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Introduction

Chaotic, “stochastic” behavior of deterministic systems is much interesting
from both theoretical and applied points of view. An archetype of such sys-
tems is the Sinai billiard - or equivalently, its periodic extension, the periodic
Lorentz process. The definition of Sinai billiard is the following. Fix some
strictly convex subsets B1, . . . Bk of the d dimensional torus, whose bound-
aries fulfill some regularity conditions. These sets are thought of as scatterers.
The continuous dynamics, called the billiard flow is the free flight of a point
particle among the scatterers and its specular reflection on their boundaries.
The speed of the particle is constant (equals to one, say), thus the phase space
of the billiard flow consists of a spatial component (d dimensional torus minus
the scatterers) and a velocity vector, which is an element of the d− 1 dimen-
sional unit sphere. Lebesgue measure is a natural invariant measure in both
coordinates. The same motion is described by the billiard ball map, which is
the Poincaré section of the flow on the boundaries of the scatterers. Hence
its phase space has spatial dimension is d− 1 and full dimension 2d− 2. The
simplest case is of course the planar one (d = 2), where the phase space of the
billiard ball map is two dimensional.
The development of the theory of planar Sinai billiard in the last decades is
miraculous (consult [6] for lot of details). Besides ergodicity and hyperbolicity,
the most interesting statistical properties are the decay of correlation and the
central limit theorem (CLT), or diffusion. For an abstract dynamical system
(M,F , µ), the former means that

∫
f(g ◦ Fn)dµ is exponentially small in n

if
∫
fdµ =

∫
gdµ = 0 and f and g are chosen from a nice set of functions

(definitely containing the free flight function for the billiard ball map). With
this terminology, CLT means that 1√

n

∑n
k=1 f ◦Fk, as a random variable with

respect to µ, weakly converges to a Gaussian distribution.
CLT for Sinai billiards (or equivalently, for Lorentz processes) was first proven
in [1]. It turned out that a nontrivial condition for CLT is that the free flight
function should be bounded.

Definition 1. We say that a Sinai billiard (or periodic Lorentz process) has
finite horizon, if the free flight function is bounded. Equivalently, it has infinite
horizon, if there is an infinite line which is disjoint from the interior of all
scatterers.

In 1998, Young [27] introduced the tower technique which was strong
enough to prove exponential decay of correlation for the billiard ball map and
also provided a new, transparent proof of the CLT. Her method was success-
fully applied by Szász and Varjú in the case of infinite horizon [26]. According
to their most interesting result, the presence of infinite horizon yields a slightly
super-diffusive behavior. The displacement of the particle in n steps, rescaled
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by
√
n log n, converges to some Gaussian distribution. In fact, they proved a

local version of this limit theorem and also that of the CLT in case of finite
horizon [25].
Chernov and Dolgopyat managed to further simplify the proof of the CLT with
their method of “standard pairs”. This technique is also applicable to many
other problems. Besides the proof of the limit theorem in both finite and in-
finite horizons ([3, 4]), it also yielded more delicate statistical properties (e.g.
convergence to Brownian motion, law of iterated logarithm [3]) and also limit
theorems for related models (e.g. for a systems with two particles colliding
with each other, too, [5], or for billiards under external fields). Further, sev-
eral arguments from probability theory has been successfully reapplied to Sinai
billiards, thanks to this technique. Dolgopyat, Szász and Varjú [9] proved del-
icate recurrence properties of the periodic Lorentz process with finite horizon.
They also proved CLT for a non-periodic Lorentz process with finite horizon
[10], where periodicity is spoiled in a compact domain. A related conjecture
is the following.

Conjecture 1. Modify the scatterer configuration of a periodic Lorentz process
with infinite horizon on a compact subset (the modification still satisfies the
assumptions of the Sinai billiard). Then, the super-diffusive limit theorem
remains valid.

In the last few years, some other non-homogeneous modifications of the
periodic Lorentz process were also considered, see for instance [24] for a very
recent one. As both the delicate statistical properties of the periodic Lorentz
process and the basic statistical properties of some non-homogeneous versions
are current active research fields, there are plenty of interesting, challenging
questions, a few of which we are discussing in the thesis.
Roughly speaking, Chapters 2 and 3 are about delicate properties of peri-
odic case, mainly in the framework of some stochastic models designed for
better understanding of the Lorentz process. Chapters 4 and 5 address some
inhomogeneity (in Lorentz process, and one dimensional expanding maps, re-
spectively). Chapters 6 and 7 deal with two and higher dimensional periodic
Lorentz process with infinite horizon. Chapters 3 and 7 were prepared in the
hope that they might be useful by attacking Conjecture 1.
The thesis itself is based on four published journal papers [15, 16, 17, 18], and
a preprint [19]. It contains 6 Chapters (and an Introduction). The results pre-
sented in Chapters 5,6 and 7 are joint with Tamás Varjú (besides my adviser
prof. Domokos Szász). That is why I found it more appropriate to summarize
the half of these joint results (namely, Chapter 5 and the half of Chapter 6)
in this synopsis.
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1 Range of a random walk with internal states

An interesting question for random walks is that how many sites are visited
by the walker up to time n, where n is large. The first results for this question
was given by Dvoretzky and Erdős, in their celebrated paper [11]. This work
answers many relevant questions for the simplest model, namely, for simple
symmetric random walk. In Chapter 2 of the thesis we answer the correspond-
ing questions for random walks with internal states (RWwIS). These walks are
thought of as some stochastic models of the Lorentz process with finite hori-
zon (see [23]), thus, in particular, we assume the existence of third of fourth
moments, if necessary. It is also important to mention that the analogous
problem for planar Lorentz process with finite horizon was solved by Pène in
[20]. This Chapter is based on the article [15].

Definition 2. Let E be a finite set. On the set H = Zd×E (d = 1, 2, ...), the
Markov chain ξn = (ηn, εn) is a random walk with internal states (RWwIS), if
for ∀xn, xn+1 ∈ Zd, jn, jn+1 ∈ E

P (ξn+1 = (xn+1, jn+1)|ξn = (xn, jn)) = pxn+1−xn,jn,jn+1 .

There are some basic assumptions which will throughout be supposed.
These are the following:

(i) (ε0, ε1, ...) - obviously a Markov chain - is irreducible and aperiodic (its
stationary distribution will be denoted by µ)

(ii) the arithmetics are trivial, with the notation in [13], L = Zd

(iii) the expectation of one step is zero provided that ε0 is distributed accord-
ing to its unique stationary measure

(iv) the covariance matrix, σ (see the exact definition in [13]), exists and is
nonsingular.

Let Ld(n) denote the number of visited sites until time n, that is

Ld(n) = |{v ∈ Zd : ∃k ≤ n, ηk = v}|.

Let us denote the expectation of Ld(n) by Ed(n) and the variance by Vd(n).
The main results can be summarized as follows.
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Theorem 2. Independently of the distribution of ε0, the following estimates
are true

E3 (n) = nγ3 +O(
√
n)

E4 (n) = nγ4 +O(log n)

Ed (n) = nγd + βd +O(n2−d/2) for d ≥ 5

Vd(n) = O
(
n1+ 2

d

)
with some constants γd, βd, depending on the RWwIS.

Theorem 3. For RWwIS in d ≥ 3 strong law of large numbers holds, namely

P

(
lim
n→∞

Ld(n)

Ed(n)
= 1

)
= 1.

Theorem 4. Let d = 2. For arbitrary ν distribution of ε0,

E2 (n) =
2π
√
|σ|n

log n
+O

(
n log log n

log2 n

)
.

Theorem 5. For arbitrary ν distribution of ε0

V2(n) = O

(
n2 log log n

log3 n

)
.

Moreover, the great order is uniform in ν.

Theorem 6. For any RWwIS in d = 2, strong law of large numbers holds,
namely

P

(
lim
n→∞

L2(n)

E2(n)
= 1

)
= 1.

Proposition 7. With arbitrary distribution of ε0 the following holds

E1 (n) ∼
√

8 |σ|
π

n1/2.

As the simple symmetric random walk, the RWwIS is also recurrent in
dimensions 1 and 2 and transient in dimension d ≥ 3. In fact, the planar re-
currence is in some sense weak, meaning that it takes very long time to return.
This phenomenon makes the treatment of the planar case much more compli-
cated than that of other dimensions. In particular, one needs to estimate the
error term of the local limit theorem for RWwIS (the leading term was com-
puted in [13]). Thus we provide some refinements of this local limit theorem,
some of which might deserve some independent interest. In the synopsis, we
formulate one of these refinements, the reader is referred to the thesis for more
details.
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Theorem 8. For a one dimensional RWwIS the existence of appropriately
defined third moment imply

P (ξn = (x, k)|ξ0 = (0, j))−

− µk
1√

2πnσ
exp

(
− x2

2nσ2

)[
1− ir3

6
x
(
3σ2n− x2

) 1

σ6

1

n2

]
= o

(
1

n

)
,

where the convergence is uniform in x.

2 Recurrence properties of a Heavy Tailed Ran-

dom Walk

Chapter 3 of the thesis is about delicate recurrence properties of a random
walk, the step distribution of which has the same tail asymptotics as the
planar Lorentz process with infinite horizon. We address exactly the same
questions Dolgopyat, Szász and Varjú were dealing with in [9] (which were
also important by the proof of the convergence to the Brownian motion in
locally perturbed periodic Lorentz process with finite horizon [10]). These
questions include the tail asymptotics of the distribution of the first return
time to the starting position (origin), limit theorem for the local time at the
origin and for the hitting time of the origin as started from far away. The
consequence is that in case of the infinite horizon, the recurrence properties
are weaker, as expected - for instance, the local time up to n is scaled by
log log n in compare to log n in finite horizon. Some of these results can be
proven for the Lorentz process too, but some of them are open. These results
have appeared in [16].
Define independent random variables Xi, such that

P (Xi = n) = c1|n|−3,

if n 6= 0, and Ei to be uniformly distributed on the 4 unit vectors in Z2. Now
put ξi = XiEi. (Here, of course, c1 = 1

2ζ(3)
, but this will not be important for

us.) Define the Heavy-Tailed Random Walk (HTRW) by Sn :=
∑n

i=1 ξi.
This distribution is the same, as the one of the free flight vector of the Lorentz
process with infinite horizon (see [26]). However, one could think that our
choice is rather special, as the walker can only step along the x and y axis.
But this is not the case, as a particle performing Lorentz process can have
arbitrary long steps only in finitely many directions, too. Here, we choose
that two particular directions, but this is not essential.
Further, define the one dimensional HTRW as

Qn :=
n∑
i=1

Xi.
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Definition 3. Let τ2 be the first return to the origin in two dimensions, i.e.

τ2 = min{n > 0 : Sn = (0, 0)}.

Theorem 9. P(τ2 > n) ∼ 4πc1
log logn

.

Theorem 10. Let Nn
2 = #{k ≤ n : Sk = (0, 0)}. Then

Nn
2

log log n

converges to an exponential random variable with expected value 1
4πc1

.

Definition 4. Let tv be the hitting time of the origin, starting from the site
v ∈ Z2, i.e.

tv = min{k ≥ 0 : Sk = (0, 0)|S0 = v}.

Theorem 11.
log log tv
log log |v|

⇒ 1

U

as |v| → ∞, where U is uniformly distributed on [0, 1] and ⇒ stands for weak
convergence.

Definition 5. Let τ1 be the first return to the origin in one dimension, i.e.

τ1 = min{n > 0 : Qn = 0}.

Theorem 12. P(τ1 > n) ∼ 2
√
c1√
π

√
logn
n

.

Theorem 13. Let Nn
1 = #{k ≤ n : Qk = 0}. Then

Nn
1

√
log n√
n

converges to a Mittag-Leffler distribution with parameters 1/2 and (2
√
c1)
−1,

i.e. to the distribution, the kth moment of which is

1

(2
√
c1)k

k!

Γ
(
k
2

+ 1
) .

The first similar results were, of course, for simple symmetric random walk
(see [12] and [7]). In order to prove Theorem 11 - just like in Chapter 2 -,
a refinement of the local limit theorem is also needed here. In particular, we
prove
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Theorem 14. For the one dimensional HTRW the following estimation holds
uniformly in x

P(Qn = x)− 1√
2π
√

2c1
√
n log n

exp

(
− x2

4c1n log n

)
= O

(
log log n√
n log3 n

)
.

For the two dimensional HTRW the following estimation holds uniformly for
x ∈ R2

P(Sn = x)− 1

2π2c1n log n
exp

(
− |x|2

4c1n log n

)
= O

(
log log n

n log2 n

)
Finally, we extend the results of this Chapter to such walks, where the

probability of a step of length n is asymptotically equal to c/n3.

3 Lorentz Process with shrinking holes in a

wall

Consider a periodic planar Lorentz process with finite horizon, restricted to a
horizontal strip. In this setting, the horizontal component of the diffusively
rescaled trajectory converges to the one dimensional Brownian motion, which
is an easy consequence of the same statement in the plane. Now, if one puts a
vertical wall to the zeroth cell, then the trajectory converges to the reflected
Brownian motion, but if there is a hole on the wall - thus the particle eventually
get through it -, then the limit is again the Brownian motion (see [10]). In
Chapter 4 (and in [17]), we prove that if one puts a hole of decreasing size
to the wall, then the limit is the so-called quasi reflected Brownian motion, a
joint generalization of Brownian motion and reflected Brownian motion. An
interesting feature of this stochastic process is that it is Markovian but not
strong Markovian.
To be more precise, let the configuration space in the absence of the wall be
D := (R × [0, 1]) \ ∪∞i=1Oi. Here, {Oi}i is a Z-periodic extension of a finite
scatterer configuration in the unit square, which consists of strictly convex,
pairwise disjoint scatterers, with C3 smooth boundaries, whose curvatures
are bounded from below by a positive constant. Further, we assume that
∪∞i=1Oi is symmetric with respect to the y-axis. The wall without the hole
is W∞ = {(x, y) ∈ D|x = 0} = ∪Kk=1[Jk,l,Jk,r] where the subintervals of the
y-axis, denoted by [Jk,l,Jk,r], are the connected components of W∞.
The holes will be subintervals In ⊂ W∞, thus we will be considering a sequence
{Wn = W∞ \ In}n of walls. Now, the n-th configuration space of the billiard
flow is Dn := (R×[0, 1])\(Wn∪∪∞i=1Oi). A massless point particle moves inside
Dn (at time t = 0 the first hole is present, i.e. n = 1) with unit speed until it
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hits the boundary ∂Dn. Then it is reflected by the classical laws of mechanics
(the angle of incidence equals to the angle of reflection) and continues free
movement (or free flight) in Dn+1. Thus, at the time instant of each reflection,
the hole is replaced by an other one (meaning that the shrinking rate of the
hole corresponds to real time). We also mention that the reflections on the
horizontal boundaries of the strip does not play any role in our study. Thus
one could define the vertical direction to be periodic (formally replace [0, 1]
by S1 in the definitions of D and Dn) yielding the same results (with some
different limiting variance).
Since we change the configuration space in the moment of the reflection, it is
more convenient to use the discretized version of the billiard flow (the usual
Poincaré section, the billiard ball map). Thus define the phase spaces

Mn = {x = (q, v), q ∈ ∂Dn, v ∈ S1, 〈v, u〉 ≥ 0 if q ∈ ∂D },

where u denotes the inward unit normal vector to ∂D at the point q ∈ ∂D.
Here, q denotes the position of the particle at a collision and v is the post-
collisional velocity vector. If q ∈ ∂D, v can be naturally parameterized by the
angle between u and v which is in the interval [−π/2, π/2]. If q ∈ ∂Wn = Wn,
one can parameterize v by its angle to the horizontal axis. Thus, if this angle
is in the interval [−π/2, π/2], then the particle is on the right-hand side of
the wall, while it is on the left-hand side if this angle is either in the interval
[π/2, π] or in (−π,−π/2].
Thus, the discretized version of the previously described billiard flow can be
defined by the billiard ball maps Fn : Mn → Mn+1. Further, denote by
κn : Mn → R the projection to the horizontal direction of the free flight
vector from Mn to Mn+1 (that is, if x = (q, v) ∈ Mn and Fn(x) = (q̃, ṽ),
then κn(x) is the projection to the horizontal axis of the vector q̃ − q). We
also assume that the billiard has finite horizon. Further, write In = {Ik}1≤k≤n
for the collection of the first n holes, and

Sn(x, In) = Sn(x) =
n∑
k=1

κkFk−1 . . .F1(x),

where x ∈M1.
What remains is the definition of the holes In. For this, fix some sequence
α = (αn)n≥1 with αn → 0 and, independently of each other, choose uniformly
distributed points ξn, n ≥ 1 on ∪Ki=1[Ji,l,Ji,r]. We will use the following three
special choices:

1. Assume that ξn ∈ [Ji,l,Ji,r], and denote ln = Ji,r − ξn. If ln > αn, then
put In = (ξn, ξn+αn), otherwise put In = (ξn,Ji,r)∪ (Ji,l,Ji,l +αn− ln),
which is a subset of W∞ for n large enough. With this particular choice,
write

S↘n (x, α) = S↘n (x) = Sn(x, In)
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and
F↘n = Fn.

2. For each 1 ≤ k ≤ n, let the random variables ξ
(k)
n be independent and

distributed like ξn. Assume that ξ
(k)
n ∈ [Ji,l,Ji,r], and denote l

(k)
n =

Ji,r − ξ(k)n . If l
(k)
n > αn, then put I

(k)
n = (ξ

(k)
n , ξ

(k)
n + αn), otherwise put

I
(k)
n = (ξ

(k)
n ,Ji,r) ∪ (Ji,l,Ji,l + αn − l

(k)
n ), and finally In = (I

(k)
n )1≤k≤n.

With this particular choice, write

S≡n (x, α) = S≡n (x) = Sn(x, In).

3. Let In = W∞. With this particular choice, write

S(per)
n (x) = Sn(x, In),

and for a fixed x, define S
(per)
t (x) for t ≥ 0 as the piecewise linear,

continuous extension of S
(per)
n (x). Finally, write

F (per) = F1,

M(per) = M1.

Here the first choice - the only really time dependent - is the most interest-
ing one. In the second case, one has to redefine the whole trajectory segment
S≡1 , . . . S

≡
n for each n, thus we have a sequence of billiards (in other words,

the increments of S≡n form a double array), while the third one is just a usual
periodic Lorentz process.
There is a natural measure - the projection of the Liouville measure of the
periodic billiard flow - on M(per) which is invariant under F (per). Denote the
restriction of this measure to the two neighboring tori to the origin by P. Note
that P is finite, so normalize it to be a probability measure.
Finally, define J ⊂ M(per) as such points on the discrete phase space with-
out any wall, from which before the forthcoming collision, the particle crosses
∪Ki=1(Ji,l,Ji,r). Note that the finite horizon condition implies that J is bounded.

Now, we define the limiting processes. In fact, there going to be two very
similar processes, we call both quasi-reflected Brownian motion and distinguish
between them only in the abbreviation.
Consider a Brownian motion (BM) B = (Bt)t∈[0,1] with parameter σ on [0, 1].
Its local time at the origin is denoted by L = (Lt)t∈[0,1]. That is,

Lt = lim
ε↘0

1

2ε

∫ t

0

1{|BS |<ε}ds.

9



Figure 1: qRBM

Now, given B, consider a Poisson Point Process Π with intensity measure
cdL with some positive constant c. With probability one, the support of the
measure cdL is Z, where Z = {s : 0 ≤ s ≤ 1 : Bs = 0} is the zero set of B.
Denote the points of Π by P1, P2, ... in decreasing order. In fact, Π has finitely
many points. If it has m points, then put Pm+1 = Pm+2 = ... = 0. Further,
write P0 = 1 and introduce a Bernoulli distributed random variable η with
parameter 1/2 (where the parameter means the probability of being equal to
1) which is independent of B and Π.
Now, the process Q = (Qt)t∈[0,1] with Q0 = 0 and

Qt =

{
(−1)η|Bt| if ∃n ∈ Z+ ∪ {0} : t ∈ (P2n+1, P2n]

(−1)1−η|Bt| otherwise

is called the quasi-reflected Brownian motion with parameters c and σ, and
denoted by qRBM(c,σ), see Figure 1.

The definition of QRBM is similar to that of qRBM. The difference is that
c(dL) now should be replaced by c 1√

t
(dLt). As a result, the Poisson process

will have infinitely many points, which accumulate only at the origin. Now,
denote by P1, P2, . . . these points in decreasing order (nota bene: there is no
smallest one among them), put P0 = 1 and define η and QRBM(c,σ) as before.

As usual, C[0, 1] will denote the space of continuous functions on the in-
terval [0, 1]. Let the function W↘

n be the following: W↘
n (k/n) = S↘k /

√
n for

0 ≤ k ≤ n and define W↘
n (t) for t ∈ [0, 1] as its piecewise linear, continuous

extension. Let µ↘n denote the measure on C[0, 1] induced by W↘
n , where the

initial distribution, i.e. the distribution of x, is given by P. Analogously, de-
fine µ≡n with W≡

n , where W≡
n (k/n) = S≡k /

√
n.

Now, we can formulate the main result of Chapter 4.

Theorem 15. There are positive constants σ and c2 depending only on the
periodic scatterer configuration, such that

1. if ∃c > 0 : αn
√
n→ c, then µ↘n converges weakly to the measure induced

by QRBM(c2c, σ).
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2. if ∃c > 0 : αn
√
n→ c, then µ≡n converges weakly to the measure induced

by qRBM(c2c, σ).

3. if αn
√
n→ 0, then both µ↘n and µ≡n converge weakly to the convex com-

bination of the measures induced by the reflected Brownian motion and
the negative reflected Brownian motion, with weights 1/2.

4. if αn
√
n → ∞, then both µ↘n and µ≡n converge weakly to the Wiener

measure.

The most important ingredient of the poof is the local limit theorem for
periodic Lorentz process (proved by Szász and Varjú, [26]). In fact, we also
prove an extended version of the global limit theorem, which might deserve
some independent interest. Let Lnt denote the number of visits to a compact
subset of the phase space in the time interval [1, bntc] (the compact subset is
practically chosen to be J ). Then the following statement holds.

Proposition 16. (
S
(per)
nt√
n
,
Lnt√
n

)
t∈[0,1]

⇒ (Bt, c0Lt)t∈[0,1],

with some c0 > 0, as n → ∞ where the left hand side is understood as a
random variable with respect to the probability measure P, and ⇒ stands for
weak convergence in the Skorokhod space DR2 [0, 1].

4 Time dependent dynamics

In Chapter 5, we prove CLT for deterministic time-dependent dynamical sys-
tems. The result itself is applicable only in restricted settings - mainly for one
dimensional expanding maps - but the time inhomogeneity is general. The
latter means that instead of proving the central limit theorem for a typical
sequence of some mappings, we can prove it for fixed sequences under some
conditions. These are connected to the zero-cohomology condition in the au-
tonomous case. This Chapter is based on [18].
Let A be a set of numbers and (X,F , µ) a probability space. For each a ∈ A
define Ta : X → X. Suppose that µ is invariant for all Ta’s. Now consider a
sequence of numbers from A, i.e. a : N → A. Our aim is to prove some kind
of central limit theorem for the sequence

f ◦ Ta1 , f ◦ Ta2 ◦ Ta1 , ...

with some nice function f : X → R.
As usual,

T̂ag(x) = g(Tax)
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and T̂ ∗ is the L2(µ)-adjoint of T̂ (the so called Perron-Frobenius operator).
Further, introduce the notation

T̂[i..j] =

{
T̂ai . . . T̂aj if i ≤ j

Id otherwise

and for simplicity write T̂[j] = T̂[1..j].
Similarly, define

T̂ ∗[i..j] =

{
T̂ ∗aj . . . T̂

∗
ai

if i ≤ j

Id otherwise

and T̂ ∗[j] = T̂ ∗[1..j].

Further, define σ-algebras F0 = F , Fi = (Ta1)
−1 . . . (Tai)

−1F0. We will need
this sequence of σ-algebras to form a decreasing systems (cf. Assumption 2 of
Theorem 17), restricting our approach to non-invertible maps. Let us assume
that there is a Banach space B of F -measurable functions on X such that
‖g‖ := ‖g‖B ≥ ‖g‖∞ for all g ∈ B.
Finally, for the fixed function f , introduce the notation

uk =
k∑
i=1

T̂ ∗[i+1..k]f.

With the above notation, our aim is to prove a limit theorem for Sn(x) =∑n
k=1 T̂[k]f(x).

Theorem 17. Assume that f , a and Tb, b ∈ A satisfy the following assump-
tions.

1.
∫
fdµ = 0.

2. Tb is onto but not invertible for all b ∈ A.

3. f ∈ B and there exist K < ∞ and τ < 1 such that for all sequences b
and for all k, ‖T̂ ∗b1 ...T̂

∗
bk
f‖ < Kτ k‖f‖.

4. (accumulated transversality) Define χk as the L2-angle between uk and
the subspace of (Tak+1

)−1F0-measurable functions. Then

N∑
k=1

min
j∈{k,k+1}

(1− cos2(χj))

converges to ∞ as N →∞.
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Then
V ar(Sn)→∞

and
Sn(x)√
V ar(Sn)

converges weakly to the standard normal distribution, where x is distributed
according to µ.

Assumption 3 roughly tells that there is an eventual spectral gap of the
operators T̂ ∗aj which is quite a natural assumption. Assumption 4 guarantees
that there is no much cancellation in Sn, for instance f cannot be in the
cohomology class of the zero function when |A| = 1.
We also give two examples, where the above conditions are fulfilled.

Example 18. Define (X,F , µ) = (S1, Borel, Leb), A = {2, 3, . . . }, Ta(x) =
ax( mod 1), B = C1 = C1(S1),

‖g‖ := sup
x∈S1

|g(x)|+ sup
x∈S1

|g′(x)|.

Fix a non constant function f ∈ C1 satisfying
∫
fdx = 0. Then there exists

some integer L = L(f) such that with all sequences a for which

#{k : min{ak, ak+1, ak+2} > L} =∞

the assumptions of Theorem 17 are fulfilled.

Example 19. Define X,F , µ, A, Tb,B as in Example 18. If a is a sequence
for which there is a b ∈ A such that for all integer K, one can find a k for
which

ak = ak+1 = ... = ak+K−1 = b,

and f ∈ B,
∫
f = 0 is any function for which the equation f = T̂bu−u has no

solution u, then the assumptions of Theorem 17 are fulfilled.

5 On Dettmann’s Horizons Conjectures

Chapter 6 of the thesis is about periodic Lorentz process in dimension d ≥ 3
and with infinite horizon. Note that the high dimensional case is much more
difficult than the planar one. Even for finite horizon, much less is known than
in d = 2, see [2] for the present state of the theory. The infinite horizon also
makes the picture more difficult. Recall that in the planar case, the scaling of
the trajectory is slightly super-diffusive. In d ≥ 3, the first step is to ascertain
the tail asymptotics of the free flight function. If it is the same as the one
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in the planar case (that is, ∼ C/t), then it is reasonable to expect the same
super-diffusive behavior. In [8], Dettmann formulated conjectures, which pro-
vide the tail asymptotics in quite a generality. The essence of the conjectures
is that super-diffusion is expected if and only if there exists a non-degenerate
horizon of maximal possible dimension (i.e. d − 1). It is quite easy to prove
that if there is such a horizon, then the distribution of the free flight function
decays at least as 1/t, thus super-diffusion is expected. However, if this d− 1
dimensional horizon is degenerate, then the question is much less obvious and
turns out to be an interesting problem is geometry on its own right. We dis-
cuss this problem, which gives the proof of Dettmann’s second conjecture. It
is worth mentioning that our proof uses results from the theory of the small
scatterer size limit of Lorentz processes, see [14]. This Chapter is based on
[19].
Let {Oi}i=1,...,n be some open subsets of the d dimensional torus, whose bound-
aries are C3-smooth hypersurfaces. Notice that we do not require the scatterers
to be disjoint (nota bene different scatterer configurations can lead to identical
configuration spaces, if the differences are covered by other scatterers). Points
in the boundary intersections q ∈ ∂Oi ∩ ∂Oj are called corner points. We
also require that at any point of the boundary ∂Oi, the curvature operator
K is uniformly bounded from above: there exists a universal constant κmax,
such that for every tangent vector v of the hypersurface ∂Oi, the inequality
0 ≤ K(v, v) ≤ κmax‖v‖2 holds. Note that we do not require lower bound on
the curvature. (This setup is in fact called semi-dispersing billiard, which is of
crucial importance in the so-called Boltzmann-Sinai Ergodic Hypothesis, see
[22], [21].)
The configuration space of the billiard flow is just Q̃ = Rd \ ∪∞i=1Oi, where
{Oi}i=n+1,... are the translated copies of {Oi}i=1,...,n with translations by inte-
ger vectors. The phase space is M̃ = Q̃×Sd−1 where Sd−1 is the set of possible
velocity vectors. The billiard flow acts on M̃ , and Lebesgue measure is invari-
ant in both coordinates. Obviously, the billiard flow is analogously defined on
M = Q × Sd−1 = (Q̃/Zd) × Sd−1. Denote by µ the Lebesgue measure on M .
Now, the tail distribution of the free flight function is given by

F (t) = µ{(q, v) : τ(q, v) > t},

where τ(q, v) = infs>0{q + sv ∈ ∪i=1,2,...Oi}.
The “degenerate d−1 dimensional horizon” means the following. Assume that
there is a d− 1 dimensional affine subspace in Rd, which is disjoint to all the
scatterers. Further, assume that any such subspace touches some scatterers
from both sides (or, in other words, if q + V is a collision free affine subspace
with dimV = d − 1, then for any small enough v /∈ V , q + v + V intersect
with some scatterer). Under the above assumptions, we have the following
theorem.
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Theorem 20. As t→∞, we have

F (t) =


O(t−2), 3 ≤ d ≤ 5

O(t−2 log t), d = 6

O
(
t
2+d
2−d

)
, d > 6.

Further, if we also assume that the curvature is bounded away from 0 (from
below) uniformly at every point of ∂Q (dispersing case), then

F (t) �


t−2, 3 ≤ d ≤ 5

t−2 log t, d = 6

t
2+d
2−d , d > 6.

In fact, the power 2+d
2−d was not conjectured by Dettmann. Further, we

prove slightly more, the periodicity of the billiard can be some arbitrary non-
degenerate d dimensional lattice L instead of Zd.
Finally, we mention a Conjecture of ours, which could be the first step in the
possibly long way to prove super-diffusive limit theorem for a high dimensional
periodic Lorentz process with a non-degenerate d− 1 dimensional horizon.

Conjecture 21. In a d dimensional dispersing billiard with at least one d −
1 dimensional non-degenerate horizon, if τ is large, then the length of the
following free flight (i.e. just after the first collision) is typically of order τ 1/d.
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(2008).

[3] Chernov, N.: Advanced statistical properties of dispersing billiards, Jour-
nal of Stat. Phys. 122, 1061-1094 (2006).

[4] Chernov, N., Dolgopyat, D.: Anomalous current in periodic Lorentz gases
with infinite horizon. Russian Math. Surveys 64 73–124, (2009).

[5] Chernov, N., Dolgopyat. D.: Brownian Brownian Motion–1. Memoirs of
American Mathematical Society 198 no. 927 (2009).

15



[6] Chernov, N., Markarian, R.: Chaotic billiards Mathematical Surveys and
Monographs 127 AMS, Providence, RI (2006).

[7] Darling, D.A., Kac, M.:On occupation times for Markoff processes, Trans.
Amer. Math. Soc. 84 444-458 (1957).

[8] Dettmann, C. P.: New horizons in multidimensional diffusion: The
Lorentz gas and the Riemann Hypothesis, J. Stat. Phys. 146 181–204,
(2012).
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