraints

As we described earlier, several built-in functions of Qéawspecial behaviour, called item-wise extension.
We discuss the implementation of this feature now.

Let us consider, for example, the constranmwhich captures the relation between the arguments
and the result of the built-in function ‘+'. If some of the argents turn out to be lists, then the rela-
tion should be applied to the types of the list elements. Wedcoapture this by adding adequate rules
to the sum constraint. However, the rules describing the list exmdiehaviour would have to be re-
peated for each built-in function, which is counter-proilec Instead, we introduced a meta-constraint
|ist_extension/3.

Consider a binary built-in functior, which extends item-wise to lists in both arguments and fhic
imposes constrain@ on its atomic arguments and result. Suppose thais arguments identified By Y
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and result identified b¥. We cannot add the constraints@fto the constraint store until we know that the
arguments are all of atomic type. Instead, we use the metst@ontl i st _ext ensi on(Dir, Args, Fun),
whereDi r specifies which arguments can be extended item-wise toAisgs is the list of arguments on
which the list of constrainfimposed by functiofun, will have to be formulated.

Hence, the constraitt st _ext ensi on(both, [ X Y, Z], +) is added in our example. If later the in-
put arguments are inferred to be atomic, then the metai@insti st _ext ensi on/ 3 adds the atomic
constraint$Cs and removes itself:

subTypeCOf (X, Ux), subTypeOf (Y, W) \
l'ist_extension(both,[X Y, Z],Fun) <=> nonlist(U), nonlist(Uy) |
list_ext_constraints(Fun,[XY,Z],Cs), ( foreach(C Cs) do C).

Here, the complicated part is to find the arguments of thegropnstraints imposed by the given built-in
function. We solved this by asserting the relevant infofarain thel i st _ext _constrai nts predicate.
E.g. in the case of the Q function ‘+’ we have the followingtfac

list _ext constraints(+, [ABC, [sumM{ABCQ]).

If, on the other hand, some argument turns out to be a listy@-constraint is replaced by another
one. For example, if we know that the typesXéndY arel i st (A) andlist(B), then the type o¥
must be a list as well and we replace thet _ext ensi on constraint with the following two constraints:
list_extension(both,[A B, C],+) andhasType(Z list(Q)).

In fact, thel i st _ext ensi on meta-constraint could have been avoided, had CHR been neaibld:
the difficulty arose from the fact that it is not possible téereto a constraint in a CHR rule head by
supplying a variable holding its name and a list of its argntaécf. thecal | / N built-in predicate group of
Prolog).

To express item-wise extension, it would be more conven@mirite generic rules where the name
of the involved constraint can also be a variable (this isatt fvhat thd i st _ext ensi on meta-constraint
simulates).

For example, in the case of unary functions, where the cooreging constraint has two arguments
(the identifiers of the input and the output), item-wise asten could be implemented using the following,
quite natural “meta-rule”:

call (Cons, A B) <=>is list(A X), is_list_extensible(Cons) |
call (Cons, X, Y), hasType(B,list(Y)).

whereis_|ist_extensibl e(Cons) succeeds exactly whe®ons has the li