
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Languages and Frameworks for Specifying Test Artifacts

PhD thesis booklet

Zoltán Micskei

Advisors:
István Majzik, PhD (BME)

Hélène Waeselynck, PhD (LAAS-CNRS)

Budapest, 2013



Zoltán Micskei PhD thesis booklet

1 Preliminaries and objectives

Testing is an essential but complex and resource-consuming task in software development. IEEE
de�nes testing as an “activity in which a system or component is executed under speci�ed con-
ditions, the results are observed or recorded, and an evaluation is made of some aspect of the
system or component” [IEE10]. Figure 1 depicts a high-level view of testing: test cases are cre-
ated from the speci�cation of the system, these are executed, and verdicts are assigned describing
the outcome, e.g., passed or failed. Of course many important questions need to be answered be-
fore testing can be carried out. What part or functionality of the system needs to be tested? In
what manner are the outcomes of the tests evaluated? Who decides whether a test passed or
failed? To answer these questions several other test artifacts are needed besides test cases.

Specification, 
requirements

Test cases Verdicts
Test

execution

Figure 1: High-level view of the testing process

Figure 2 presents the artifacts used in testing in more detail1. From the high-level user re-
quirements and the speci�cation of the system test requirements are derived that de�ne how
the system should or should not behave in a certain situation. The test approach collects how
and when the testing should be conducted, e.g., what processes, techniques, test levels and tools
should be used. Test purposes describe what part or functionality of the system should be covered
by testing. Later, test case speci�cations are created in which the inputs, predicted results, and
set of execution conditions are speci�ed. The expected output for a given input is obtained from
a test oracle. The test cases are implemented, and with the help of test adapters they are executed
in a test execution environment, which contains the system under test (SUT) and potentially some
test doubles (drivers, stubs, etc.) that simulate the other components and the environment of the
system. During the test execution test traces are recorded, which can contain the responses of
the SUT, details about the changes in the test environment, etc. Finally, the outcomes of the test
executions are evaluated, and verdicts are assigned. The set of possible verdicts is usually pass,
fail, error (there was an error in the test execution environment itself), and inconclusive (neither
a pass nor a fail verdict can be determined). These artifacts and the tools supporting them are
combined into a test framework.

Specification, 
requirements

Test 
requirements

Test purposes

Test suite
(test cases) Test traces Verdicts

Test approach

Test
execution

Test
evaluation

Test oracle

Figure 2: General test artifacts

Testing has an extensive literature (just to name a few few well-known books [Bei90; MS04]),
numerous methods and techniques have been proposed to test di�erent types of systems. In order
to apply these methods, suitable languages are needed that can be used to precisely design and
describe the above test artifacts.

1As testing is such a general term, these basic concepts have been de�ned in many ways. The dissertation follows
mainly the IEEE terminology [IEE10] extended with the ISTQB glossary [IST10].

2



Zoltán Micskei PhD thesis booklet

The research presented in this dissertation was focused on (i) what languages can be used
to describe these test artifacts especially in application domains in which a proper solution is
missing, and (ii) using the test artifacts how can test frameworks be constructed that can be used
for testing in speci�c application domains.

1.1 Existing test languages and approaches

This section �rst gives examples of the existing languages used for describing test artifacts. Next,
it presents how the Uni�ed Modeling Language (UML), one of the most commonly used lan-
guages to model software systems, can be used in modeling test artifacts. Finally, di�erent test
approaches are introduced, which will be used in the dissertation.

1.1.1 Examples of languages for describing test artifacts

Depending on the type of the test artifact to describe, several methods and notations have been
proposed. For example, test purposes can be described with labeled transition systems [JJ05] or
with temporal logic formulae [Hon+01]. Test requirements can be extracted from UML mod-
els [BL02]. Test cases can be de�ned using TTCN-3 [ITU07], test con�gurations in the ATML
language [IEE11]. Test oracles can be expressed as automata [Hes+08] or in SDL [Koc+98].

For describing partial behavior like test requirements or test purposes, a very common ap-
proach is to use graphical scenario languages [PJ04; KSH07]. They provide an intuitive yet pow-
erful notation to express communication between di�erent entities. Several language variants
were proposed over the years. The International Telecommunication Union’s (ITU) Message
Sequence Chart (MSC) [ITU11] was one of the �rst of such languages. It is widely used, since
its �rst introduction in 1993 it was updated several times. Live Sequence Chart (LSC) [DH01]
concentrated on distinguishing possible and necessary behaviors. The dissertation focused on
software systems, thus from the possible testing and modeling notations, the UML language was
highly relevant.

1.1.2 Using UML 2 for specifying test artifacts

The Uni�ed Modeling Language (UML) [OMG11b] developed by the Object Management Group
(OMG) is one of the most commonly used languages to model software systems. UML has ex-
tensive tool support, and can be used in many aspects of software development from captur-
ing requirements to specifying deployments. A recent paper by Cook [Coo12] presents a good
overview of the history and evolution of the language.

To support the testing activities, a dedicated UML pro�le was developed. With the help of
the UML 2 Testing Pro�le [OMG05] a UML model can specify (i) the test architecture, (ii) the
behavior of test cases, and (iii) contents of the test data. The test architecture is modeled typi-
cally with stereotyped components for test context, arbiter etc. The behavior of test cases and
test procedures are given usually with the scenario language found in UML, namely Sequence
Diagrams, and the pro�le o�ers stereotypes to express default behavior or logging and valida-
tion actions. The test data stereotypes are used to de�ne data partitions, and make expressing
wildcards, omitted values possible.

The �rst version of Sequence Diagrams included in UML 1.x was similar to basic MSCs, i.e., it
included lifelines representing communicating instances and messages going between lifelines.
The next version introduced in UML 2.0 was a major rework; the language was extended with
several complex, high-level elements. For example, new notations were added to express alter-
native or parallel �ows. Moreover, what is even more signi�cant from a testing perspective,
language constructs were included to express mandatory and forbidden behavior, or messages

3



Zoltán Micskei PhD thesis booklet

that can be ignored. However, the meaning of these elements, i.e. their semantics, was described
only in natural language text fragments, which allowed several di�erent interpretations.

Thus in order to use Sequence Diagrams to describe test artifacts or extend the language
to cope with the characteristics of new application domains, �rst it should be identi�ed what
semantic variations exist for the language, and which of them �ts for testing related activities.

1.1.3 Test approaches utilized in the dissertation

Testing activities can be di�erentiated based on what level they operate. Typical categories in-
clude module or unit testing (dealing with only one module), integration testing (checking the
cooperation of several modules), and system testing (analyzing the whole system possibly taking
into account its environment). The dissertation focuses on methods for system testing.

There are many approaches that can be applied at system level to test the functionality. One
typical categorization, which is common in the protocol testing community, di�erentiates active
and passive testing [AMN12]. In active testing the tests stimulate directly the SUT by provid-
ing inputs to it. However, this is not possible in some situations, e.g., when there is no direct
interface to the SUT or the SUT operates in a complex environment. In these cases passive test-
ing techniques o�er an alternative, where the operation of the system is observed by recording
execution traces, and then this trace is checked on-line or o�-line to determine whether it con-
forms to the speci�cation. This approach is common in testing distributed systems, where the
test framework does not provide constant input to each of the nodes, instead it creates an initial
test setup, and later observes the behavior of the nodes through their communication. In the
application domains presented in this dissertation both active and passive testing were useful
test approaches.

In system level testing usually not only the core functionality, but other non-functional re-
quirements are considered. Non-functional requirements include performance or the di�erent
attributes of dependability [Avi+04], like robustness or availability. Such testing can be character-
ized with the following two components of the tests (stimuli); the workload triggers the (regular)
operation of the system, while the faultload contains the di�erent faults and stressful conditions
applied on the system. Depending on how these two loads are balanced, di�erent kinds of system
properties can be tested, e.g., in API robustness testing only a faultload is executed against the
public interfaces of the system, or in stress testing only a high level of workload is applied. One
part of the research presented in this dissertation focused on robustness, which is the attribute of
dependability that measures the behavior of the system under non-standard conditions. Robust-
ness is de�ned by IEEE as “the degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions” [IEE10].

As new application domains emerge and new system attributes become relevant to test, the
classic methods have to be evaluated and one should identify whether new challenges have been
arisen.

1.2 New application domains

The dissertation focuses on the following new and emerging application domains, which present
several new challenges for the testing activities.

1.2.1 High availability middleware systems

Recently availability became a key factor even in common o�-the-shelf computing platforms.
High availability (HA) can be achieved by introducing manageable redundancy in the system.

4



Zoltán Micskei PhD thesis booklet

The common mechanisms to manage redundancy and achieve minimal system outage can be im-
plemented independently from the application in a component called a HA middleware. To stan-
dardize the functionality of such middleware systems leading IT companies formed the Service
Availability Forum (SA Forum) to elaborate the Application Interface Speci�cation (AIS) [SAF07].
Di�erent vendors implemented the common speci�cation in their solutions.

With multiple middleware products developed from the same speci�cation the demand to
compare the various implementations naturally arises. The most frequently examined properties
are performance and functionality, but especially in case of HA products dependability is also an
important property to be considered.

The characteristics of HA middleware systems can be summarized as follows.

State-based nature The complexity in testing these middleware implementations comes from
the highly state-based nature of these systems: without a proper setup code most of the
calls in the public interface result in trivial error messages, this way the valid operation
cannot be tested. For example, the health of a component is checked in a callback, which
needs to be registered after a connection to the middleware is initialized.

Robustness is a key factor As the availability requirements towards these systems are ex-
tremely high, HA middleware systems should handle even the unexpected situations. Typ-
ically testing e�ort is focused on all the valid paths and some of the common invalid inputs.
However, in a HA middleware preparing for erroneous inputs is especially important, be-
cause an error in one component can render the whole system inaccessible if the middle-
ware is not robust enough.

Testing, among other veri�cation and validation techniques, can be used also to assess the
robustness of a system. Speci�cally the goal of robustness testing is to activate robustness faults
(typically design or programming faults) by supplying invalid inputs or presenting stressful en-
vironmental conditions.

Although robustness testing of HA middleware was a new research topic, previous robust-
ness testing results from other application domains can serve as guidance. Early robustness
testing experiments on command line programs generated a large number of random inputs
[MFS90] (a technique known as “fuzzing”). As HA middleware systems have a common inter-
face speci�cation, a more relevant technique is type-speci�c testing introduced in the Ballista
project [KDD08]. Here robustness tests were generated for POSIX compliant operating systems
using valid and invalid values de�ned for the data types in the API. This method shall be extended
to be used in testing the robustness of state-based middleware systems.

The challenge in describing tests for HA middleware systems lies in that (i) existing test
languages mostly focus on conformance and not robustness, (ii) an HA middleware is a complex
system that has several inputs that may trigger robustness faults, and (iii) its API is state-based
with numerous functions, types and parameters.

1.2.2 Context-aware mobile computing systems

Mobile computing systems involve devices (handset, PDA, laptop, intelligent car, etc.) that move
within some physical areas, while being connected to networks by means of wireless links (Blue-
tooth, IEEE 802.11, GPRS, etc.). Such devices represent an integral part of our life now. The
speci�c characteristics of these systems can be summarized as follows.

Context awareness Context might be “any information that can be used to characterize the sit-
uation that are considered relevant to the interaction between a user and an application”

5



Zoltán Micskei PhD thesis booklet

[BDR07]. For example, in mobile computing the context can be information collected by
means of physical sensors such as location, time, speed of vehicle, or it can be informa-
tion about network parameters, such as bandwidth, delay and connection topology. These
systems have to take into account the actual context in their actions.

Dynamic, evolving environment In mobile computing systems the system structure, the num-
ber of mobile devices are not �xed. It varies over time, due to the dynamic appearance,
suspension or stopping of nodes. Besides that, connectivity between nodes is also highly
dynamic. As the nodes are free to move arbitrarily, they can join or leave the system in an
unpredicted manner. Links may be established or destroyed, yielding an unstable connec-
tion topology.

Communication with unknown partners in local vicinity In ad hoc mobile networks, a nat-
ural communication is local broadcast. It is used as a basic step for the discovery layer in
mobile applications (e.g., group discovery service for membership protocols, a route dis-
covery in routing protocols, etc.). In this class of communication, a node broadcasts a mes-
sage to its neighbors. As the topology of the system is unknown, the sending node does not
know a priori the number and identity of potential receivers. Whoever is in transmission
range of the sending node may listen and react to the message.

Existing languages presented in Section 1.1.1 were developed to describe mainly static con-
�gurations. Object creation or destruction can be depicted in some of the languages; however,
these notations are not suitable to express frequent appearance or disappearance of other nodes
or nearby objects. There were some works proposing extensions (e.g., [BM04; SE04]), but they
concentrated mostly on mobile software agents and logical mobility. Moreover, existing lan-
guages focus on the communication between the entities, and do not o�er an intuitive way to
describe the actual context, i.e., the current state of the environment. Modeling language exten-
sions and adaptation of existing test methods are needed that take into account the speci�cities
of context-aware mobile systems.

1.3 Summarizing the new challenges

As the previous sections illustrated there are several relevant existing test approaches and lan-
guages, however they need to be adapted or extended to suit the new application domains. The
following challenges summarize the open research questions, which have driven the work pre-
sented in the dissertation.

Challenge 1: Adapting robustness testing to HA middleware. How can relevant test in-
puts for a HA middeware be speci�ed in test artifacts to support the automated testing of the
robustness of such systems?

Challenge 2: Specifying mobile systems in test artifacts. How can dynamic, frequently
changing communication structures and unknown partners be speci�ed in test artifacts in a way
that such systems can be later evaluated?

Instead of designing completely new test languages, we tried to reuse existing languages when
possible. However, to incorporate new concepts into an existing language, that language should
have a clear and precise semantics. From the available scenario languages, we focused on UML 2
Sequence Diagrams. But, as described previously, Sequence Diagrams can have several semantic

6



Zoltán Micskei PhD thesis booklet

interpretations. Thus in order to de�ne testing related extensions, �rst the semantics of UML 2
Sequence Diagrams has to be studied.

Challenge 3: Analyzing the semantics of UML 2 Sequence Diagrams. What semantic
choices are available in UML 2 Sequence Diagrams, and what options can be chosen when the
language is extended to support the description of test artifacts in a speci�c application domain?

Therefore the goal of the dissertation was to de�ne test frameworks addressing these chal-
lenges, and develop the necessary languages for expressing the various test artifacts in the frame-
works.

2 Research method and new results

According to [SS07], a research activity can be classi�ed as basic (“research for the purpose of ob-
taining new knowledge”) or applied research (“research seeking solutions to practical problems”).
Moreover, classical research (using the scienti�c method of “formulate hypotheses then check or
test these by means of experiments and observations”) and technology research (“research for
the purpose of producing new and better artefacts”) can be di�erentiated. Technology research
belongs usually to applied research, and it uses an iterative process: (i) starting with a problem
analysis in which the potential needs for the new artifact are collected; (ii) the new artifact is
constructed in an innovative way; (iii) the new artifact is evaluated against the initial needs.

The research presented in this dissertation can be categorized as applied, technology re-
search, as its goal is to create better artifacts for solving practical problems. As the artifacts
included new modeling languages, an important question was how modeling languages can be
constructed.

Language construction To solve the identi�ed challenges, it was required to design new mod-
eling languages and extend existing ones. Engineering a new language is a complex task, in
order to precisely de�ne a new modeling language the following artifacts have to be speci�ed
[OMG11a].

• Abstract syntax de�nes the main conceptual elements of the language and their relation-
ships. The abstract syntax is meant for automated processing, and nowadays it is usually
given using metamodels.

• Concrete syntax de�nes the human interface of the language (e.g., visual or textual no-
tation). The elements of the concrete syntax have to be mapped to the elements of the
abstract syntax.

• Well-formedness rules de�ne additional constraints on the abstract syntax, which capture
more complex conditions that cannot be speci�ed otherwise easily in the abstract syntax.

• Semantics de�ne the meaning of the language elements, usually with the help of a mapping
to a well-de�ned semantic domain.

The rest of the section summarizes the new scienti�c results of the dissertation solving the
challenges presented in Section 1.3.

7



Zoltán Micskei PhD thesis booklet

2.1 Robustness testing of standard-based HA middleware

The �rst step of developing the test approach in the case of a “black box” AIS middleware was
to identify the possible sources of inputs that can activate robustness faults. These inputs are
depicted in Figure 3a, considering a typical computing node of a HA distributed system.

Custom Application

HA Middleware

Operating System

Hardware

3

External Components 1
Human 

Interface

API calls

OS calls4

HW 
failures

5

Operators

2

(a) Sources for activating robustness faults

3 3

Type-specific 

testing
Workload

Mutation 

testing

4

Operating System

Hardware

4

OS call interception

HA Middleware

(b) Robustness test techniques

Figure 3: Overview of the test approach for HA middleware systems

The developed test approach focused on the following direct sources, as the thorough testing
of the potential failures caused by the direct sources would cover a signi�cant part of the failures
induced by the other indirect sources.

The standardized middleware API calls are considered as a potential source of activating
robustness faults as they represent faults in the applications, in external components used by the
applications and human interaction also. The challenge in testing the API calls is that most of
the AIS interface functions are state-based, i.e., a proper initialization call sequence, middleware
con�guration and test arrangement is required, otherwise a trivial error code is returned.

The failures of the OS system calls were included as they do not only represent the faults of
the OS itself (which has lower probability for mature operating systems), but failures in other
software components, in the underlying hardware and in the environment could also manifest
in an error code returned by a system call. Possible examples of such conditions are writing data
to a full disk, communication errors when sending a message, etc.

The following test approach was developed that utilizes a combination of three techniques
to cover the selected sources, as depicted on Figure 3b.

• Type-speci�c testing: The robustness of the middleware’s API functions should be tested
in case of invalid values are used as parameters. This requires calling all the functions in
the API of the middleware with a thorough combination of the possible valid and invalid
values. The type-speci�c testing technique is used to construct such a robustness test suite,
as this technique o�ers a systematic method to de�ne the necessary valid and invalid test
values.

• Mutation-based sequential testing: Some speci�c states of the middleware can only be
reached by complex call sequences; nevertheless, the robustness of the API functions should

8



Zoltán Micskei PhD thesis booklet

be tested even from these states. Thus �rst the middleware should be directed to these
states, then its functions should be called with invalid inputs. The functional test suites
provided by the vendors of the HA middleware could be used to reach these states as these
test suites usually cover all the important states of the middleware. Therefore exceptional
test sequences are constructed by using mutation operators on functional test suites that
represent typical faults (e.g., changing the sequence of test calls, modifying parameters or
function names).

• OS call interception: In order to test how the middleware reacts to the failures of the con-
sumed lower-level services, the calls to the OS services should be intercepted and their
return values should be modi�ed. This interception can be realized with the help of a
wrapper component that is placed between the middleware and the operating system li-
braries. Furthermore, this kind of test activity requires a workload application that drives
the middleware in a way that the full range of the utilized OS calls could be observed and
intercepted.

A robustness test framework was constructed for the above test techniques using the follow-
ing systematic method:

1. First, the necessary test artifacts and their requirements were collected.

2. Next, the required test languages describing the test artifacts were constructed.

3. Finally, automatic tools were developed that can generate the test artifacts from descrip-
tions given using the test languages.

The generated robustness test suite was executed on three di�erent middleware implemen-
tations in several experiments to compare their robustness. The experiments identi�ed several
robustness failures in the implementations.

Thesis 1 Following a systematic method I identi�ed potential activation modes of robustness
faults (including activation through stateless API, stateful API and underlying services), designed
languages to represent the related test artifacts, and developed algorithms for tools that use these
languages to generate test data. I implemented the languages and tools in a test framework, which
can compare the robustness of standard speci�cation-based middleware implementations.

The work underlying Thesis 1 was a joint research with Francis Tam from Nokia Research
Center, whose contributions included the overall directions of the investigation and discussions
on the tool concept [Tam09].

The results of Thesis 1 are presented in Chapter 2 of the dissertation. Related publications
are the following: [2], [5], [6], [8], [10], [11], [12].

2.2 Semantic choices in UML 2 Sequence Diagrams

When we �rst experimented with describing test requirements for the mobile system applica-
tion domain using UML 2 Sequence Diagrams, we encountered the problem that the various
formal semantics proposed for Sequence Diagrams handle even the most basic diagrams quite
di�erently. It turned out that there are several subtle choices in the interpretation of language
constructs. Moreover, these choices and all their consequences are often not obvious. We thus
felt the need for a thorough review of the existing approaches before continuing with the test
requirement language de�nition.

The following research approach was applied.

9



Zoltán Micskei PhD thesis booklet

1. A literature review was conducted, and the proposed formal semantics for UML 2 Sequence
Diagrams were analyzed.

2. The semantic choices faced by the existing approaches were collected and categorized.

3. The di�erent options for the collected choices were evaluated.

As the above collection of choices and options can be useful for others extending or just sim-
ply using Sequence Diagrams for a special purpose, we searched for an easy to use presentation
format. Usually the main barrier in using formal semantics is that understanding them requires
substantial theoretical knowledge, thus we used a feature-model like representation [Kan+90]
that is easily usable by engineers. Figure 4 depicts the options for one of the choices to illustrate
the developed representation for the categorization. In this example Categorizing traces has two
con�icting alternatives, and the Two classes choices can be optionally re�ned.

Table 1 presents the high-level choices identi�ed to illustrate the types of decision one has
to make when using scenario languages. The table includes choices about even the most basic
constructs, e.g. how should a trace be represented, and choices coming up when dealing with
advanced constructs like predicates in guards and invariants.

Categorizing 

traces

Three classes: valid, invalid, inconclusive

Two classes †

valid and other

invalid and other

Figure 4: Options for the Categorizing traces choice

Thesis 2 I identi�ed and categorized the semantic choices and available options in UML 2 Se-
quence Diagrams. I gave a structured framework with an easy to use feature-model like represen-
tation of the available options that can be used to adapt the semantics of the language to a speci�c
purpose.

The results of Thesis 2 are presented in Chapter 3 of the dissertation. Related publications are
the following: [1], [13].

2.3 A test language and framework for mobile systems

To better understand the new testing related challenges a case study [7] was performed, the
analysis of a mobile Group Membership Protocol was carried out. The insights gained from this
case study can be summarized as follows. Standard UML was appropriate to model the structure
and behavior of one node (by static structure diagrams, state machines, activity diagrams etc.),
but it was inconvenient for modeling a complex scenario which included several nodes, due to
the lack of formal semantics assigned to sequence diagrams, lack of an unambiguous notation for
broadcast messages etc. Moreover, services and applications in mobile settings rely heavily not
just on user input but also on context information, like current location data. A test execution
engine should be able to feed the System Under Test (SUT) not only with the messages coming
outside from the SUT but also these contextual data.

Based on these studies a set of extensions were identi�ed that were incorporated into UML 2
Sequence Diagrams to produce a language, called TERMOS (Test Requirement language for Mo-
bile Setting), for describing test requirements for mobile systems. The language extension were
carried out in the following way.

10



Zoltán Micskei PhD thesis booklet

Table 1: Categorizing semantic choices in UML 2 Sequence Diagrams

Interpretation of a basic Interaction What is a trace?
Categorizing traces
Complete or partial traces

Introducing CombinedFragments Combining fragments

Computing partial orders Processing the diagram
Underlying formalisms
Choices and predicates

Introducing Gates Gates on CombinedFragments
Formal and actual Gates

Interpretation of conformance-related
operators

Assert and Negate
Ignore and Consider
Conformance-related operators in complex
diagrams
Traces being both valid and invalid

• The abstract syntax of the languages was speci�ed on one hand using the standardized
way of de�ning a new UML pro�le with the appropriate stereotypes and tagged values, on
the other hand by placing restrictions on the original metamodel of Sequence Diagrams to
restrict the usage of certain elements.

• The concrete syntax used or reused the existing language elements. In this way the new
test requirement scenarios can be modeled in existing UML tools, easing the usage of the
new language.

• Further well-formedness constraints were de�ned to restrict the usage of certain combi-
nations that would result in hard to check requirements, e.g., nesting of negated elements.

• The semantics was de�ned using the choices and options identi�ed in Thesis 2. The for-
mal semantics was inspired by the semantics de�ned for LSC [Klo03], which creates an
automaton from a chart using a process called unwinding.

Figure 5 presents an example for a test requirement speci�ed for a mobile system. Figure 5a
contains the con�guration fragments the scenario is referring to, while 5b captures the commu-
nication messages and time points, where the changes occur.

The testing framework requires a method to evaluate the requirements. Detailed traces are
captured during testing containing the communication events and changes in the communication
topology or the context of the system. A matching is then performed to search for nodes or
context objects which could play the roles speci�ed in the con�guration or context fragment
of the test requirement. Finally, based on the modalities de�ned by the conformance operators
(assert, negate) in the scenario, the test requirement is evaluated and a verdict is attached to the
test.

Thesis 3 I designed a test requirement language that can be used in the domain of mobile systems.
I de�ned the syntax of the language using extensions to the UML Sequence Diagrams’ metamodel,

11



Zoltán Micskei PhD thesis booklet

C1

1 : Node 2 : Node

3 : Node
<<safe>> <<safe>>

C2

1 : Node 2 : Node

3 : Node
<<safe>>

<<notSafe>>

(a) Spatial view

sd split

assert

1: 2: <<leader>> 3:

INITIALCONFIG = C1

<<broadcast>> hello
<<broadcast>> hello

SPGroupChange

SPGroupChange

SPGroupChange

CHANGE(C2)

<<broadcast>> hello

{id = 1}

{id = 1}

{id = 1}

(b) Event view

Figure 5: Example requirement scenario for a mobile system

and its semantics using an automaton-based formal operational semantics. The language is capable
of expressing local broadcasts and changes in the communication topology, and has the necessary
syntactic and semantic choices to make the speci�ed requirements checkable.

Developing the test framework for mobile systems was a joint research with Nicolas Rivière
and Minh Duc Nguyen from LAAS-CNRS. Designing and developing a tool called GraphSeq for
matching parts of the test traces with test requirements was a contribution in Minh Duc Nguyen’s
PhD dissertation [Ngu09]. Áron Hamvas, an MSc student I supervised, created a tool [Ham10]
for evaluating scenarios using the matching produced by GraphSeq.

The results of Thesis 3 are presented in Chapter 4 of the dissertation. Related publications
are the following: [3], [4], [7], [9], [14].

3 Applications of new results

This section summarizes the practical applications of the results of the PhD dissertation.

3.1 Robustness comparison of AIS-based middleware implementations

The results presented in Thesis 1 were applied in robustness testing and comparison of several
HA middleware implementations.

• The robustness test suite was executed on three di�erent middleware implementations: on
OpenAIS [Opea], on OpenSAF [Opeb], and on Fujitsu-Siemens’ SAFE4TRY. The results of
the tests and comparisons of the di�erent middleware implementations were published in
[5], [6], [8].

• The faults identi�ed in OpenAIS were reported to the open source community, and the
whole robustness test suite was made publicly available [BME07].

• The robustness testing results for OpenAIS and OpenSAF were uploaded to the public
AMBER Data Repository (ADR) [AMM10]. ADR is an open repository for uploading, ana-
lyzing and sharing benchmark and measurement data. Our robustness testing results can
be downloaded or analyzed in ADR.

12



Zoltán Micskei PhD thesis booklet

3.2 Testing mobile systems

The categorization of semantic choices in UML 2 Sequence Diagrams presented in Thesis 2 was
used to de�ne a new testing language for mobile systems called TERMOS [4].

The TERMOS language (Thesis 3) was de�ned in the context of the HIDENETS EU FP6 re-
search project [HID09]. The HIDENETS project (Highly dependable IP-based networks and ser-
vices) developed and analyzed end-to-end resilience solutions for distributed applications and
mobility-aware services in car-to-car communication scenarios with infrastructure service sup-
port.

These results are also used in the context of the ARTEMIS R3-COP research project [R3C11]
to design a test requirement scenario language for autonomous systems. The R3-COP project
(Resilient Reasoning Robotic Co-operating Systems) aims to develop new methodology and tech-
nologies to enable production of advanced robust and safe cognitive, reasoning autonomous and
co-operative robotic systems in di�erent application domains.

4 Publication list

Number of peer-reviewed publications: 16
Number of independent citations: 33

4.1 Publications related to the theses

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thesis 1: • • • • • • •
Thesis 2: • •
Thesis 3: • • • • •

Journal paper

[1] Z. Micskei and H. Waeselynck. “The many meanings of UML 2 Sequence Diagrams: a
survey”. In: Software and Systems Modeling 10.4 (2011), pp. 489–514. doi: 10.1007/

s10270-010-0157-9

Chapter in edited book

[2] Z. Micskei, H. Madeira, A. Avritzer, I. Majzik, M. Vieira, and N. Antunes. “Robustness
Testing Techniques and Tools”. In: Resilience Assessment and Evaluation of Computing
Systems. Ed. by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel. Springer, 2012,
pp. 323–339. doi: 10.1007/978-3-642-29032-9_16
The section giving a survey on robustness testing was my contribution in the chapter.

[3] G. Pintér, Z. Micskei, A. Kövi, Z. Égel, I. Kocsis, G. Huszerl, and A. Pataricza. “Model-Based
Approaches for Dependability in Ad-Hoc Mobile Networks and Services”. In: Architecting
Dependable Systems V. Springer, 2008, pp. 150–174. doi: 10.1007/978-3-540-85571-
2_7

The section describing the testing method of mobile systems was my contribution.

13

http://dx.doi.org/10.1007/s10270-010-0157-9
http://dx.doi.org/10.1007/s10270-010-0157-9
http://dx.doi.org/10.1007/978-3-642-29032-9_16
http://dx.doi.org/10.1007/978-3-540-85571-2_7
http://dx.doi.org/10.1007/978-3-540-85571-2_7


Zoltán Micskei PhD thesis booklet

International conference

[4] H. Waeselynck, Z. Micskei, N. Rivière, Á. Hamvas, and I. Nitu. “TERMOS: a Formal Lan-
guage for Scenarios in Mobile Computing Systems”. In: Mobile and Ubiquitous Systems:
Computing, Networking, and Services (MobiQuitous 2010). Ed. by P. Sénac, M. Ott, and A.
Seneviratne. Sydney, Australia, Dec. 2010, pp. 285–296. doi: 10.1007/978- 3- 642-

29154-8_24

The concept of a separate event and spatial view, moreover the test framework using such sce-
narios was a joint contribution. My contributions included designing the syntax and semantics
of the TERMOS language.

[5] A. Kövi and Z. Micskei. “Robustness Testing of Standard Speci�cations-Based HA Mid-
dleware”. In: 30th International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, June 2010, pp. 302–306. doi: 10.1109/ICDCSW.2010.73
The robustness testing framework (test approach and tools) was my contribution, and András
Kövi prepared, executed and analyzed the experiments on the OpenSAF middleware.

[6] Z. Micskei, I. Majzik, and F. Tam. “Comparing Robustness of AIS-Based Middleware Imple-
mentations”. In: International Service Availability Symposium (ISAS 2007). Ed. by M. Malek,
M. Reitenspieß, and A. van Moorsel. Vol. 4526. LNCS. Springer, May 2007, pp. 20–30. doi:
10.1007/978-3-540-72736-1_3

The concept of the robustness test framework was a joint contribution. Implementing the test
tools and running and analysing the test experiments was my contribution.

[7] H. Waeselynck, Z. Micskei, M. D. Nguyen, and N. Rivière. “Mobile Systems from a Vali-
dation Perspective: a Case Study”. In: Sixth International Symposium on Parallel and Dis-
tributed Computing (ISPDC ’07). Ed. by D. Kranzlmüller, W. Schreiner, and J. Volkert. Ha-
genberg, Austria: IEEE Computer Society, July 2007, pp. 85–92. doi: 10.1109/ISPDC.
2007.37

The static review of the speci�cation and the implementation was my contribution in the
paper. Minh Duc Nguyen performed the test experiments on the GMP case study.

[8] Z. Micskei, I. Majzik, and F. Tam. “Robustness Testing Techniques for High Availability
Middleware Solutions”. In: International Workshop on Engineering of Fault Tolerant Systems
(EFTS2006). Luxembourg, Luxembourg: University of Luxembourg, June 2006, pp. 55–66
The concept of the robustness test framework was a joint contribution. Designing and imple-
menting the individual test tools was my contribution.

Local conference

[9] Z. Micskei. “Specifying Tests for Ad-Hoc Mobile Systems”. In: 15th PhD Mini-Symposium.
Budapest University of Technology and Economics. Budapest, Hungary: Department of
Measurement and Information Systems, Feb. 2008, pp. 32–35

[10] Z. Micskei. “Robustness Comparison of High Availability Middleware Systems”. In: 14th
PhDMini-Symposium. Budapest University of Technology and Economics. Budapest, Hun-
gary: Department of Measurement and Information Systems, Feb. 2007, pp. 70–73

[11] Z. Micskei. “Robustness Testing of High Availability Middleware Solutions”. In: 13th PhD
Mini-Symposium. Budapest University of Technology and Economics. Budapest, Hungary:
Department of Measurement and Information Systems, Feb. 2006, pp. 36–37

14

http://dx.doi.org/10.1007/978-3-642-29154-8_24
http://dx.doi.org/10.1007/978-3-642-29154-8_24
http://dx.doi.org/10.1109/ICDCSW.2010.73
http://dx.doi.org/10.1007/978-3-540-72736-1_3
http://dx.doi.org/10.1109/ISPDC.2007.37
http://dx.doi.org/10.1109/ISPDC.2007.37


Zoltán Micskei PhD thesis booklet

[12] Z. Micskei. “Nagy Rendelkezésre Állást Biztosító Köztes Rétegek Robosztusság Tesztelése”.
In: Proceedings of Tavaszi Szél 2006. Kaposvár, Hungary: Doktoranduszok Országos Szövet-
sége, May 2006, pp. 295–298

Technical report

[13] Z. Micskei and H. Waeselynck. A survey of UML 2.0 sequence diagrams’ semantics. Tech.
rep. 08389. Laboratoire d’Analyse et d’Architecture des Systemes (LAAS), Aug. 2008, pp. 1–
37

[14] Z. Micskei, H. Waeselynck, M. D. Nguyen, and N. Rivière. Analysis of a group membership
protocol for Ad-hoc networks. Tech. rep. 06797. Laboratoire d’Analyse et d’Architecture des
Systemes (LAAS), Nov. 2006, pp. 1–42
The insights gained from the case study was a joint contribution. I performed the speci�cation
review and reverse engineering the implementation.

4.2 Additional publications

Journal paper

[15] I. Kocsis, A. Pataricza, Z. Micskei, A. Kövi, and Z. Kocsis. “Analytics of Resource Transients
in Cloud Based Applications”. In: Int. Journal of Cloud Computing (). To appear. url:
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijcc

[16] G. Pintér, Z. Micskei, and I. Majzik. “Supporting design and development of safety critical
applications by model based tools”. In: Annales Universitatis Scientiarum Budapestinensis
de Rolando Eötvös nominatae Sectio Computatorica XXX (2009), pp. 61–78

International conference

[17] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik. “A Concept for Testing Robustness and
Safety of the Context-Aware Behaviour of Autonomous Systems”. In: Agent and Multi-
Agent Systems. Technologies and Applications. Ed. by G. Jezic, M. Kusek, N.-T. Nguyen, R.
Howlett, and L. Jain. Vol. 7327. LNCS. Springer, June 2012, pp. 504–513. doi: 10.1007/
978-3-642-30947-2_55

[18] I. Kocsis, A. Pataricza, Z. Micskei, I. Szombath, A. Kövi, and Z. Kocsis. “Cloud Based Ana-
lytics for Cloud Based Applications”. In: 1st International IBM Cloud Academy Conference.
Research Triangle Park, USA, Apr. 2012, pp. 1–23

[19] F. Bouquet, R. Breu, J. Jurjens, F. Massacci, V. Meduri, Z. Micskei, F. Piessens, K. Stolen,
and D. Varró. “SecureChange: Security Engineering for Lifelong Evolvable Systems”. In:
European Future Technologies Conference and Exhibition (FET09). Poster Session. Prague,
Czech Republic, Apr. 2009, pp. 101–102

[20] L. Gönczy, I. Majzik, A. Horváth, D. Varró, A. Balogh, Z. Micskei, and A. Pataricza. “Tool
Support for Engineering Certi�able Software”. In: Electronic Notes in Theoretical Computer
Science 238.4 (2009). Proc. of 1st Workshop on Certi�cation of Safety-Critical Software
Controlled Systems (SafeCert 2008), pp. 79–85. doi: 10.1016/j.entcs.2009.09.008

15

http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijcc
http://dx.doi.org/10.1007/978-3-642-30947-2_55
http://dx.doi.org/10.1007/978-3-642-30947-2_55
http://dx.doi.org/10.1016/j.entcs.2009.09.008


Zoltán Micskei PhD thesis booklet

[21] I. Majzik, Z. Micskei, and G. Pintér. “Development of Model Based Tools to Support the
Design of Railway Control Applications”. In: Computer Safety, Reliability, and Security.
Ed. by F. Saglietti and N. Oster. Vol. 4680. LNCS. Springer Berlin / Heidelberg, Sept. 2007,
pp. 430–435. doi: 10.1007/978-3-540-75101-4_41

[22] G. Pintér, Z. Micskei, and I. Majzik. “Supporting Design and Development of Safety Crit-
ical Applications by Model Based Tools”. In: 10th Symposium on Programming Languages
and Software Tools (SPLST 2007). Ed. by Z. Horváth, L. Kozma, and V. Zsók. Dobogókő,
Hungary: Eotvos University Press, June 2007, pp. 61–75

[23] Z. Micskei and I. Majzik. “Model-based Automatic Test Generation for Event-Driven Em-
bedded Systems using Model Checkers”. In: Dependability of Computer Systems (DepCoS-
RELCOMEX 2006). IEEE Computer Society, May 2006, pp. 191–198. doi: 10 . 1109 /

DEPCOS-RELCOMEX.2006.37

Local event

[24] Z. Micskei. “Automatikus tesztgenerálás modell ellenőrzővel”. In: X. Fiatal Műszakiak
Tudományos Ülésszaka (FMTU). ed. by E. Bitay. Erdélyi Múzeum Egyesület. Kolozsvár,
Románia, Mar. 2005, pp. 47–50

References

[AMM10] R. Almeida, N. Mendes, and H. Madeira. “Sharing Experimental and Field Data: The
AMBER Raw Data Repository Experience”. In:Distributed Computing SystemsWork-
shops (ICDCSW), 2010 IEEE 30th International Conference on. 2010, pp. 313–320. doi:
10.1109/ICDCSW.2010.75.

[AMN12] C. Andrés, M. G. Merayo, and M. Núñez. “Formal passive testing of timed systems:
theory and tools”. In: Software Testing, Veri�cation and Reliability (2012). doi: 10.
1002/stvr.1464.

[Avi+04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic Concepts and Tax-
onomy of Dependable and Secure Computing”. In: IEEE Trans. Dependable Secur.
Comput. 1 (2004), pp. 11–33. doi: 10.1109/TDSC.2004.2.

[BDR07] M. Baldauf, S. Dustdar, and F. Rosenberg. “A survey on context-aware systems”. In:
Int. J. Ad Hoc Ubiquitous Comput. 2.4 (2007), pp. 263–277. doi: 10.1504/IJAHUC.
2007.014070.

[Bei90] B. Beizer. Software Testing Techniques. 2nd Edition. International Thomson Press,
1990.

[BL02] L. Briand and Y. Labiche. “A UML-Based Approach to System Testing”. In: Software
and Systems Modeling 1.1 (2002), pp. 10–42. doi: 10.1007/s10270-002-0004-8.

[BM04] E. Belloni and C. Marcos. “MAM-UML: An UML Pro�le for the Modeling of Mobile-
Agent Applications”. In: Chilean Computer Science Society, International Conference
of the. 2004, pp. 3–13. doi: 10.1109/QEST.2004.14.

[BME07] BME. Robustness test suite for OpenAIS framework. 2007. url: http://mit.bme.
hu/~micskeiz/pages/robustness_testing.html#aisrobustness.

[Coo12] S. Cook. “Looking back at UML”. In: Software and Systems Modeling (2012), pp. 1–10.
doi: 10.1007/s10270-012-0256-x.

16

http://dx.doi.org/10.1007/978-3-540-75101-4_41
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.37
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.37
http://dx.doi.org/10.1109/ICDCSW.2010.75
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1007/s10270-002-0004-8
http://dx.doi.org/10.1109/QEST.2004.14
http://mit.bme.hu/~micskeiz/pages/robustness_testing.html#aisrobustness
http://mit.bme.hu/~micskeiz/pages/robustness_testing.html#aisrobustness
http://dx.doi.org/10.1007/s10270-012-0256-x


Zoltán Micskei PhD thesis booklet

[DH01] W. Damm and D. Harel. “LSCs: Breathing Life into Message Sequence Charts”.
In: Formal Methods in System Design 19.1 (2001), pp. 45–80. doi: 10 . 1023 / A :
1011227529550.

[Ham10] Á. Hamvas. “Using UML Sequence Diagrams for the Requirement Analysis of Mo-
bile Distributed Systems”. MSc thesis. Budapest University of Technology and Eco-
nomics (BME), 2010.

[Hes+08] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou. “Test-
ing Real-Time Systems Using UPPAAL”. In: Formal Methods and Testing. Vol. 4949.
LNCS. 2008, pp. 77–117. doi: 10.1007/978-3-540-78917-8_3.

[HID09] HIDENETS. Highly dependable ip-based networks and services. EU FP6 Speci�c Tar-
geted Research Project (STREP), IST 026979. 2009. url: http://www.hidenets.
aau.dk.

[Hon+01] H. S. Hong, I. Lee, O. Sokolsky, and S. D. Cha. “Automatic Test Generation from
Statecharts Using Model Checking”. In: In Proceedings of FATES’01, Workshop on
Formal Approaches to Testing of Software, volume NS-01-4 of BRICS Notes Series. 2001,
pp. 15–30.

[IEE10] Institute of Electrical and Electronics Engineers. Systems and software engineering –
Vocabulary. Standard 24765:2010. 2010, pp. 1–418. doi: 10.1109/IEEESTD.2010.
5733835.

[IEE11] Institute of Electrical and Electronics Engineers. IEEE Standard for Automatic Test
Markup Language (ATML) for Exchanging Automatic Test Equipment and Test Infor-
mation via XML. Standard 1671-2010. 2011, pp. 1–388. doi: 10.1109/IEEESTD.
2011.5706290.

[IST10] International Software Testing Quali�cations Board. Standard glossary of terms used
in Software Testing. Version 2.1. 2010. url: http://istqb.org/display/ISTQB/
Downloads.

[ITU07] International Telecommunication Union. Testing and Test Control Notation version
3: TTCN-3 core language. Recommendation Z.161. 2007. url: http://www.itu.
int/rec/T-REC-Z.161.

[ITU11] International Telecommunication Union. Message Sequence Chart (MSC). Recom-
mendation Z.120. 2011. url: http://www.itu.int/rec/T-REC-Z.120.

[JJ05] C. Jard and T. Jéron. “TGV:, theory, principles and algorithms”. In: International
Journal on Software Tools for Technology Transfer (STTT) 7.4 (2005), pp. 297–315.
doi: 10.1007/s10009-004-0153-x.

[Kan+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep. CMU/SEI-90-TR-021.
Carnegie-Mellon University Software Engineering Institute, 1990.

[KDD08] P. Koopman, K. Devale, and J. Devale. “Interface Robustness Testing: Experience
and Lessons Learned from the Ballista Project”. In: Dependability Benchmarking for
Computer Systems. Ed. by K. Kanoun and L. Spainhower. John Wiley & Sons, Inc.,
2008, pp. 201–226. doi: 10.1002/9780470370506.ch11.

[Klo03] J. Klose. “Live Sequence Charts: A Graphical Formalism for the Speci�cation of
Communication Behavior”. PhD thesis. Carl von Ossietzky Universitat Oldenburg,
2003.

17

http://dx.doi.org/10.1023/A:1011227529550
http://dx.doi.org/10.1023/A:1011227529550
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://www.hidenets.aau.dk
http://www.hidenets.aau.dk
http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://dx.doi.org/10.1109/IEEESTD.2011.5706290
http://dx.doi.org/10.1109/IEEESTD.2011.5706290
http://istqb.org/display/ISTQB/Downloads
http://istqb.org/display/ISTQB/Downloads
http://www.itu.int/rec/T-REC-Z.161
http://www.itu.int/rec/T-REC-Z.161
http://www.itu.int/rec/T-REC-Z.120
http://dx.doi.org/10.1007/s10009-004-0153-x
http://dx.doi.org/10.1002/9780470370506.ch11


Zoltán Micskei PhD thesis booklet

[Koc+98] B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt. “Autolink-a tool for automatic
test generation from SDL, speci�cations”. In: Industrial Strength Formal Speci�cation
Techniques, 1998. Proceedings. 2nd IEEE, Workshop on. 1998, pp. 114–125. doi: 10.
1109/WIFT.1998.766305.

[KSH07] H. Kugler, M. J. Stern, and E. J. A. Hubbard. “Testing scenario-based models”. In: Pro-
ceedings of the 10th international conference on Fundamental approaches to software
engineering. (Braga, Portugal). FASE’07. 2007, pp. 306–320. doi: 10.1007/978-3-
540-71289-3_24.

[MFS90] B. P. Miller, L. Fredriksen, and B. So. “An empirical study of the reliability of UNIX
utilities”. In: Commun. ACM 33.12 (1990), pp. 32–44. doi: 10.1145/96267.96279.

[MS04] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004.
[Ngu09] M. D. Nguyen. “Méthodologie de test de systèmes mobiles : Une approche basée sur

les sénarios”. PhD thesis. Université Paul Sabatier - Toulouse III, 2009.
[OMG05] Object Management Group. UML Testing Pro�le v1.0 (U2TP). 2005. url: http://

www.omg.org/technology/documents/formal/test_profile.htm.
[OMG11a] Object Management Group. Uni�ed Modeling Language (UML) 2.4.1 Infrastructure

Speci�cation. formal/2011-08-05. 2011.
[OMG11b] Object Management Group. Uni�ed Modeling Language (UML) 2.4.1 Superstructure

Speci�cation. formal/2011-08-06. 2011.
[Opea] OpenAIS.OpenAIS Standards Based Cluster Framework. url: http://www.openais.

org.
[Opeb] OpenSAF.OpenSAFOpen Service Availability Framework. url: http://www.opensaf.

org.
[PJ04] S. Pickin and J.-M. Jézéquel. “Using UML Sequence Diagrams as the Basis for a

Formal Test Description Language”. In: Integrated Formal Methods. Vol. 2999. LNCS.
2004, pp. 481–500. doi: 10.1007/978-3-540-24756-2_26.

[R3C11] R3-COP. Resilient Reasoning Robotic Co-operating Systems. ARTEMIS research project
nr. 100233. 2011. url: http://www.r3-cop.eu/.

[SAF07] Service Availability Forum (SA Forum).Application Interface Speci�cation (AIS). 2007.
url: http://www.saforum.org.

[SE04] K. Saleh and C. El-Morr. “M-UML: an extension to UML for the modeling of mobile
agent-based software systems”. In: Information and Software Technology 46.4 (2004),
pp. 219–227. doi: 10.1016/j.infsof.2003.07.004.

[SS07] I. Solheim and K. Stølen. Technology research explained. Tech. rep. SINTEF A313.
SINTEF ICT, 2007.

[Tam09] F. Tam. “Service Availability Standards for Carrier-Grade Platforms: Creation and
Deployment in Mobile Networks”. Tampere University of Technology, 2009. url:
http://URN.fi/URN:NBN:fi:tty-200904281053.

18

http://dx.doi.org/10.1109/WIFT.1998.766305
http://dx.doi.org/10.1109/WIFT.1998.766305
http://dx.doi.org/10.1007/978-3-540-71289-3_24
http://dx.doi.org/10.1007/978-3-540-71289-3_24
http://dx.doi.org/10.1145/96267.96279
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.openais.org
http://www.openais.org
http://www.opensaf.org
http://www.opensaf.org
http://dx.doi.org/10.1007/978-3-540-24756-2_26
http://www.r3-cop.eu/
http://www.saforum.org
http://dx.doi.org/10.1016/j.infsof.2003.07.004
http://URN.fi/URN:NBN:fi:tty-200904281053

	Preliminaries and objectives
	Existing test languages and approaches
	Examples of languages for describing test artifacts
	Using UML 2 for specifying test artifacts
	Test approaches utilized in the dissertation

	New application domains
	High availability middleware systems
	Context-aware mobile computing systems

	Summarizing the new challenges

	Research method and new results
	Robustness testing of standard-based HA middleware
	Semantic choices in UML 2 Sequence Diagrams
	A test language and framework for mobile systems

	Applications of new results
	Robustness comparison of AIS-based middleware implementations
	Testing mobile systems

	Publication list
	Publications related to the theses
	Additional publications


