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Introduction

In this thesis we investigate some properties of self-similar sets and self-
affine sets. Especially, we focus on the dimension theory of fractals generated
by iterated function systems (IF'S).

More precisely, let & = {fi,..., fn} be a set of contracting functions (that
is, || D.f|| < 1) of R mapping an open bounded set U into itself. Then it is
well known (see [H]), that there exists a unique, non-empty, compact subset
A of R? such that

A=) U fao- fi(U)and A = L_Jﬁ-(A)-

k=11i1,....ip=1

We call the set A as the attractor of the iterated function system ®.

One of the important properties of these sets is the dimension. In this
thesis we mainly focus on the so-called Minkowski dimension (or box dimen-
sion) and Hausdorff dimension. We denote the Hausdorff dimension (and
respectively the box dimension) of the set A by dimy A (dimg A). Moreover,
let us denote the s-dimensional Hausdorff measure by H®. For the definition
and basic properties of the Hausdorff and box dimension and the Hausdorff
measure we refer to [Fal, Fa2].

The simplest case is when the functions are contracting similarities

O = {fi(x) = Nx +t;};,

on the real line. In that case we call the attractor of ® self-similar set. Then
the non-trivial upper on the Hausdorff and box dimension of the attractor is
the similarity dimension which is defined as the unique solution of

i=1

The dimension theory of self-similar sets is quite well understood in the
cases when some separation conditions hold. Hutchinson proved that when-
ever the cylinders {f;(A)}, are well separated, more precisely, the open set
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condition (OSC) holds (there exists an open, bounded subset U of R such
that f;(U) C U for every i and f;(U)N f;(U) = Qif i # j) then the similarity
dimension is equal to the Hausdorff dimension, see [H]. The box dimension
is equal to the Hausdorff dimension independently of separation conditions,
see [Fab].

However, in case of heavy overlaps in between the cylinders we know very
little about the structure of attractor A. To study such kind of Iterated
Function Systems there are two known methods:

e Instead of an individual IF'S we consider a one-parameter family of IF'S
and we use the so-called transversality condition introduced by Pollicott
Simon [PoSi] (see Section 1.2). See [PeSol], [PeSo2] for the most general
treatment of this method. In this thesis we use this approach.

e In some very particular cases we can apply the so-called Weak Sepa-
ration Condition [Ze], [LNR], [NW1] or some variants of it. With this
method we can handle IFS like {fl(x) = %x + ti}?;’ where N, t; € Z.

In particular, when some of the maps of the IF'S have common fixed points
then non of the known methods can be applied directly. One of the most
important novelties of this thesis is to handle the cases of non-distinct fixed
points.

The simplest situation when two maps share the same fixed point was con-
sidered in [B3]. More precisely, in [B3] we considered the IFS {yz, Az, Az + 1}
and its attractor A on the real line, where v < \. Let I = [0, 5] be the con-
vex hull of the attractor A. See Figure 1 for the image of I by the functions
of this IFS. The problem of calculating the dimension was raised by Pablo
Shmerkin at the conference in Greifswald in 2008. The novelty of the result
obtained in [B3] about the dimension of A was to tackle the difficulty which
comes from the fact that the first two maps have the same fixed point.

In Chapter 1 we study two types of self-similar iterated function systems
with non-distinct fixed points. In both of the cases we assume that the images
of the convex hull of the attractor are overlapping only for the functions which
share the same fixed point. In the first case we suppose that every fixed point
belongs to at most two functions. For an example of such type of IFS see
Figure 2. Our assumption in the second case is that there are exactly two
different fixed points but a fixed point belongs to arbitrary many functions.
For an example see Figure 3.

For both of the cases we calculate the Hausdorff and box dimension for
almost every contracting parameters. Moreover, for the case in Figure 2 we
calculate that the proper dimensional Hausdorff measure of the attractor is
zero. For precise details see Section 1.1. Chapter 1 is based on [B1] and [B2].
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Figure 1: The simplest example of IFS with some of the functions share the
same fixed point, considered in [B3].
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Figure 2: Images of the convex hull of the attractor of

IFS {fo, 90, f1, f2, g2, f3, 93}, where ag = Fix(fo) = Fix(go), a1 = Fix(f1),
a9 = FlX(fg) = FIX(92> and as = FlX(fg) = FIX(93>

¢0(0, 1) Yo(0, 1)

i $0g+1
g0, 1) |

0p0, 1)

Figure 3: Images of the convex hull of the attractor of IFS {¢;};_, U{¢;}]_,
where Fix(¢;) = 0 and Fix(¢;) = 1 for every 1, j.



In the last two decades considerable attention has been paid to the di-
mension theory of non-conformal sets. We call a set A conformal if it is an
attractor of an IFS containing C**® conformal homeomorphisms, where we
call a function conformal if its derivative is a similarity transformation at
every point. The dimension theory of conformal attractors is very closely
related to the dimension theory of self-similar sets.

The dimension theory of non-conformal IFS is very difficult and there
are only very few results. The most important tool of this field is the sub-
additive pressure, which was defined by K. Falconer [Fa4] and L. Barreira
[Barr]. (For the precise definition of sub-additive pressure, see Section 2.1.)
Unfortunately, we know very little about sub-additive pressure itself.

The simplest non-conformal situation is the case of self-affine sets. A set
A C R?is called self-affine if it is an attractor of an IFS containing contracting
affine maps {f;(z) = A;x + a;}]" |, where A; are d x d real matrices. The
dimension theory of self-affine sets is far from well understood even in the
diagonal case. That is, when all A; are diagonal matrices.

To study the dimension of a self-affine attractor we consider the k-th
approximation of the attractor with the so called k-th cylinders which are
naturally defined by the k fold application of the functions of the IFS. To
measure the contribution of such a k cylinder to the covering sum which
appears in the definition of the Hausdorff measure for each of these k-th
cylinders we consider the singular value function. These are non-negative
valued functions defined in a neighborhood of the attractor. The dimension of
the attractor is related to the exponential growth rate of the sum of the values
of these exponentially many singular value functions in the self affine case.
Precisely, the Falconer Theorem (see [Fa6]) states that the Hausdorff- and
box dimension of a self-affine attractor coincide for almost every translation
parameters and equal to the singularity dimension, whenever the norm of all
the affine maps of IFS is smaller than 1/3. This bound was improved to 1/2
by Solomyak in [Sol]. To verify this it was essential that the exponential
growth rate is the same wherever we evaluate these singular value functions,
since the singular value functions are constant in the self-affine case.

Falconer [Fad] and Barreira [Barr| considered the situation when the IFS is
no longer self-affine. They introduced a technical condition named 1-bunched
property, which implies that the cylinder sets in each iteration are convex.
In this case, it turns out that the exponential growth rate of the sum of
the value of the singular value functions does not depend on wherever they
are evaluated. We express this phenomenon as the ”insensitivity property
holds”. This is a very important property of the sub-additive pressure and
in general we do not know if it holds or not.

The main goal of Chapter 2is to verify this property in a special case when
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the 1-bunched property does not hold but the IFS consists of maps with lower
triangular derivative matrices. This result is a generalization of the result of
K. Simon and A. Manning [MS2]. They proved the same assertion on the
real plane.

Even if the 1-bunched condition is not satisfied, Zhang [Zh| found that
the zero of the sub-additive pressure is an upper bound for the Hausdorff
dimension. As an application, we supply two examples of such IF'S for which
we are able to calculate the Hausdorff dimension using that the insensibility
property holds.

The main theorem of the chapter can be also considered as a generalization
of a recent paper by K. Falconer and J. Miao [FM]. They gave a formula to
estimate the Hausdorff dimension of self-affine fractals generated by upper-
triangular matrices. We will show a formula to estimate the sub-additive
pressure in the non-conformal case and we will prove that the sub-additive
pressure depends only on the diagonal elements of the derivative matrices in
the case when the derivative matrices are triangular. Chapter 2 is based on
[B4] and take a part of the author’s Master Thesis.

In Chapter 3 we focus on a special family of self-affine sets which is called
the generalized four corner set A(q, 3) on the real plane. The generalized
4-corner set is the attractor of the self-affine iterated function system (IFS)
of Figure 4. (The precise definition will be given in Section 3.1.) The pa-
rameters a = (ap, a1, ag, ag) and 8 = (B, b1, P2, P3) are chosen such that the
rectangles Ry, Ry, Rs, R3 on Figure 4 are disjoint. One of the main goals of
the chapter is to determine the box dimension of this set for Lebesgue typical
parameters.

We will prove that for Lebesgue-typical parameters o, 3 the Hausdorff
dimension and even the box dimension of the generalized 4-corner set is
strictly smaller than the singularity dimension. The reason of this phenomena
is the very special relative geometric position of the rectangles which generate
the generalized 4-corner set. The speciality of the maps is that the fixed
points are the corners of the unit square, so they do not move when we change
the parameters a, . Therefore the orthogonal projection to the z-axis (and
to the y-axis respec_tively) is an attractor of a special iterated function system
of four similarities where the similarities derived from the maps having fixed
points with same coordinate y (and with same coordinate x) have common
fixed points. Applying the results of Chapter 1 we are able to handle this
difficulty. Chapter 3 is based on [B1].

In Chapter 4 we study the dimension theory of the slices of the Sierpinski
gasket. In particular, we describe the multifractal analysis of the size of the
slices which correspond to a countable dense set of angles. We recall that the
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Figure 4: Maps of the generalized 4-corner set.

Sierpinski gasket is the attractor of the IFS {%g, 1r+(3,0), 2+ (4, %)} on
the real plane. Liu, Xi and Zhao showed a formula for the box and Hausdorff
dimension of the intersections of the Sierpinski carpet with Lebesgue-typical
planar lines of rational slopes and conjectured that this value is strictly less
than the dimension of the Sierpiriski carpet minus one (for precise details
see [LXZ]). Manning and Simon verified the conjecture in [MS1] and proved
a dimension conservation phenomena for the carpet (see [MS1, Theorem 9|
and [MS1, Proposition 4]).

One of the main goals of this chapter is to prove that both of the theo-
rems are valid for the Sierpiriski gasket (for precise details see Section 4.1).
Moreover, respectively to the natural self-similar measure, we prove that

the dimension of the typical slices is strictly greater than }og?’ — 1 for ra-
og2
log 3

tional slopes, were Tog 2 is the Hausdorff dimension of the Sierpinski gasket.
We recall the definition of the self-similar measure. Let {f1,..., f.} be an
IFS (not necessarily self-similar) and let (py,...,p,) be a probability vector.
Then there exists a unique Borel regular probability measure ;o such that

p=>Y pipofit
=1

see [H]. We call the measure p self-similar if the corresponding IFS is self-
similar. If the self-similar IF'S satisfies the OSC then the proper dimensional
Hausdorff measure restricted and normalized to the attractor is also a self-
similar measure and we call it as the natural self-similar measure.



In [Fur], Furstenberg introduced and proved a dimension conservation
formula for homogeneous fractals (for example homotheticly self-similar sets).
Denote proj, the f-angle projection from the real plane into the y-axis, then
for any self-similar set A there exists a 6 > 0 such that

0+ dimpg {x € proj,A : dimy projg_l(x) NA> 5} = dimgy A.

We describe the multifractal analysis of the slices, we will give a formula
for the function

[':0— dimy {z € projyA : dimy proj, ' (z) NA >4}

in the case when A is the Sierpinski gasket and tan @ is rational.
Chapter 4 is based on [BFS] which is a joint work with Andrew Ferguson
and Karoly Simon.

Finally, in Chapter 5 we investigate some properties of the invariant mea-
sure of iterated function systems with random perturbations.

For an IFS {f;}!"_, the natural coding of the elements of its attractor A by
the elements of ¥ = {1,... ,n}N is called the natural projection m and then
7: Y A Let u= (p1,...,p,)" be a Bernoulli measure on the space . Let
h = =37 p;logp; be the entropy of the left-shift operator with respect to
the Bernoulli measure p. Denote by v the push-down measure of p, that is
v = pom ' It was proved in [BNS], for non-linear, contracting on average,
iterated function systems (and later extended in [FST]) that

h
x|’

where dimy(v) is the Hausdorff dimension of the measure v and x is the
Lyapunov exponent of the IFS associated to the Bernoulli measure .

One can expect that, at least ”typically”, the measure v is absolutely
continuous when h/|x| > 1. Essentially the only known approach to this
is transversality. For example, in the linear case with uniform contraction
ratios, see [PeSc] and [PeSo2]. In the linear case for non-uniform contraction
ratios, see [N] and [NW2]. In the non-linear case, see for example [SSU2].
We note that there is another direction in the study of iterated function
systems with overlaps, which is concerned with concrete, but not-typical
systems, often of arithmetic nature, for which there is a dimension drop, see
for example [LNR].

In the last chapter, we are interested in studying absolute continuity with
L? density. We will study a modification of the problem, namely we consider

dimpy(v) <



a random perturbation of the functions. The linear case was studied by Peres,
Simon and Solomyak in [PSS1]. They proved absolute continuity for random
linear IFS, with non-uniform contraction ratios and also L? and continuous
density in the uniform case. We would like to extend this result by proving
L? density with non-uniform contraction ratios and in non-linear case.

Let Y. be uniformly distributed in [1 —&,1 + ¢] and let f; € C'™ be
contractions with fixed points a;. We consider the iterated function system
{Y.fi +a;(1 —Y.)}1,, were each of the maps are chosen with probability p;.
We will prove that the invariant density is in L? and the L*-norm does not
grow faster than 1/4/c, as € vanishes.

Throughout the chapter we will use the method of [Per]. The proof re-
lies on defining a piecewise hyperbolic dynamical system on the cube, with
an SRB-measure with the property that its projection is the density of the
iterated function system. Chapter 5 is based on [BP] which is a joint work
with Tomas Persson.



Chapter 1

Hausdorftf dimension of
self-similar sets with heavy
overlaps

1.1 Definitions and Statements

Throughout the chapter we study two families of self-similar iterated func-
tion systems. Firstly, we assume that exactly two different fixed points belong
to the functions of the examined IFS. Precisely,

Principal Assumptions of Case A:

Al. Let R be a finite set of linear, real functions such that for every ¢ € R,
Fix(e2) € {0, 1} and ([0, 1]) € [0,1].

A2. For arbitrary ¢;, p; € R suppose either ¢;(]0, 1]) N ¢;([0,1]) = 0 or
Fix(¢;) = Fix(g;).

Theorem 1.1.1. Let R = {¢;1(x) = vinx}s_U{di2(x) = vipr + (1 —vi2) i,
such that 0 < v;1 < 701 <1 fori=1,...,p and 0 < 7,2 < Y2 < 1 for
j=1,...,q (see Figure 3 page 3), then

dimp A = dimy A = min {1, s}, (1.1.1)

where s is the unique solution of

p q

H(l - 7%9,1) + H(l - Vf,z) =1 (1‘1‘2)

i=0 =0



for Lebesgue almost every (7v,,7,) € (0,7%,1)P%(0,70,2)7, where y, = (Y11, - - ¥p,1)
and respectively v, = (V1255 7g2)-
Moreover L(A) >0 for Lebesgue almost every (v,,7,) if s > 1.

Note that whenever 1 + 702 > 1 the attractor of R is an interval which
implies immediately Theorem 1.1.1. In this way without loss of generality we
may assume that vo 14702 < 1, which is equivalent to ¢ 1([0, 1]) N ¢02([0, 1]) = 0.
Then the IFS R satisfies obviously the assumptions (A1) and (A2). The proof
of Theorem 1.1.1 is based on [B1].

On the other hand, we study the case when every fixed point belongs to
at most two functions (see Figure 2, page 3). Precisely,
Principal Assumptions of Case B:

Bl. S=FUg

B2. F = {fi(x) = Mz + a;(1 — X\)}," where 0 < \; < 1 and the fixed
points satisfy: ag < a; < --- < an_1.

B3. Let I = [ag,an_1] (the convex hull of the attractor). We require that
fioi(I) < fi(I) that is

ficilan-1) < fi(ap) for every i =1,..., N — 1. (1.1.3)
B4. G = {gi(x) = Bixr + a;(1 — Bi) };c;, where J C {0,...,N —1} and
0< B; <\ foreveryi e J.

Observe that for every i € J, Fix(f;) = Fix(¢;) = a;.
Denote € (0,1)% the vector of contraction ratios of G and A € (0,1)"
the vector of contraction ratios of F. Moreover, let a € RY be the vector of

fixed points and denote the attractor of S by Q. For the simplicity we write
Z={0,...,N—1}.

Theorem 1.1.2. Let S be as in (B1)-(B4) then the attractor Q of S satisfies
that
dimp 2 = dimy Q@ = min {1, s}, (1.1.4)

where s is the unique solution of

N-1
DN B NB=1, (1.1.5)
=0

eJ eJ

Jor Lebesgue almost every B in

o min A e
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where Amax = max; {\;} and

max {&Nfl — Q;,Q; — ao}
min { fi+1 (ao) — @i, a; — fi1 (@p—1)}

o = for everyi € I.
Moreover L (§2) > 0 for Lebesgue almost every B such that 3 satisfies (1.1.6)
and s > 1.

In the proof of Theorem 1.1.2 we are going to show that s is always an
upper bound for the Hausdorff and Box dimension. Moreover we will prove
that the s dimensional Hausdorff measure of the attractor is zero.

Theorem 1.1.3. Assume that S satisfies (B1)-(B4) and let s be the unique
solution of (1.1.5) then
H(2) = 0.

To prove Theorem 1.1.1 and Theorem 1.1.2, we are going to use the so-
called transversality method. Note, that our original system does not satisfy
the transversality condition (see later the precise arguments), but some well-
chosen subsystems of the sufficiently high iterations do so. To verify this we
use two methods of checking the transversality condition. One of them was
introduced by Simon, Solomyak and Urbanski [SSU1|, [SSU2| and the other
one is due to [PeSol], [PeSo2|. For the convenience of the reader in Section
1.2 we summarize these methods.

There is a big difference between the structure of the two families of IF'S,
the chosen subsystems and the proofs of the transversality conditions are
significantly different. Therefore we study them in two different sections.
In Section 1.3 we prove Theorem 1.1.1 and in Section 1.4, Theorem 1.1.2.
In both of the cases we construct the appropriate natural projections, the
subsystems.

In Section 1.5 we prove Theorem 1.1.3. The method of the proof is similar
to that of [PSS2, Theorem 1.1] obtained by a modification of the Brandt, Graf
method [BG].

The results of the chapter are based on [B1] and [B2].

1.2 Transversality methods

First let us introduce the transversality condition for self-similar IF'S on the
real line with d dimensional parameter-space. The definition corresponds to
the definition in [SSU1|,[SSU2| which was introduced for much more general
IF'S.

11



Let U be an open, bounded subset of R? with smooth boundary and
Z a finite set of symbols. Let WU, = {¢i(z)= \i(t)z +di(t)} where

_ i€ e
Nyd; € CHU) and 0 < o < N(t) < B < 1foreveryi € Zandt € U
and for some «a, 5 € (0,1). Let A® be the attractor of W; and m; is the nat-
ural projection from the symbolic space ¥ = I to AL. More precisely, for

i=(igiy...) € ¥ we write
m(i) = lim ¢} ot o+ 09 (0). (1.2.1)
- n—o0

It is well-known that the limit exists and independent of the base point 0.
Moreover, 7, is a continuous, surjective function from ¥ onto A. Denote o
the left-shift operator on ¥. That is o : (igiy...) — (iyiz...). It is easy to
see that

my(i) = ¥j, (m (o).

Definition 1.2.1. We say that U, satisfies the transversality condition
on an open, bounded set U C R?, if for any i,j € ¥ with 4y # jo there exists
a constant C' = C'(ig, jo) such that

LateU:|m(i) —m(j)] <r) < Cr for every r > 0,
where L, is the d dimensional Lebesgue measure.

In short, we say that there is transversality if the transversality condition
holds. This definition is equivalent to the ones given in e.g. [SSU1], [SSU2].
As a special case of [SSU1, Theorem 3.1] we obtain:

Theorem 1.2.1 (Simon, Solomyak, Urbariski). Suppose that U, satisfies the
transversality condition on an open, bounded set U C RY. Then

1. dimy AL = min {s(t), 1} for Lebesgue-a.e. t € U,
2. L1(AY) > 0 for Lebesque-a.e. t € U such that s(t) > 1,
where s(t) is the similarity dimension of Wy. More precisely, s(t) satisfies
the equation
> x)® =1 (1.2.2)
i€T

We can use the following Lemma to prove transversality which follows
from [SSU1, Lemma 7.3].

12



Lemma 1.2.2. Let U C R? be an open, bounded set with smooth boundary
and fi3(t) = m (1) — m(j). If for every i,j € X with ig # jo and for every
tocU

fii(to) = 0 = |lgrad, fig,_, II>0 (1.2.3)

then there 1s transversality on any open subset V' whose closure is contained
i U.

There is another Lemma which is useful to prove transversality by con-
trolling the double roots of infinite series. The proof of the Lemma below
depends on the so-called (x)-functions which were introduced by Solomyak
[So2] and further developed by Peres and Solomyak [PeSol] and [PeSo2]. Al-
though, the following Lemma was not proved explicitly in [PeSo2] but one
can easily see that a simple modification of the proofs [PeSo2, Lemma 5.1],
[PeSo2, Corollary 5.2] yields:

Lemma 1.2.3. Let the function g : [0,1) — R be given in the following form:
glx) =1+ Z apx®.
k=1

Let us suppose that a1 € (—d,d) and for every k > 2, a;, € (—b,b), where
d,b>0. Then

1+1\/5)'

g(xg) = 0= ¢'(x) <0 for every xq € (O,

1.3 Proof of Theorem 1.1.1

1.3.1 Natural projection

Let p, q be positive integers and let

pir(r) =z fori=0,...,p
0ia() =vigr + (1 —732) fori=0,...,q.

Then our main assumptions (A1), (A2) are equivalent to 0 < ;1 < 701 < 1
foreveryi=1,...,pand 0 < 7,2 <702 < 1 forevery¢=1,...,¢q, moreover,

Yo,1 + 0,2 < 1.

13



Therefore, without loss of generality we can assume that

Vi1 = Ci,170,1

Yi2 = Ci,270,2,

where 0 < ¢;1,¢j2o < 1fori=1,...,pand j = 1,...,¢q. Then R can be
written in the form

R = {7012, %22 + (1 —7,2)} U {eiivoaz},_, U {ciovoer + (1 = ¢iov02) b, -

Let us introduce the vectors of parameters, namely, ¢; = (¢1.1,...,¢,1) € (0,1)?
and ¢, = (€12, - ., ¢q2) € (0,1)9, moreover ¢ = (¢q, ¢,).

Denote the set of symbols of the functions with fixed point 0 by A;, and
similarly, denote the set of symbols of the functions with fixed point 1 by A,.
So

Ay ={(0,1),...,(p, 1)} and Ay = {(0,2),...,(q,2)}.
Let ¥ be the symbolic space generated by A; U Ay and ¥* the set of fi-
nite words. That is, X = (4; U 4y)N and ©* = (U7, (A1 U A2)". For any
it = ((ig, ko) (i1, K1) -+ - (in, Kp)) € £* we use the notation

Pi = Pig,ro © Pirer © 77 O Py kn and Vi = Yiosko " Vin,kn-

For an i € ¥ we write i(k) as the first k& elements of i. In partic-
ular, i(k) = ((ig, ko) (fg—1,kk—1)) and i(0) = 0. For j = 1,2 and
i =0,...,por q, we define §,;i(k) as the number of (7,7) in i(k). More-
over, for j = 1,2 we define §;i(k) as the number of symbols from A; in i(k).
Clearly, #1i(k) = D7, 4:1i(k) and respectively foi(k) = D7 #i0i(k). Using
the notations above and the definition of the natural projection (1.2.1),

[e’] q p q
. 1,2 i(k) _tai(k fi,1)i(k) Bi,2)1(k)
Wg(l) = Z ( 6((ik72€k)(1 - %2)) 7?)?1( )75?2( ) Ci,(ll) Ci,(22) )
k=0 \1=0 i=1 i=1

(1.3.1)
where
s — 1 ifj=k
J 0 otherwise

The set of k’s satisfying (ig, kr) € Ay gives us non-zero elements in the infinite
sum above. Hence it is useful to define 5! as the number of (i,2) in i and
B' the number of symbols from A, in i. Clearly, 8! = limj_,c #(;2)i(k) and
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Bt = >"1 B Moreover, let m} be the position of the kth symbol from A,
in i. Applying the notation, fsi(ml) =k — 1 and

p q
1,2) f1i(mi) ta,1)i(my,) #1,2)i( )
:Z (Zé((z L 1—%2)> %1;:217011 k l(il) mi, 1%2) mi,
=1

=1 =1
(1.3.2)

For every ¢ = 1,...,p we write (1.3.2) as the power series of ¢;;. So we
collect all the different exponents of ¢;; into the set Pii. It is easy to see that
if 81 =0 then P} = (), otherwise

Pl={m>0:3k> l,ﬁ(i,l)i(m}g):m} fori=1,...,p

Then we can write the natural projection in the following form

= > W)y, (1.3.3)

me Pf

For every m € P} the coefficient 2" (i) of ¢]} is the sum of those elements of
(1.3.2) divided by ¢}, which’s indexes k satisfy . 1)i(m},) = m. Precisely,

5 (1) q q
mye 1,2) f1i(mi) i(ml) #( i(mi)
hi'(1) = Z (Z(Sé - 2)(1 _”71,2)) 75217011 § ll) * HC PR
=1

—si (i — k
k=si, () \1=0 o
(1.3.4)

where
Efn(i) = sup {k : ﬂ(i,l)i(m}g) = m} and §fn(i) = inf {k : ﬂ(i,l)i(m}g) = m} )

Lemma 1.3.1. Let i € X then for everyi=1,...,p and every m € P!

- fi(mi, ) P q)i(mi;
: si, (i)—1 ( E?nw) 1) ( g%n(n))
R (i) < 70,2 Yo0,1 | | G, .

=1

I£i

Moreover, if 0 € P! then

. P -
OG) > o T e ™ (1= 100).

=1
I£i

15



Proof. Leti € Y and form € P let i,, = ((im oo Bmy o) (i s Bmy )
By the definition of 3¢ (i) and s¢ (i), the segment i, of i corresponds to the
coefficient h"(i). By (1.3.4)

fa, 2)1( o

B (i) = @ vélll( >]£[C?(il)l( >ﬁ[cl2

%

) ©i,,(0).

By the definition, g o = 2 which implies that

I =72 < ¢ (0) <1,

for every m € P;.

If 0 € P/ then before the first (¢,1) there has to be at least one symbol
from A,. Therefore si = 1. Moreover, before the place of the first symbol
from A, the number of symbols from A; is mi — 1. This proves the assertion
of the Lemma. O

1.3.2 Proof of the transversality condition

For every i,j € AY (k = 1,2) 7.(i) = 7.(j) as functions of ¢. This implies
the IFS R does not satisfy the transversality condition. The goal of this
section is to introduce a sequence of iterated function systems which satisfy
the transversality and are suitable to approximate the Hausdorff dimension
of the attractor of R.

Since iy © Yiyn = Pir.n © Piok holds for every (ig, k), (i1, k) € A, which is
in the way of transversality. To eliminate this problem we choose a sequence
of subsets of ¥* such that we order the symbols in each word by the first
coordinate.

Define

POZ{( )’(072)} and
Pl :{( )(071)’ ( ,2)(0,1);(1,1)(0,2);...;(p,l)(O,Z)}

and by induction for k > 2

(1.3.5)

U U oy U U U {G2i]. 136

j=1 ieP,_; J=1 i€Pp_4
ro#1Vji<ig ko#2V7i<ig

16



and

k
U, =P (1.3.7)
1=0
Denote ¥y = U, and the sequence of IFS’s

U = {oi} i, - (1.3.8)

Proposition 1.3.2. Let & > 0 be arbitrary small, then the system Wy, satisfies
the transversality condition on ¢ € (§,1 — &£)PT for every k > 1.

Proof. Suppose that ¢ € (£/2,1 —£/2)P™ and let i',j € &), = U}, such that
iy # J, € Ux. Denote i’ (and j') as the element of ¥ by i (and j respectively).
To prove transversality by Lemma 1.2.2 it is enough to show that

(1) = m.(j) = grad, (me(i) — m(j)) # 0. (1.3.9)

Suppose that 7.(i) = 7.(j). Since vo1 + Y02 < 1, the first element of i,
(10, ko), and the first element of j, (jo, 70), have to satisfy that kg = 79. Then
i,j can be written in the form

0 71 Ts
i=10,8) - (0,8) (1K) - (1,8) - (5, 5) - (s, 1) (11, 3= k) -
to t1 ts
§=10,8) (0, 8) (1, 8) -+ (1, ) -+ (5,8) -+ (5,1) (I, 3= ) - -+,
where r;,t; > 0fori=1,...,s, s=pif Kk =1 and s = ¢ otherwise.
If r;, < t; for every ¢ = 0,...,s and there exists an 1 < ¢ < s such

that r; < t; then by vo1 + 702 < 1, (i) # 7.(j), which is a contradiction.
Therefore there are two possibilities, there exist ¢ # j such that r; > t; and
r; <tjorr;, =t; for every ¢ = 0,...,s. In the last case

ozﬂgn—Wﬁg):7§}WVI14?(WJUZLWH)_ﬂdUz;wﬁ»,
=1

Since ¢;,, > £/2 for every k = 1,2 and i = 1,...,p or ¢ and moreover i, # J,
without loss of generality we can assume the first case.
Firstly, let us suppose that x = 1 then i and j are in the form

70 1 Tp
7\ 7\ 7\

N ..(5,15(11,2)...

)
—_
—_

N

—~
—_
—_

N—

—~~
»
—_

N—

~

j:'(0,1)...(07152171)...(1,1)‘...'(571)...(3,1)(5272)...,



and there exists 1 < j < p such that r; < t;. There exists also an 0 <7 <p
such that r; > ¢; and ¢ # j, but we prove transversality derivation in ¢; ;.
Let

0 Tj—1 Tj+1
- - -’

:’(071)...(0’1)‘...'(3‘_1’1)...(]'_1’15'(3‘_’_1’1)...(j+1715...(1172)...

and
to tj—rj
N\

=100 0,1) G (1) (12,2) -+

Then
me(i) — 7m(j) = 7;,]16;,]1 (me(i") — 7me(§)) -

Let a(c) = m.(i*) — m.(j*). Since ¢j; > £/2 to prove transversality it is
enough to show that

da

80] 1

(¢) #0

a(c) =0 =

for every ¢ € (£/2,1 — &/2)P*%. But instead of showing that we prove

Oa
8cj71

(c)=0 = alc) >0 (1.3.10)

for every c € (£/2,1 — £/2)P*4. By (1.3.3) we have

a(c) =h() + D RPE) - Y REG)

mePf* {0} mGPJ]

Let c € (/2,1 —£/2)P* such that 6‘2;1 (¢) = 0 then

aCL . hm(l* *
0=ciiz—(@)=h)| > 55 B Z 0 <
dcja : h3(i ) hi(
mePL\{0} ePJ
) 1* ;")
0 /2% J J m

mePl\{0} 7 me P, \{0}

It is enough to prove that

mePi\{0} 7



By Lemma 1.3.1 we have

(i
2 hJQ((i*) (m=1)cfs <

mepPL\{o} 7

~—

. fai (mi*- ) Ba,ni” (mi*. )
‘Zn —1 Q‘Zn i* ’ E‘Zn i*
J —1)em
mePL\{0} o1 1 (1 =0.2)
J

Since i* does not contain (j, 1) before the first element from A,, s}(i*) = 1
and f,i* <m‘sj (i*)> > mi" 4+ m — 1 for every m € PL\ {0}.

Let ¢, = min P2\ {0} and ¢, = min P\ {0,¢,}. We define the minimum
of the empty set as infinity. Then s (i*) > 2 and sJ,(i*) > 3. This implies
that the right hand side of (1.3.11) is less than or equal to

a2 .2
Y0,170,2

L —"0,2

q1
70,170,2

3
V0,2 m
I =, (QQ_l)C;]',Ql—i_ Z 70’1(m_1)0?}1’

—1)cn
((h )C " 1 =02 .
’ mePij*\{O’QI,q2}

(1.3.12)

Using that (n — 1)y, < e;jg;)ll for every n € N, we get that (1.3.12) is less
than or equal to

o0

—0,1(702 + 73,2) 78,2 Z(m — 1y =
(1 —"2)elnv: 1—2 o

m=3

—Y0,1 (V0.2 + 752) Yoo Yo1(2—70.1)
(1—72)elnv:  1—2 (1—7.1)2

Using the assumption vy 1 + 70,2 < 1 by some algebraic manipulation we get

that ) s s
—70,1(Y0,2 +752) Yoo Vo1(2—7.1)

(I="z2)elny: 1=z (1—90.1)
which implies (1.3.10).
To prove transversality in the second case when k = 2 we introduce the
function n(z) = —x + 1. Let us observe that non(z) = x. Let

<1,

@ir(z) :==nopi1on(x) =iz + (1 —7;1) fori=0,...,p, and
Oio(x) :=mnopis0on(x) ="y0x fori=0,...,q.
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The IFS R = {@in}_y U{@i2}i, and R are equivalent. More precisely, let

7, be the natural projection of R then 7.(i) = —m.(i) + 1 for every i € 2.

Using this fact one can prove transversality in the case k =2 as in kK = 1.
The proof can be finished applying Lemma 1.2.2. O

1.3.3 Hausdorff dimension

In the first part of the section we calculate the Hausdorff dimension of the
attractor of Wy (see (1.3.8)) and in the second part we will prove that the
limit will correspond with the dimension of the attractor of R.

Let for £k >0
de(s) =) .

€Uy,

By the definition of Uj, (see (1.3.7)) for k > 1

k k
di(s) = 75,1 + VS,2 + 75,1 Z ¢, + 73,2 Z T,

=1 =1
where i
Vi
= Y, =
icmy 70,1
(ir;hi)=(0,1)
and

- Yy 2

—.
iemy, 102
(i shi)=(0,2)

Lemma 1.3.3. Let us denote the attractor of Wy, by A,. Then
dimpy Ay, = min {1, s} for Lebesgue-a.e. ¢ € (0,1)P™
where sy, is the unique solution of di(s) = 1.

Proof. By Proposition 1.3.2, U, satisfies the transversality condition on
c e (61 =& for every arbitrary small € > 0. Since dj(s) is the sum
of the contraction ratios of the functions in the IFS ¥, to the power s, The-
orem 1.2.1 implies that the Hausdorff dimension of Ay is equal to min {1, s}
where sj, is the unique solution of

di(s) = 1 (1.3.13)

for Lebesgue almost every ¢ € (£,1 —&)P*7. Since € > 0 was arbitrary the
lemma is proved. O
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Lemma 1.3.4. Let s, be the unique solution of di(s) = 1. Then the limit
limy_,o Sp. = s exists and s is the unique solution of

p q

[Ta-vo+]Ja-v =1 (1.3.14)

=0 1=0

The proof of Formula (1.3.14) is a sequence of tedious algebraic manipu-
lations carried out in the following pages.

Proof of Lemma 1.5.4. Without loss of generality we can assume that p < q.

Let 5 5
@i,li o i Ti,/{ o i
ko ,.)/s ) ko 78 )
ey 0,1 ey 0,2
(ig51p)=(0,1) (i rp)=(0,2)

(41,61)=(,k) (i1,k1)=(1,k)
then @), = Y7 &' + 3% @0 and Tp, = S0, Yyt + 307 Ty By the
definition of Py, (see (1.3.5), (1.3.6)) we have

P =0fori=1,...,p,
<I>Zf2 :7i2 fori=1,...,q,

L . (1.3.15)
Tf :728’1 for i = 17"'7p7
Ty =0fori=1...4q
moreover for k > 2
| i—1
O =, (q%l - ‘%’51)
=1
| - (1.3.16)
= (“rm -3 Tﬁé"l) -
=1
Denote
ak71: Z PY;O,I‘.‘PY;k—l,l f0r221,7pa
1<jo<-<jr—1<p (1.3.17)
ak72 — Z 7;072'."‘)/;1@—172 fOl"i - 17"‘7q'

1<jo<<jr-1<¢
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Applying (1.3.16) we have for k > 2

p q
d, = Z(I)Z’l —}—Z(I);‘f =
=1

i=1
p i—1 q i—1
Z P)/Zs,l <®kl - Z @211> + Z 7;2 <®k1 - Z @221> =
i=1 =1 i=1 I=1
p—1 p g1 q
aa®po +aa®io— Y Y a0 =YY 4507, (1.3.18)
I=1 i=l+1 I=1 i=I+1

and similarly

p—L p -1 q
Tr=anTeo+aTer— Y Y T =) Y 40,1 (1.3.19)
=1 i=l+1 =1 i=l+1

Applying (1.3.16) for (1.3.18) and (1.3.19) n times, where 1 <n <p—1
and k > n+ 1, we get

n

Oy = Z(_l)l_lal,lq)k—l + (_1)n Z %S'n,l .. '7;'1,1‘1’?22+
= 1< o< < jn<p
n .
Z(_l)lﬂam@kiz +(=1)" Z 7;7“2 .. .7;172@?_% (1.3.20)
=1 1<jo<-<jn<q

and

n

=Y (D aa T+ (D" Y b TR

=1 1<jo<<jn<p
S (DT e T+ (0" > e, TR (1.3.21)
=1 1<jo<<jn<gq

Then by (1.3.15) and the choice n =k — 1 we get

k—1 k—1
Py = Z(_l)lilal,lq)kfl + Z(—l)lflal,zcbkfz + (=D g

=1 =1

i - (1.3.22)
Ty = Z(—l)l_laz,1Tk—z + Z(—l)l_laz,sz—z + (1) ag,

=1 =1
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for 2 < k < p. If p < q we can apply (1.3.16) for (1.3.18) and (1.3.19)
n times, where p <n < q¢—1and k > n+ 1, and we have

O = Z(_l)l_lalvlq)k—l + Z(—l)l_laz,2‘1)k—z+
=1

(=" Z Vg @0 (1.3.23)

1<jo<-<jn<q

T = Z(_l)lilal,lﬁrk—l + Z(—l)lflal,{fk—ﬂ—
=1

(1" > YRS (1324)

1<jo<<jn<q

By (1.3.15) and k = n + 1 we have

P k1
Q) = Z(_l)l_lal,lcbk—l + Z(—l)l_lal,gék_l + (=1 g,
=1 =1
p k—1 (1325)
T = Z(_l)l_lalvlﬂrk—l + Z(_l)l_lal,2Tk—z
I=1 I=1
for p+1 < k < q. By similar methods we get for k > ¢ + 1 that
p q
Op = (1) ®ey+ > (1) Py
B " (1.3.26)

q
Tk = Z(_l)lilal,lfrkfl + Z(_l)lil&hgfrk,l.
=1

=1

The convergence of the infinite series Y ;°, ®; and >_,°, T; depends on the
roots of the characteristic polynomial of (1.3.26). More precisely, > >, ¥,
and > ,°, T, are convergent if and only if the roots of the characteristic
polynomial are strictly less than 1. The characteristic polynomial is

p

q
x4 = Z(_l)l_lal,l‘rq_l 4 Z(_l)l_lalﬂ‘rq_l-
=1

=1

Since the roots of a polynomial depend continuously on the coefficients of the
polynomial. Except the coefficient of £7 the coefficients tend to zero as s tends
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to infinity. Therefore the roots tend to zero as s tends to infinity. So there
exists a § > 0 such that > ,° @, and > ,° T, are convergent for s € (4, c0).
Let ¢ the infinum of s such that >~,°, ®; and >_,°, T, are convergent. Let

d(s) = 701+V02+701Z<1>1+7022T1fors€(6 ). (1327

=1

Then there exists a unique s* € (§,00) such that d(s*) = 1. The sequence
sk (see (1.3.13)) is monotone increasing and bounded by s*, therefore it is

convergent. It is easy to see that limy_,o, s = sup; sp = s*.

Let - -
o = Z‘I’k and T = Zrk.
k=1 k=1

Then by (1.3.26)

P = Z ¢k+2q>k

k=q+1
9] P q 4q
Z (Z(—l)l_lahlq)k_l + Z(—l)l_1a172®k_l) + Z P, =
k=q+1 \ =1 - k=1
p 0 q
S0 Y ‘I’HZ 2 D, Pt ) b=
=1 k=q+1-1 k=q+1-1 k=1
P q—l q
Z(—l)lilal,l ((I) — Z (I)k> + z:(_l)lflal72 <(I) o Z (I)k> + Z D,
=1 k=1 =1 k=1 k=1
Therefore

o (=D ary Zq_l O+ 3L (=D s Zq_ll i+ D iy P (1.3.28)

v T 37 (D + 50, (—1)lars

and similarly

Zp:1(_1)lal 1 qua Ty + Zq 1( )lal 2 Z‘Hl Ty + Zqzl Ty
| ST (D 5 (D, 8

T:
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Applying (1.3.15), (1.3.22) and (1.3.25) we get

q P q
SUETES D IS
k=1 k=2 k=p+1
P —1 k—1
aj o + Z <Z(—1)l a 1(I)k—l + Z( 1)l_1al,2<13k_1 + (—1)]‘“'_1% 2) +
k=2 \I=1 I=1
q P k—1
Z <Z(—1) a1 Py + Z(—l)lilahgq)k_l + (—1)k71ak 2) =
k=p+1 \I=1 =1
4q p gl q q-l
Z(_l)k_lak 2+ Z (=)t ® + Z Z(_l)l_lal,zq)k, (1.3.30)
k=1 =1 k=1 =1 k=1
and by similar arguments
q D P q-l q q-1
IR SIS 3) DETRTI TS 3 PETer S
k=1 k=1 I=1 k=1 I=1 k=1

(1.3.31)
Hence the numerator of (1.3.28) is Y 7_,(—1)*'as2 and the numerator of
(1.3.29) is > 4_,(=1)*'a 1, which implies that

2 (=D ks

o = and
1+ Zle(—l)lam + Z?ﬂ(_l)lal,?
) i (1.3.32)
T = k:l(_l) - Qg1
1+ Zf:l(_l)lal,l + Z?:l(_l)lalﬂ‘
Then d(s) =1 (see (1.3.27)) is equivalent to
p q p q
78,1+7(8),2+Z(_1)l71@l,1+2(_1)l71@l,2+78,1 Z(_l)l@l,1+78,2 Z(_l)law =1
=1 =1 =1 =1
Let us observe that
p p
- Z(_l)m Z Viod = Vima = H (x - 72,1) and
m=0 0<jo<<jm<p k=0
q q
21— Z(_l)m Z Vio2  Vimat! " = H (= = o) -
m=0 0<jo<<gm<q k=0

Then by = 1 we get that d(s) = 1 is equivalent to

p q

Q_H(l—%i,l)_n(l_%iz):l

k=0 k=0
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which is (1.3.14).

The proof will be complete if we show that (1.3.14) has unique solution.
We have that the left hand side is equal to 2 if s = 0 and the derivative is

p p q

q
D itoga [T (1 =700) + D iz logya [T (1—iz)
=0

k=0 =0 k=0
k#l k#l

which is negative for s > 0. This completes the proof.

O

Now we show that the unique solution of (1.3.14) is an upper bound for
the Hausdorff dimension. To give a good cover of the attractor, we need to

introduce another sequence of subsets of ¥*. Let

CO = {(07 1)7 (07 2)}
and by induction let

q

Ko#£1Vj<ig K0#£2Vj<io

Lemma 1.3.5. Let s, the unique solution of

=1,

1€Cy
and let s = supy, S then
dimg A <min{1,s}.
Note that the sequence $j is bounded since Cj, C (A4; U Ag)kH.
Proof. Using that for every (i, k), (4, k) € Ax,
Plik) © Plk) = P(ik) © Plik)

and v;x, Vix < V0., Wwe have that the set of closed intervals

{90@([07 1])}16Ck

(1.3.33)

(1.3.34)

gives a cover of A with diameter at most 'yﬁlax, where Ymax = max;  {7ix}-

Then B . . i
Hy (D) <D le0 =) <Y =1

1€C 1€Ck 1€Ck

This proves the Lemma.
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Proof of Theorem 1.1.1. By the definition of C;, we have that for every k > 1

k
¢ c |Jui. (1.3.35)

=1
More precisely, every i € Cj, can be decomposed as a juxtaposition i = Jyd
where each j J, € Up. By similar arguments as in the proof of Propos1t10n 1 3. 2

one can show that the system U, = {wi}, cc, satisfies transversality condition
on (§,1—¢&)PT. Since £ > 0 was arbitrary by Theorem 1.2.1 we have

dimy Ay = min {1,5,} for L-a.e. ¢ € (0,1)"+9, (1.3.36)

where A;, denotes the attractor of {¥i},cc,- Using (1.3.35) we have A C Ay C A
which implies N )

Therefore by Lemma 1.3.3 and Lemma 1.3.5 we have
min {1, 5, } <min {1, s;} < min{1,5s}.

By Lemma 1.3.4, s;, is convergent and limy_,, s = sup,, s = s. This implies
that min {1, s} = min {1, 5}, moreover

dimy A = min {1, s} .

To complete the proof we have to prove the measure claim. If s > 1 then
there exists a £k > 2 such that s, > 1. Therefore, by Theorem 1.2.1 and
Proposition 1.3.2, L(A) > L(A;) >0 for a.e. c€ (0,1)PT2N{c:s>1}. O

1.4 Proof of Theorem 1.1.2

1.4.1 Natural Projection

Because of the special nature of the IFS & = F U G under consideration,
it is reasonable to modify the way as the elements of S are labeled. Namely,
we label the functions of S by pairs of integers like (i, k), where x = 1 if the
function is from F and x = 2 when the function is from G. In both cases
i € {0,...,N — 1}, where we recall that N was defined in our Principal
Assumptions as the cardinality of F. From now on we write in the rest of
the chapter, Z = {(0,1),(1,1),...,(N —1,1)} for N > 2. According to this
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new notation the contraction ratio and the fixed point of the functions from
Fare 0 < A;1) <1,and ai1) € R, (4,1) € Z. That is

f(i,l) ([L’) = )\(i,l)a: —+ a(m)(l — )\(@1)), (Z, 1) c 7. (141)

Let J C {(0,2),...,(N —1,2)} and denote N' = {i:(i,2) € J}. Like
above, the contraction ratio and the fixed point of the functions from G
are 0 < Ao < 1 and a9 €R, (4,2) € J. That is

f(i’g) (.77) = )\(ivg)x + &(i,g)(l — )\(@2)) for 7 c N (1.4.2)

S0
N-1
F=A{funtiy and G = {fun}cy-
According to our principal assumptions (B1)-(B4) we have the following re-
lations:

A; 1= Q1) = A(43,2) and 0 < A(LQ) < A(i,l) < 1 for every 1€ N
Moreover, by definition ay < a; < --- < ay_; and

fa—1nlan-—1) < fan(ao), (1.4.3)

see (1.1.3). For simplicity denote \; the vector of contraction ratios of F and
similarly A, the vector of contraction ratios of G. We denote the attractor of
S by Q(A, a), where A = A\, x A\, and the vector of the distinct fixed points

of the functions of S is @ = (ag,...,an_1). As usual we write
=1l k=(k,... k) €EN", y€ER™ (1.4.4)
i=1

The symbolic space is
Y= (ZuJ)".

The natural projection my, from the symbolic space X to the attractor (2 is
defined exactly as in (1.2.1).

We remind that for an i = ((ig, ko) (i1, k1) (i, ko) -+ ) € ¥ we write i(k)
for the sequence of the first k elements of i and we denote the number of
(i,k) € ZUJ ini(k) by 4(,x)i(k). We form the vector fi(k) € {0,..., It
as

ﬂi(k) = (ﬂ(O,l)i(k)> ﬁ(l,l)i(k)> ) ﬂ(N*l,l)i(k)a ﬂ(minJ,Q)i(k)a ceey ﬂ(maXJ,Q)i(k)) .
Using the notation introduced in (1.4.4), clearly,

Tra(i) = Zaz‘k(l — Afiprep)) AR (1.4.5)
k=0
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Equivalently,

o
ﬂz&(i) = Qj, + Z (aik“ - aik) Aﬁl(k—’—l). (146)

k=0
In this way only those elements of the sum above have non-zero contribu-
tion for which a;,,, # a;,. Now we partition the elements of i into blocks
to rewrite the natural projection. Let p! be the [ + 1-th element of the set
{k :ix_1 # i} where i = ((io, ko) (i1,%1)...). For I = 0, let the 0-th block

of i be bl = <(z’0,/<co) . (ipg,l,npz),l)), and for [ > 1 the I-th block of i

is b = <(ip§71, Bpi ) oo (g, /ﬁpz,l)). Therefore all functions which corre-
spond to any symbols in a block share the same fixed point.

We write k} for the length of the I-th block bl. Obviously, the length of
the first I blocks is pf = > k.

In this way the decomposition of i into blocks is as follows:

i = ((io, ko) -+ (g 1y g 1) -+ (i bigp) -+ (it 1o Bpigad, —1) * )

b b§+1
or simply i = bybibh... . Let a; be the common fixed point of all the

functions f(,, where (i,x) € bj. That is

ay =a; , = a;, = .=q;. . .
1 1 1 1
L Py Pyl pp_y Rt

For a block b = ((iy, ku), - - -, (iv, Ky)) We define

Jo = Jliuma) © O Slinm)- (1.4.7)
By the two notations above we have
Taa(l) = lim fyg 00 f(0) = ay + > lay,, — ag) XD, (1.4.8)
l

We define both the empty sum, and for every 0 < o < 1, o as 0. Let
us assume about the first element (ig, ko) of i that igc € N. To find the
exponent of \;, » we introduce a set Q' as follows: First for every [ > 0 we
assign an integer m(l) which is the total number of the appearances of (ig, 2)
in the union of the first I blocks. Observe we always assign the same m(l) to
more than one consecutive I. Among these, the smallest one is called r! and
the biggest one is 0!, > 1+ 71 The collection of the distinct integers m(l)
assigned in this way to some [ > 0 is the set Q. That is

Q' ={m>0:3>0, m="H;oilp)}. (1.4.9)
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and

= sup {1 : (.2 m}, ri, =inf {l: f4,2i(p) =m}. (1.4.10)

It is possible that ofﬂ = 00. Now we partition the sum in (1.4.8) according
to the exponent of (i, 2):

0
ﬂz’g(i) - abé) - Z(abi-‘q o ab})Aﬁl(pZ)

— E : E : £i(p})
—_— a/bl + ab;+1 - CLbn )\ l

meQt I=ri,
= ay + Y AN o), (1.4.11)
meQ!
where
ol . ol o
m - Aﬁ’(pl) m Aﬁl(pl)
" = Z(ab;+1 - ab;)iﬁw)i@%) - Z(%+1 — ay) S (1.4.12)
l=r}, (i0,2) I=ri, (i0,2)
. i( i)
Note that for I = ,..., 0}, the ratio X;?OP; is independent of A, 2), by the

definition of m.

Lemma 1.4.1. Let i = ((ig, ko)(i1,K1) -+ ) € X such that ic € N'. Then for
every m € Q' we have

ﬁi(Pii )
‘d:n| S = max {aN—l — Q4g, Ajy — CL()} . (1413)
(iO’Q)
Moreover if 0 € Q' then
|di| > /\ g ) min { fiios1.)(@0) = @i, @i — flig—1,n(an—1)} - (1.4.14)

Proof. The statement of the lemma follows easily from the following obser-

vation: o
. )\ﬁl(pri )
(7’07 )

--bl, ) and using the notation of (1.4.7) we define

fi=ti oo

'rm+1

(filai) — asy) , (1.4.15)

S . 1
where 7 := (br, e
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To verify (1.4.15) we fix an i = ((ig, ko) (i1, /1) - -+) € X and m € Q'. Using

that a;i = a,. = a;, by definition we have
o!m+1 'r‘m
e (-0’ ) W, )t )
Z ﬁl py)—Hi(p!; fi(pt; )—ti(p',
fz(alo = @b‘ + @b‘ &bx ! Tm —‘—(Gjbi‘ &bx )A om Tm
ri, 41 om+1 o
1= r‘ +1
and

ol

I R )
di - Z(ab;+1 - ))\m - )\m fz(alo) ablm :

I=ri (i0,2) (i0,2)

Which completes the proof of (1.4.15). Therefore

ﬁl(p:“;n)

|di"| < =

max {ay_1 — @y, Qg — g} -
(i0,2)

Now let us suppose that 0 € Q' then r} = 0. Moreover b}, contains only

(ig,1). Then by |b}| = ki we have

di" = )\ oy (firlaig) = aig)
where i/ = (bi-- b‘o) By definition, b does not contain elements from
0
{(i0, 1), (40,2)}. Then by (1.4.3) and ;2 < Aq,1) we have
| fi(aiy) — ai,| = min {f(io+1,1)(a0) = Qigs Qig — f(io—l,l)(@N—l)}

which completes the proof. O

1.4.2 Proof of the transversality condition

Similarly to the case of IFS R, the IFS S does not satisfy either the
transversality condition, because for every i € A and every i, j € {(,1), (i,2)}"
with (i, ko) # (i,70) we have my 4(i1) = m)4(j) = a;. In this section we prove
transversality for a series of suitable subsystems, but with substantially dif-
ferent method compare to Section 1.3.2. For k& > 2 let

u, =17\ J OU U U {i(u,2)(v, 1)} | . (1.4.16)

1=0 e ! ueN v=0,u#v

For a k > 2 we define
v, = {fi}geuk ) (1.4.17)
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We prove in Lemma 1.4.2 below that for every k£ > 2 the IFS W, satisfies
transversality on a certain parameter domain R.. Using this, in Proposi-
tion 1.4.4, we verify that the transversality holds on a domain which ap-
proximates the parameter domain that appears in Theorem 1.1.2. First we
introduce the corresponding notation. Let us denote the attractor of W¥; by
Q% and the natural projection from Y := U} onto Q% by W%. Denote the
elements of X by i' = (igi; - - - ).

Lemma 1.4.2. Let 0 < ¢&; < A1) for everyt=0,...,N—1. Then for every
k> 2 and every i' = (igty -+ ),J' = (jJ, ) € Tx such thal iy # j, € Uy,

X X 0
m() =m (i) = EEV (wﬁ(i/) —~ wﬁ(j’)) > 0, (1.4.18)
:2) A=X
for some i and for every
o . 1
AQ c Ré = H &, IMNIN )\(i,l)a s (1419)

N 1+ \//\maxozi (1 + “—)

if it exists, where A\pax = MaX;—o,. N—_1 {)x(m)} and

max {ay_1 — a;,a; — ap}

oy = —; .
min {f(i+1,1)(&0) — @y, A; — f(ifl,l)(@Nfl)}

To prove Lemma 1.4.2 we need the following Sublemma:
Sublemma 1.4.3. Let i, finite length word of symbols such that

k1

——
(i7 1) T (iv 1)(l17 Kl)

k2
J=(4,2)---(i,2)(l2, K2)

where 11,1y # 0. If fi(lao, an-1]) N f;(lao, an—1]) # O then

i
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Proof. Since for every (i,2) € J, Ai2 < Mgy, we have that
fl‘([&o,&]\[,l]) N fl([&o,a]vfl]) 7é @ 1mphes

)\](Cil,l))\(h,m)ao + )‘kz‘ll ar, (1 — Aty 1) ) +a;(1— )‘kz‘ll ) <
A2 Az a) N1+ Ay @ty (1= Aty ) + as(1 = X2y,
A2y A2 @0 + Ay @ty (1 = Aty ) + @i(1 = A2y)) <
(4,2) Ml2,k2) 10 i,2)%2 (I2,K2) Q; (i,2)) =
)\kl )\ (I1,k1) AN -1 T )\ all(l — )\(11751)) +a;(1— )\](21)).

Using the fact that F satisfies (1.4.3), we have l;,ly > ¢ or l;,ly < i. One
can finish the proof by some obvious algebraic manipulations. O

Proof of Lemma 1.4.2. Let 0 < &; < A;;1) and suppose that g; < A ) for
every i € N. Let I',j’ € ¥ such that i, # j_ and (i) = T (j ) Divide ¢,
and j into blocks such that i = (bO . bZO) and j = (bo by 0) By defi-
mtlon a block consists of such pairs which share the same ﬁrst component

If w is the common first element in the case of the block bo and v for by
then applying (1.4.3) we obtain that u = v. That is the first elements of all

of the pairs that are contained either in béo or in b%o are the same. First let
us assume that both of 4, and j begin with (¢,2). Then by the definition of

Uy, (see (1.4.16)), b, b%o contain only (7,2). Since S satisfies (1.4.3) we have
that [b°| = [b}°| = n. This implies that

0 = mb(i) = m2() = Aoy (™) — 72

where the first element of i"* is (b - - -b%o) € Y, and the first element of j™ is
(b%o x ~b%°) € Y. Since A 2) > €;, without loss of generality we can assume

that i, = (i,1) and b contains only (i,2) for an i € N. Let us write i,j
for the elements of ¥ = (ZU J )N that correspond to 1, j respectively. Then
PN . Aes .
T (') = maa(i) and T (J') = ™26 (d)-
If 8,2)i(k) > 86203 (K J) then by (1.4.3), my (i) # W_g( ) therefore without
loss of generality we assume that §(;2)i(k}) < f¢;,2J(k). Then

. . B(i,2)i(kD) o -
. ,g(l) - WA,Q(J) = )‘(;22)) ’ (WA,Q(I ) — WA,Q(J )

where
B, 1)i(k)) ﬁ(i,2)j(k‘ci))*ﬁ(i,2)i(ké))

i'= (D@D ) andj = ( 02 (L2) Bth---).
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Since A 2) > €; > 0 it is enough to prove that
f(A) =0 = ||lgradf(A)] > 0, (1.4.20)

where f(A) = my.(i*) — 7

4(J%). Let m = min Q¥ then by (1.4.11) we have

& d:
fQ) =d [ 1+ Z dTA]@g) - Z 70 —5 Ali2)

keQi\{o} ket T
d~ YA
0 it \k 3 7N8,2) \ k—m41
di- | 1+ E _d‘l /\(i,2) - E N /\(i,2)
kGQi*\{O} 1 ker* 1 (Zv )

Now we give upper bound for the absolute value of the coefficients. It is easy
to see by Lemma 1.4.1 and Sublemma 1.4.3 that

7| < Amaxi for every k € Qi"\ {0}
dim A 2
(4,2) Q;
dO (1 2) S Z aIld
di, AT .
@ /\E z; < Amaxz- forevery k€ Q) \ {m}.

2
Therefore absolute value of the coefficient of A2y is at most Ay + ‘Z—

i

and the absolute value of the coefficient of )\’(“2.72) for Kk > 2 is at most
Amax@i + Amax s If f(X) = 0 then

of 0 df* k— 1 df*A?ZQ
" kEQi"\{0} i keqir 10
k ym—2
_ Z d )\(22 )\k m—l—l :
keQi*
and by Lemma 1.2.3 we obtain that for A\, € | &, L the

1+\/Amaxai (1+21)

following inequality holds:

dk )\m
1 k—1 k—m
Z *k;/\ o= D & A(zz —m+ 1A{ ) <0. (1.4.21)
keQi*\{0} ¢ keQi”
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On the other hand, (1.4.15) yields that for suitable i, j* we have

nj(;r‘

dg’f _ (22 <f3 (ai) — Z)

0
di* (@1) (fg’(az) - ai)
Let iy and jj be the first element of the first component of 7/, j'. Then by

m
*
i

(1.4.3), 4,750 > @ or i), j, < ¢ which implies that > 0. Therefore by

Lemma 1.4.1 we have for )\(@2) < m that
(22 k—m+1 __ J* \m—1 J* \k—m
Z (m—l) dO )‘ (i,2) = (m— 1)d0 )‘(22 1+ Z d_m)‘(@?) =
keQi” keQi"\{m} I

m

s
(m—l) 12)< Z)\maxal)\(ﬂ) >0. (1.4.22)

Observe that 1 <

this (1.4.21) and (1.4.22) we have

o of ~
[H=0= 5@ <0

1+)\iaxai holds for every 0 < &; < 1. Using

which was to be proved. O

Proposition 1.4.4. For every k > 2, the IF'S Uy salisfies the transversality
condition on

' 2
AQ € TN(&) = L[/(f’ min {)\(i’l)7 (1 —+ \/5)(0612)\max +2

where & > 0 is arbitrary small and

)} —¢)  (1.4.23)

max {an_1 — a;,a; — o} )
o = — forieN.
" min{fi11 (a0) — ai,a; — fio1 (an-1)}

Proof. Let
1

L ey (14 %)

We can extend g; onto [0,00) as g;(0) = 0, which is a fixed point of g;. It is
easy to see by simple calculations that g; is strictly monotone increasing and
has a unique positive fixed point €}.

gi(x) =
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Hence, we can cover the rectangle [], (0, min {\;1),£;}) by countable
many rectangles in the type R, see (1.4.19).
It follows from Lemma 1.4.2 that for every k& > 2 and i,j € X; with

iy # J, the function mo(i') — my(j') satisfies (1.2.3) on the rectangle

[Ticar(0, min {1y, €5 }).

Now we are going to prove that

2
< gl 1.4.24
(\/i + 1)(%‘2)‘max + 2) - ( )

To verify this, observe that

2
" V(@ max + 2)2 F A(@idmax — 1)+ 02 Ao + 2

If the second term under the square root is non-positive, that is if ;A < 1
then clearly (1.4.24) holds. Otherwise, ;Amax > 1. Then «o; > 1. A simple
calculation yields: 4(jAmax — 1) < (@ Amax + 2)? which follows that (1.4.24)
holds. To complete the proof we apply Lemma 1.2.2 for the rectangle on the
right hand side of (1.4.23) with £ = 0. O

1.4.3 Hausdorff dimension

Before we prove the theorems we have to introduce a sequence of functions.
For every k > 2 we introduce the function h, x(s) which is defined as the sum
of the s-powers of the contraction ratios of the IF'S W,. That is

haw(s) = 2A + (ZA@) > Z X o) AL (1.4.25)

=0 \ieN ieN j=0,5#1

Let s;()) be the unique solution of fy x(s) = 1. Therefore dimy Q7 < min {1, sx(A)},
where Q% is the attractor of Wy.

Since the sequence s;(A) is monotone increasing and bounded, it is con-
vergent. It is easy to see by some algebraic manipulation that the limit of
sk(A) is the unique solution of

)\ JED Mgy (1= X5y) =1

ieEN

2

1§
o

7

This equation corresponds to (1.1.5).
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Moreover, we need to introduce a sequence of subsets of X*. Let
Ci=Z=A{(0,1),...,(N—-1,1)} (1.4.26)
and by induction let
N-1
= UlGnaulJ U {621 (1.4.27)
7=0 ieCy, JEN iccy,
(f0,K0)#(5,1)

Then we can look at the elements of Cy, either as certain sequences of length k
of symbols from Z U J or juxtapositions of at most k elements of U,.

Lemma 1.4.5. Let 5,()) be the unique solution of

=1,

1€Cy
and let s(\) = supy Sg(A) then
dimpy Q) , <min{1,5())}.

Moreover, - -
HD(Qa) < (an-1 — ag)™.

Note that 3;()) is bounded since C, € (ZU J)".
Proof. Using that for every i € N/
f(i,l) ° f(z‘,2) = f(i,2) © f(i,l)a

and 0 < A2y < A1) < 1 we have that the set of closed intervals

{fi(lao, an—1])};cc,

gives a cover of 2, , with diameter at most A\*__. Then
H () < D Ifillao, an-a) ' = (aw-1 — a0 ™ Y7 F0)® <
i€Ck i€Cy
(an_1 — ao)g(A) Z fé(o)gk@) = (an_1 — ao)g(g)'
i€Cy,
N——

1

This proves the upper bound of the dimension and the measure claim of the
Lemma. O
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Proof of Theorem 1.1.2. Let £ > 0. By the definition of C; we have that for
every k> 1

k
¢ c | Jui. (1.4.28)
=1

As it was mentioned above, every ¢ € C, can be decomposed as a juxtapo-
sition ¢ = if”L’ where each iz is in Uy and 1 < r < k. By using this

fact and Proposition 1.4.4 we have that the system W) = { fi}iee, satisfies
transversality on 7y (). By Theorem 1.2.1 we have

dimy ) = min {1,5,(A)} for L-a.e. A, € Ty (€), (1.4.29)
where (NZ% denotes the attractor of {fi}, . . Using (1.4.28)
dim g Q% < dimpgy Q%
Moreover by Proposition 1.4.4 and Theorem 1.2.1 we have
dimy Qp = min {1, s;(A)} for L-a.e. A, € Ty (€).
Since Q%, Q% C Oy, for every k > 2 by Lemma 1.4.5 we have
min {1,5x(A)} <min{1,sx(A)} <min{1,s(A)}.

Since si()) is strictly monotone increasing limy o Sp(A) = supy sg(A). This
implies that min {1, s(A)} = min{1,s())}, moreover

dimy 2y, = min {1, s(A)}.

To complete the proof of the last assertion of Theorem 1.1.2 first observe
that whenever s(A) > 1 then there exists a k& > 2 such that sg()\) > 1.
Therefore, by Theorem 1.2.1 and Proposition 1.4.4, £(Q,,) > L <Q%> > 0

for a.e. Ay € Tn(€) N{Ay: s(A) > 1}. Since  was arbitrary, this completes
the proof. O

1.4.4 Example

To visualize the behavior of the vector of contracting ratios we consider
an easy example, where the functions of F are uniformly distributed with
uniform contracting ratio, that is

F={filz) = e +i(1 - N},
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Figure 1.1: Transversality region for N = 5 fixed points

where 0 < A\ < % Let us add to the system the following N functions:

G = {gi(z) = v +i(1 — )}y -
Note that the fixed point of both f; and ¢; isi, ¢ =0,..., N — 1. It is easy
to see that for every i =1,..., N — 2
N—1—1,i N -1
max { i,i} and ag = ay_, = Y1

min {1 — (i + 1A, 1 — (N —9)A} 1—A

o = OAN—1—§ =

where «; is as in Theorem 1.1.2. To satisfy the assumptions of Theorem 1.1.2
it is enough to require that

2
0 < v; < min {/\, } 1.4.30

(1+V2)(a2X +2) ( )
holds for ¢ =0,..., N — 1. For example, when N = 5 then we can choose ~;

from the appropriate shaded region of Figure 1.1. In general, first we observe

that
N -2

1—(N—-1X
holds for every i = 0,..., N — 1. So by (1.4.30) the assumptions of Theo-
rem 1.1.2 hold if we assume that

o < = Qn_g =

2
(1+v3) ((%)2A+2)
(1.4.31)

We know that 0 < A must be smaller than 1/N. By (1.4.31) we obtain that
whenever A\ < 0.4764/N holds then the assumptions of Theorem 1.1.2 are
satisfied for v; < A.

0 < < min ¢ A, , 0<i<N-—-1.
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1.5 Proof of Theorem 1.1.3

To prove Theorem 1.1.3 we use the method of Bandt and Graf [BG]. More
precisely, we use it in the way as it was used by Peres, Simon and Solomyak,
[PSS2] with some modifications.

Without loss of generality we may assume that s(A) < 1. (Otherwise
H*(Q2) = 0 holds obviously.) Let us denote the local inverse of the left-shift

operator o0 on ¥ = (ZU j ) by 0(22) More precisely, for every i € ¥ let

-1

a(_i%{) (, k)i. Denote o; " =0, o0 J(;i,nn) for an ¢ € ¥*. Let
U U {071V},
k=0ic(ZuT)k

which is the subset of > such that every i € S contains only finitely many
symbols of Z. Then

W <§> UQ’Q <2\§> '

Let
u=zJJUU U U 20603
1=0 je gl ieN j=0,j#i

Cf. to (1.4.16) the definition of Uj.

Lemma 1.5.1. R
Thra <E\E> C maa (UY) -

Proof. For every i € Z\f] there are at most two possibilities, it contains
finitely or infinitely many blocks. If i contains an infinite length block (which
is equivalent to i contains finitely many blocks) then every element in the
last block can be changed to a suitable ¢ € Z without the modification of the
value of the natural projection.

The fact fi1) 0 fu2) = fu2) © fu,1) completes the proof. ]

Since Hausdorff dimension of 7y , <§]) is equal to the Hausdorff dimension

of the attractor of G, which is the unique solution of > . ien A G 2) =1, we have

HO (Qya) =1 (0 (Us)) (1.5.1)
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We say that 7 and j elements of U, (the set of finite length symbols of

U,.) are incomparable if there are no 77 € 3*_ such that i = j7 or j =
holds.
We define an outer measure. Let

¥ (K) = inf {Z |Uk|® : open, K C U Uk} .

kel kel

Lemma 1.5.2. For measurable K C 7y, (UL), H*¥(K) coincides with the
outer measure i*® (K). Moreover,

WD ((fi (mya (U2)) 0 F5 (a0 (U))) = 0
Jor every i, j € Uy, such that i and j are incomparable.
The proof of this lemma coincides with the proof of [BG, Proposition 3].

Proof of Theorem 1.1.3. Without loss of generality we can assume that for

every i € N the quotient ii;ﬁ is irrational. Otherwise dimy Q) , < s())
trivially. ’
Let ¢ = (4,1)---(4,1)(j, k1) and j = (4,2)---(i,2)(j, ko) such that

a0 (@) = ki, §i2)(J) = k2 and j #i. Then

[ o gy = i, (A ( (1-——)+ )
o fila) = X - a;\t = ’
i . )\?il,l) )‘](Cil,l) ] Aan” A

Therefore for every § > 0 there exists i, j € UJ, incomparable words such
that

sup {’a: — f;l o fl(x))} < 9. (1.5.2)

z€[a(g,1),0(n—1,1)]

Indirectly, let us suppose that H** (€, ,) > 0 and let £ € (1,3). Since

(1) 4 is compact, there exists Uy, ..., U; finite cover of (2, , such that

l
STIF® < e () = €MD) (myq (U,)) (15.3)
m=1

by (1.5.1). Let

!
(5:inf{\a—x\ ta € Ny4 v U Um} <

m=1

I
inf {|a —zliaem, (UY), x ¢ U Um} . (1.5.4)

m=1
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Let 1,7 € UZ, such that

sup {)x—f[IOfl(x)’} <4

z€[ap,an—1]

Ar2
and /\,}1?3 > 2 — . Therefore by (1.5.4) we have

and

which is less than or equal to

STUAUP® = A ”Zw O < AW (my, (UY))

In the last inequality we have used (1.5.3) and (1.5.1).
However, by the definition of Hausdorff measure,

HO (fi (o U))) + 1D (f; (maw (U))) =
)‘](?%A & (WA& (ucljlo)) ](?;()\ & ( Txa (ucljlo)) :

Since we assumed that H*® (€, ,) > 0 and by Lemma 1.4.5, 1™ (€, ,)
is finite, by (1.5.1) we have 2 — ¢ < £ — 1 which is a contradiction. O
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Chapter 2

Sub-additive pressure of
Iterated Function Systems with
triangular maps

2.1 Definitions and Statements

Let M C R™ be a non-empty, open and bounded set, and let F; : M — M
contractive maps for every i = 1,...,0. For an i = iyis...i, 3; € {1,...,1},
we write Fj(xz) = Fj, o Fj, o...o F; (x). Our principal assumption about the
maps F;, 1 =1,...,[ is that

Fi(w1, .y mn) = (fH(@1), [P (21, 22), ooy 7 (21,00 2)) (2.1.1)

and Fj(x1,...,z,) € CY(M) for every i = 1,...,1. Moreover we require
that D,F; is a regular (non-singular matrix) for every x € M and every
i € {l,...,1}. Denote the elements of D,F; by z;; (i, z).

Proposition 2.1.1. There exists a real constant 0 < C' < oo such that

o1 < Balbal (2.1.2)
i (1,y)]

Jor every x,y € M and for every i€ {1,...,1}".

Proof. Let Ggm) : R™ — R™ for every integer m between 1 and n, be the
restriction of F; to the first m component, i.e.:

Ggm)(xl, @) = ([ (1), [0, 32), oo, [T (@1, )
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From [Pesl, Page 198; Propostion 20.1 (3)] it follows that for every z,y € M,
for every i € {1,...,1}" finite sequence, and for 1 < m < n there exists a real
0 < C,, < oo constant that

_ Jac G\™ (z)
Jac GI™ (y)

1

o < C,,.

Since for every m, the matrix DgGi(m) is a lower triangular matrix, the Jaco-
bian is the following

Jac Gfm) (&) = ’xll(iag) e xmm(laﬂ)’ .
Therefore for every integer 1 < m < n and for every z,y € M

Jac Gi(m) (z)
-1 m
Cm Jac Gi( )(g) Cm

Cerl Jac Gi(m-&-l)@) O?:’L}Fl
Jac Gi(m+1)(g)

and
Jac Gi(m)(g) .
Jac Gi(m) (v) - }‘Im—i—lm—l—l (17 Q) ‘
Jac " @) [yimer (L 2)]

Jac Gi(m+1)(g)

Then C' 1= maxi<;men—1 {CC,—’{L, C’l} choice completes the proof of the propo-
m+1
sition. 0
The singular values of a linear contraction 7" are the positive square roots
of the eigenvalues of TT*, where T* is the transpose of 7. Let ay(D,F})
be the k-th greatest singular value of the matrix D,F;. The singular value
function ¢° is defined for 0 < s < n as

¢° (DI = a1 (D F)...ap 1 (D) (D Fy) (2.1.3)

where k — 1 < s < k and k is a positive integer. We define the maximum
and the minimum of the singular value function as

.S

¢ (i) := max ¢*(Do 1) , ¢°(i) := min ¢* (D, F5).
- zeM

xeM

We define the sub-additive pressure after K. Falconer [Fa4] and L. Barreira
[Barr]:

1 —s .
P(s) := kli_}rgozlogiz:kqb (i) (2.1.4)
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and define the lower pressure:

P(s) := lim inf % log |Zk #°(i). (2.1.5)

Theorem 2.1.2. Let 0 < s < n. If F},..., F} are contractive maps in form
(2.1.1) and F; € C**¢ for every 1 <i <1 then

The proof of Theorem 2.1.2 is based on [B4] which uses the technique of
[EM]. The result of the chapter was part of author’s Master Thesis.

2.2 Proof of Theorem 2.1.2

The m-dimensional exterior algebra ®™ is a vector space spanned by for-
mal elements v; A ... A v, with v; € R™ such that v; A ... Avy,, = 0if v; = v;
for some i # j, and such that interchanging two different elements reverses
the sign, i.e. v1 A .00 AUy, = —U1 A 00500 A Uy, iE 7 # j. Then O™
has dimension (:1) with basis {e;, A...Aej, 11 <j; <..<Jm <n} where
e1,...e, are a given set of orthonormal vectors in R".

Let us define a scalar product on " in the following way. Let

<UIANA - ANUpy U N ve s AUy >pm= det ((< Vj, Uj >)i,j:1...m) s

where < .,. > is the usual scalar product on R™. One can extend < .,. >gm

to every element of @ the natural way. Then ®™ becomes a Hilbert-space.

Let us define the norm ||.|| on ®™ by < .,. >¢m the usual way. Then it is easy

to see that ||v; A ... A vyl is equal to the absolute m-dimensional volume of

the parallelepiped spanned by vy, ...v,,, for every vy A ... Avy,, see [K, p. 44].
We may also define an other norm ||.| , on ®™ by

= max |\

Z )\ilmim(eil AN eim)

1< <...<im<m

oo

T : R — R" is linear then there is an induced linear mapping
T: ™ +— ™ given by

T(r A o Avgy) = (To) A oo A (To,).
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The norms on ®™ induce norms on the space of linear mappings £(d™, ™)
in the usual way by

|

Then with respect to the norm ||.||
HTH — 6™ (T) (2.2.1)
and with respect to the |||
HTHOO = max{‘T(m)} - T™) is an m x m minor of T }, (2.2.2)

where 7™ = T(QT’:L) is the determinant of that m x m minor of
n x n matrix T which is determined by the elements of T in the rows
1< < .< 7, < nand columns 1 < s < ... < 8, < n.
The space of linear mappings £(®™, ™) is of finite dimension (2)2 Since
any two norms on a finite dimensional normed space are equivalent, there

are constants 0 < ¢; < ¢y < oo depending only on n and m such that

(&1

A, <[] <o

:FHOO (2.2.3)

Now we notice several lemmas relating to minors of matrices. We will
need some well-known lemmas.

Lemma 2.2.1. Letx; > 0,i=1,...,m and p € RT.
1. Ifp>1, then (Y + ...+ 2F) < (21 + ... + )P < mP (2] + ...+ aP)
2. If0<p <1, thenm? Y (al+..+22) < (x1+...4+2,)° < (2] +...4+2L,).

Lemma 2.2.2. Let a, be a sequence of real numbers such that a,. ., < a, +
A, Then there exists lim,, o, 2 and it equals to inf, %*.

We first look at the expansion of m x m minors of the product of k matrices
A= AAy--- Ay, where for i =1, ..., k

&11 &12 e &1”
T T T
a/21 a/22 e a/2n
A= . .
D)) App



Lemma 2.2.3. For 1 < m < n, the m x m minors of A = Ay--- Ay have
formal expansions in terms of the entries of the A; of the form

T1y ... Tm
A(Sl . ) = Z ia%(cl) R a}n(m)aiw) R afn(@) .. .alf(%) .. .aﬁ%(%)

C1yeensCh

such that for each i = 1,...,k, the ail(ci) . -afﬂ(ci) are distinct entries a', of
A;. In particular, for each i, 1(¢;), ..., m(c;) denote pairs (r,s) corresponding
to entries in m different rows and columns of the ith matriz A;, and the sum

is over all such entry combinations (cy, ..., c) with appropriate sign =+.

The proof of this Lemma can be found in [FM, Lemmma 2.2]. Now we
consider lower triangular matrices. For ¢ = 1,..., k, let

ul 0 0
T L
We consider the product
(31 0 0
U1 U ... 0
U=U,--Up =
Upl Up2 ... Uy
We note that
o= Y. whuleeul 1Sr<s<n o (224)

r2Tr12. . 2TE—128
since all other products are 0.

Lemma 2.2.4. With the notation as above, let Uy, ..., Uy be lower triangular
matrices and U = Uy ---U,,. Then

1. If r<s, us =0

_ — 1 k
2. Ifr=s, ups =u =u, - u,

3. If r > s, then the sum (2.2.4) for u,s has at most k™* < k"' non-

zero terms. Moreover, each non-zero summand ul, u? . ---uF has
1 T1r2 Tk—18

at most n— 1 non-diagonal terms in the product, i.e. terms with r #
Or T # Tiv1 OT Tp_1 7 S.
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The proof can also be found in [FM, Lemma 2.3] for upper-triangular
matrices. Now we extend the estimate of Lemma 2.2.4 to minors.

Lemma 2.2.5. Let Uy, ...,Uy and U be lower triangular matrices as above.
Then each m x m minor of U has an expansion of the form

1y ...Tm 1 9 & 1 ) 3
U(Sl s ) = Z ﬂ:ul(cl)ul(CQ) e ul(ck) e um(01)um(02) . um(ck)
P ClyeesCh

where 1(¢;),...,m(¢;) are as in Lemma 2.2.3 and
1. there are at most m!k™™=V) terms in the sum which are non-zero,

2. each summand contains at most (n —1)™ non-diagonal elements in the
product.

The proof is equivalent to the proof of [FM, Lemma 2.4]. Before we prove
Theorem 2.1.2, we define two sums.

where m — 1 < s <m and d;;(i) = inf, |z;; (i, z)|. Moreover

T(s,r)= max Y (b (1)t gy (D)™ (s (1) -ty (1)
el =
(2.2.6)
where m — 1 < s < m and t;(i) = sup, |z;; (i,z)]. It is easy to see from

Proposition 2.1.1 and the definition of the two sums that
H(s,r) <T(s,r) < C°H(s,r). (2.2.7)

Lemma 2.2.6. For every positive integers r,z, T'(s,7 + z) < T(s,r)T(s, 2).

log T'(s,r) £ log T'(s,r)
r r r ’

Moreover lim, _, o exists and equal with in

48



Proof of Lemma 2.2.6. From the definition of T'(s, ) it follows

T(s,r +2) = max > i @)t D)™ (L () - g, (1)

Im
]1’ ,] H r+z

< maX Z Z J1J1 ]1]1 h) o .tjmfljmfl(i)tjmfljmfl(h))m_sx

G0
Fi lil=r Il=

Xt (Dt () - -t g, (Dt 5, ()7 =

-, max (Z(tﬂ'w’l(i) C g ) (g (1) g, (£) X
Jlseeordim [i|=r

X Z 31]1 o ]m 1Jm— 1(h))m_s(tgiji(h) c ‘tﬂnj;n(h))s_m'i—l)) <
|h|=z

< T(s,r)T(s,z2).

The existence of the limit follows from Lemma 2.2.2. O

The proof of Theorem 2.1.2 follows the method of the proof of [FM, The-
orem 2.5, but our theorem is not a consequence of it. The most important
difference is that the functions in [FM] are affine maps. So the derivatives
in our case are not constant matrices. Moreover, in the proof of [FM, The-
orem 2.5], the singular value functions and the minors of the derivative ma-
trices were compared. During the proof of Theorem 2.1.2 we will do this as
well, however, we have to introduce in the proof a new IFS, which will be the
r-th iteration of the original IF'S, to take separation between the growth rate
of the non-zero and the non-diagonal terms of the minors of the derivative
matrices.

To control the consequences of the phenomenon of not constant matrices,
we have to state the following lemma.

Lemma 2.2.7. Let X be a compact subset of R™ and let { f;} be finitely many
continuous, real valued functions. Then

sup max f;(z) = maxsup fi(z).
zeX tozeX

Proof of Lemma 2.2.7. Since X is compact, we have z; € X such that f;(x;) =
sup,, fi(x). Therefore

sup max fi(z) < maxsup fi(z) = max fi(z;) = max f;(z;) = maxmax f;(z;)

z ¢ ¢ z

< sup max f;(z),
1

z

which was to be proved. O
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Proof of Theorem 2.1.2. Let

{Gh}lhrzl - {E1lr}i;:7i ip=1" (228)

.....

In this case an index h is equivalent to a i € {1,...,1}" finite sequence, length
r. Let us define

&' (h) = sup 6*(D,Gh).
& (h) = nf 6°(D,G)

for h € {1,...,I"}", corresponding to IFS {G}'_,, see (2.1.3).
It is easy to see that

Z ¢*(DyF3) = Z ¢*(DyGh), (2.2.9)

li|=kr |h|=k

where i € {1,...,1}" and h € {1,...,"}". The elements of D,G,, denoted
by vi; (h,x), are equal to z;; (i, z) for an appropriate finite sequence i with
length r. It is very simple to see that

¢*(DyGhn) = (" (DeGh))"*(¢™(D2Gn))* ™,
where m—1 < s < m. By using relations (2.2.1), (2.2.2) and (2.2.3) it follows
that

¢"(D;Grn) > ¢y max { ’DgGﬁm)) : DlGﬁm) is an m x m minor of DQGh} .

The maximum m X m minor of D,Gy is at least the largest product of
m distinct diagonal elements of D,Gy, since such products are themselves
minors of triangular matrices. Therefore

¢ (h) >

Cy (igf Wi () -y (B 2) \) (igf |y (,z) -y o (h, ) })

s—m+1

for every ji, ..o, Jm—1sJ1s +os Jim-
By the chain rule D,Gn, = DGhQ...hk(z)Ghlth3...hk (l)GhQ - Dy Gy,

yig (0, z) =y (hn, Gy (2) Y55 (ha, Gy (2)) - - yj5 (B, ). Tt follows
with the notation inf, [y;; (h,z)| = d;(h) that

. m—s . s—m+1
Hg}f }yjljl (h> &) Yo 1mo1 (h> Z)} Hg}f }yjiji (h> &) Y, (h’ g)‘ >
2 (d.,jljl(hl) U d;djl(hk)d;é]é (hl) o .d.,jmfljmfl (hl) e d;mfljmfl (hk))m_sx
X (djy o (M) -+ diyge (i) () <y o (Ba) -y gy (Ri)) ™0
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The next inequality follows from the rearrangement of the product

> ¢"(h) >

|h|=k
Z (d) g, (ha) - dy o ()™ (e (Ba) - -y Jm(hl))s—m—l—l o
|h|=k
(d;1]1 (hk) d;m 1im (hk))m_s(d;i]i (hk) Ce d;;nj;n(hk))s—m—l—l —

(g, (1) -y i (D)™ (e (1) -y (1) 4
)y PNy ()l ()

The inequality above is true for every ji, ..., jm—1, ji, -, jo, therefore we ob-
tain the maximum. From the definition of {G,},_, and H(s,r), see (2.2.5)
and (2.2.8), it follows

> ¢"(h) > H(s,r)". (2.2.10)

[h|=k

By using relations (2.2.1), (2.2.2) and (2.2.3) it follows similarly that
¢™(D,Gyn) < ¢y max { ‘DzGﬁm)) : DlGﬁm) is an m x m minor of DgGh} .

Therefore

> ) <

|h|=Fk
m—s
m—1
] E sup max foi ) sup max
b=k z m—1xm—1 minor - o MXm minor

By Lemma 2.2.7, the order of the supremum and the maximum can be
changed in this situation and we can estimate the sum with

m—s s—m+1
C  max max Z (sup ‘DxGilml)D (sup ‘DgCGilm)D

s—m+1
DG D .

where ry,...,7,,_1 are the rows and si,...,5,,_1 are the columns of the

(m —1) x(m — 1) minor, and 7, ...,7, are the rows and s/, ..., s/ are the

e m
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columns of m X m minor, moreover C' = ¢? (;)Z(m’il)Z By the chain rule
DGy = DGhQ...hk(Z)Gh1DGh3...

@) Ghy---DyGh,, we obtain
D,Gh (7“1, ...,’I“m) _
S1y.-3Sm

Z F11(00) (1, Gho.h () - Yr(er) (P ) o Ymer) (M1, Ghg.ong (2)) X (2.2.11)

hy,

X Ym(ca) (h% th...hk (2))ym(ck) (hka @)

Therefore
sup ) DgGglm) ‘ <

Z sup |y1(ey) (71, 2)| - SUp Y16 (P, )] o SUD [Yi(en) (Br, z) | X
xz xz xz

Cqyenny CL
X SUP [Ym(ea) (h2, )| . SUP |Yrm(ep) (B, 2)] . (2.2.12)
z z

Denote by t,(h) := sup, [y (h,z)| the supremum. It follows from the in-
equality (2.2.12) and the Lemma 2.2.1

m— s—m+1

> sup [D,G Y| sup | DG <

P | Pzbry Sup | Mgl >

Z ((Erery (D)oot aeny (D)™ (E ey (1) ey (1)

Clyenny C

SN (2213)

-t (ti(cl)(lr)mt;n_ucl)(ZT))m_S(ti(c/l)(lr)wt;n(c/)(ZT))S_mH)><

1

e X ((ti(ck)(l)'-'t;m—1(ck)(U)mfs(ti(c;c)(1)---%(%)(U)simHﬂL

-+ (ti(ck)(lr)‘-‘t;n_uck)(lr))m_s(tll(cgc)(lr)-‘-t;n(c/)(ZT))S_mH)-

k

Lemma 2.2.5 implies that each non-zero term of the sum above has at most
2(n — 1)™ = b of the indices 1(¢y),...,m — 1(¢1), .., 1(cg), ..., m — 1(cy),
1(c}), ..., m(cy), ..., 1(cL), ..., m(c)) that are non-diagonal terms. Thus, for
each set of indices (cq, ..., ¢k, ¢, ..., ¢,), we have at least k — b of these in-

dices such that 1(c,),...,m — 1(¢,), 1(c.),...,m(c.) are all diagonal entries.
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For such ¢, and ¢,
((tll(c,«)(1)-‘-%—1(@)(1))m_s(t/1(c;)(1)-‘-%((;;)(1))8_7”“ + ..
o oy (U)ot ey (D)™ oy (1) iy (7)) <

max ((tg'ljl(1)"‘t;m—1jm—1(1))M75(t;‘{(1)"'t;h(1))87m+1 + ..
{1 dim—1 33 erdln

(8,5, (U)ot (D)7 ()t g (1)) =T (s, 7).
The last equality follows from the definition of {Gh}gzl and T'(s,r). Hence
from (2.2.13)

m—s s—m+1
Z sup ‘DgGﬁmfl)) sup ‘DgGﬁm)
=k & “

Z (T(s,r)F0(1")") < KU (s,7)"0,

(2.2.14)

where, using Lemma 2.2.5, ¢ = m!(m — 1)l and ¢ = (2m — 1)(n — 1).
By using (2.2.7), (2.2.9), (2.2.10) and (2.2.14)

STG) = D0 F () < R (s, 1) < (O R (5, 1) H (s, ) <
li|=kr |h|=k

CRITT(s,7) " > ¢ () = "RUT(s,0) 70 > ¢°(1). (2.2.15)

|h|=k li|=kr

We take the logarithm of both sides of the inequality and we divide by
kr, then

log Z|i|:k;r 5S(i) <
kr -
log " N qlogk N rblogl N (kb) log(C*®) N —blog T(S,T) log > 51— @° (1)

kr kr kr kr kr kr
(2.2.16)

is true for every positive k, r integer. We take limit inferior of both sides. The
limit exists in the left-hand side of the inequality and in the right-hand side
the limit of every term exists and equals zero except the last term. Therefore

P(s) < E(s)

While the opposite relation is trivial this completes the proof. O
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The next corollary is a consequence of the previous proof.

Corollary 2.2.8. For 0 < s < n. If Fi,...,F; contractive maps in form
(2.1.1) and F; € C**¢ for every 1 <i <1 then

for every x € M.

Proof. Tt follows from inequality (2.2.7) that the lim,_, ., - h:n(s”“) exists and

logH(s,7) . logT(s,r)
r—00 r THI{olo r ’

It is clear by (2.2.15) that lim, ., logT(sir) P(s). Because of the definition

T

H(s,r),T(s,r), this is exactly what we want to prove. a
2.3 Some applications

In this section we compute the Hausdorff dimension of some non-conformal
IF'S by using Corollary 2.2.8. It follows from [Zh] that the Hausdorff dimen-
sion is less than or equal to sy where P(sy) = 0. We will show some examples
where the root is exactly the dimension.

2.3.1 Example 1

The easiest example is the non-linear modified Sierpinski triangle, see

Figure 2.1. Let
i 1]
T=1]3
0 3
2

and Tyx = Tx 4+ v, for 1 = 1,2, 3, where v; = (8),1)2 = (g),vg = (é) We call
3
the attractor of this IF'S as modified Sierpinski gasket. Clearly, the Hausdorff

and box dimension is {E—g =1

Let f; : [0,1] = [0, 1] be functions for i = 1,2,3 in C**¢ such that
T

Fy(v,y) = (3

+ i,y /3 + fix) + wi)
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Figure 2.1: The image of the modified and the non-linear modified Sierpinski-
triangular for f;(x) = sin(7x)/6 for every i.

are contractions where (v, w;) = (0,0), (vg, we) =
We can consider the attractor as a non-linear Sierpinski triangle.

We prove that the Hausdorff dimension of the non-linear modified Sierpinski
gasket is equal to 1, with the assumption that for i = 1,2, 3, f; € C'*¢ and

(fi(@)*+ | fi(2) |

4

(fi@)? +5 <

(5:0) - (03, ws) = (55 3)-

16
9

We need this assumption to provide that the {F}, I, F3} is contracting.

From the definition in this case it is easy to see that z11 (i, z) = @9y (i, z) =

1lil
3

We can suppose that 1 < s < 2. Then by using Corollary 2.2.8

.1 . s . .
P(s) = lim —log | max Y (|2, (i, 2)))* ™ x (|20 (i, 2)] [y (i, 2)|)

r—oo I
1. ]_ 1 Z
rE31>T 8 =

(

‘7 ’ .
1,95 lil=r
1|1| 2—s
3

1 il 1 il
33

r—00 T

.

= lim —log

s—2+1

1ST
<3T§ ) = log 3 — slog 3.

It is easy to see that P(s) = 0 if and only if s = 1, which is the upper bound
of the Hausdorff dimension of the modified non-linear attractor, this follows
from [Zh]. To get a lower bound it is enough to project it onto the x axis
and we get the [0, 1] interval.
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2.3.2 Example 2

The next example is a non-linear perturbation of a self-affine IF'S, where
the attractors of the original and the perturbed IFS are both graphs of real
functions mapping [0, 1] into itself, see Figure 2.2. Let ¢, ¢y € (0,1). Con-
sider the following self-affine IFS

go(z)Z{co1 CS}% gl(z)Z{l_Ocl 1_CS}Q+{2}.

It is easy to see that the attractor of this IFS has Hausdorff dimension 1
since it is a graph of a strictly monotone function. We perturb this IF'S as
follows, let {go, g1} be the following

i) = | oy S |- B =] o S ]

where fy, fi € C'*¢ and f; are periodic with period 1. Moreover we suppose
that g, g1 are contractions, namely the following inequalities hold

2 (0 + G4\ J(E + (fyl@)? + B — 463G < 2
(1= ) + (Fi(@) + (1 - o)
Vel + (H@P+ (1 - e 41— )2 (1 — )’ <2

In this case the Hausdorff dimension of the modified attractor is greater
than or equal to 1 since the projection to the z axis is the [0,1] interval.
To get an upper bound we have to use the sub-additive pressure and Corol-
lary 2.2.8. For every i € {0,1}* we have zy; (i,z) = (1 — ¢;)" and
Tos (i, z) = (1 — ¢)h1i where ;i is the number of js in i. Then

maXZ 15 (1,2)" 7 (201 (1, 2) s (1,2)) 724 =

maxz 2 S)ﬁol Cj)(?—s)micgs_l)ﬁoi(l o Cl)(s—l)ﬁlicgs_l)ﬁoi(l o 02)(S—l)ﬁ1i —

lij=r

max {(c163™" + (L —er) (1= o) 1) (coc} " + (L= c2)(1 =)™ 1)}

Therefore by formula (2.2.17) we have P(1) = 0, and by [Zh] 1 is an upper
bound for Hausdorff dimension, so the Hausdorff dimension is exactly 1.
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Chapter 3

Box Dimension of the
generalized 4-corner set

3.1 Definitions and Statements

In this chapter we consider the generalized 4-corner set A(a, §) which is
the attractor of the self-affine iterated function system (IFS) of Figure 4 on
page 6. Precisely, let ¥ = {fo(z), fi(z), fa(x), f3(x)} be an iterated function
system on the real plane and A(q, ) its attractor, where

folz) = ( 0 50 )
0 1—
ﬁ ' X ﬁ ' (3.1.1)
f2(_ - ( 0 /62 )£+ < ) 9
3 1— Q3
= T+ .
Before we compute the box dimension of the generalized 4-corner set, we

state a general theorem on the box dimension of diagonally self-affine sets.
Let

1=

Y

filz,y) = (ix + t;, Biy + ;) (3.1.2)
for i = 0,...,m such that
0<ay,fB; <1
£:([0,11*) € [0,1)* for i = 0,...,m (3.1.3)

£:(00,1*) () £5((0,1)%) = 0 for i # j.
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Denote the attractor of ¥ = {f;(z,y)};~, by A and define proj, A (and
proj,A) as the projection of A onto the z-axis (and y-axis, respectively).

Theorem 3.1.1. Let f; be in form (3.1.2) fori =0,...,m and let us suppose
that U = { fi(z,y)}i~, satisfies (3.1.8). Then the attractor A of ¥ satisfies

dimp A = max {d,, dg}

where d, and dg are the unique solutions of

m m

So QAo —Sa __ sg _dg—sg __
Zai B =1 and Zﬁz Q; =1,
=0 i=0

where s, = dimp proj, A and sz = dimp proj,A.

Using this and [SS, Theorem 2.1] we can compute the box dimension of
the attractor at least for almost all translations such that (3.1.3) holds.

Corollary 3.1.2. Let f; be in form (3.1.2) fori = 0,...,m and let T C
R?*™*2 be the set of translation vectors such that U = { fi(x,y)},~, satisfies
(3.1.8). Then the attractor A of ¥ satisfies

dimp A = max {d,, dg} for almost every translations in T with respect to

2m + 2-dimensional Lebesque measure

where d, and dg are the unique solutions of
= min —min - miny 1,s dg—minA 1,s
Zai {1,sa}6ida {Lsa} _ 1 and ZBZ { B}aiﬁ { B} —1,
i=0 i=0

and s,, spg are the unique solutions of

zm:afa =1 and iﬁfﬁ =1
i=0 i=0

Now, using the main theorem of this chapter and the earlier result of
Chapter 1 we are able to calculate the box dimension of the generalized
4-corner set for almost every parameters.

Theorem 3.1.3. Let A(a, B) be the attractor of the self-affine IFS of Fig-
ure 4. Then

dimp A(a, B) = max {da,dg} , for Lebesgue almost every (a, B) such that

max {Oéi + Qiio, Bi + /6i+2} < 1 and min {Oéi + az_;, B + 63_1‘} <1 fori=0,1
(3.1.4)

99



where d,, and dg are defined in two steps. First we define two numbers s, sg
as the unique solutions of the equations

ap* +ar® oyt gt —agtar” — aptazt =1
S S S S S S S S
ﬂoﬁ + 61[3 + 525 + 63[3 - Boﬁﬁf - Blﬁﬁf =L

Then we can define d, and dg as the unique real numbers such that

~ i | ~ gmin{1} ds-min1.s,}
gt gfe st g, Sl g
i=0 i=0
Proof. The proof is an easy consequence of Theorem 1.1.1 and Theorem 3.1.1.
U

The proof of Theorem 3.1.1 is based on [B1] which follows the method of
Feng, Wang [FW, Theorem 1] and Baranski [Bara, Theorem B] with slight
modifications. The proof of Theorem 3.1.1 is decomposed into three lemmas,
Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.3.

3.2 Proof of Theorem 3.1.1

Let us introduce some notation. Let ¥ = {0,...,m}" and
¥ = U 2,{0,...,m}". Denote the right cut on X* by §. More precisely,
let §(0) = 0 and

S(io - i) =0 - ip1.

FOI' anyg'e E* let fg: fz O"'Ofik and O@ZOZZ‘O"'OQ‘M 6226106%

For every 0 < r < 1 let

A, ={i e ¥ :min{ag, B} > r,min{wy, ;} <r}

and
AY={ieN :a; >3} and AP ={ic A, :a; < B}

It is easy to see that A, is a partition of >.

For every i € A we set w,(i) = [i] and similarly, for every i € A?

Bi
we set wg(i) = [%} For any i € A% we divide f;([0,1]?) into w,(z) equal

rectangles with height 3; and width «;/w, (i), denote the kth rectangle by
R&(i) for k = 1,...,wa(i). Similarly, for i € A? we divide f;([0,1]?) into
wg(i) equal rectangles with width «; and height f;/ws(i) and denote the kth
rectangle by RY (i) for k= 1,...,ws(i).
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Let

moreover
ne(i) = ${R2(0) : 1 < k < wa(D), R3(D) N fi(A) # 0} for i € AZ and
ne0) = 8 { RY) 1 < k < ws(i), RGO f(A) # 0} for i € AL,

Lemma 3.2.1. Let f; be as in form (3.1.2) fori=20,...,m and let us sup-

pose that U = { f;(z,y)}i", satisfies (3.1.3). Moreover, let N, =4 (C> U CP).
Then the attractor A of ¥ satisfies

T

log N,
dimpA = lim sup and dimzA = lim inf o8 T
ro04+ —logr r—0+ —logr

Proof. Denote the minimal number of squares with side length r covering
the attractor A by N,.

By definition C¢ U C? covers A and since for every ¢ > 1 real number
%c < [¢] < ¢ we have that every rectangle in C*U C? has side length at most
2r. Therefore B

N2r S Nr-

m; and Buin = min,—g. ,, B, moreover let

.....

Let Qypin = mil’lizo
P = min {aminu Bmin}-

Then every rectangle in C® U C? have side length at least pr. Therefore,
by condition (3.1.3), every square with side length £7 can intersect at most
4 rectangles in C* U C#, which implies that

.....

AN;, > N,.

One can finish the proof using the definition of the lower and upper box
dimension. 0J

For 7 € AY by some simple manipulation we get that

nr (1) = ${RE (1) : 1 <k < wa(d), B (1) N fi(A) # 0} =
ﬂ{{k_-l a ] X [0,1]: 1 < k < wa(i), {E L} ><[0,1]mA7A(z)}:

wa(t) " wal(i) wa(1) wa(i)

ﬂ{[k_., k.]:lgkéwa(z), {k_.l, h ]ﬂproij%@}. (3.2.1)

wa (1) wa () Wa (1) wali)
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and by similar arguments for i € A?

(3.2.2)

Let us divide the unit interval into n € N equal parts and denote N1 (proj,A)
(and N (proj,A)) the number of intervals with length - intersect the set
proj,A (and proj,A, respectively). Since proj,A and proj,A are self-similar
sets, the box dimensions exist, therefore for every € > 0 exists a ¢ = ¢(g) > 0
such that for every integer n > 1

¢ 'n*¢ < Ni(proj,A) < en® e and

3.2.3
¢ 'n%7° < Ni(proj,A) < en®*, ( )

where s, = dimp proj,A and sz = dimp proj,A. Using (3.2.1) and (3.2.2) we
have

No =3 2@+ nl@) <e Y wa(i) ot ae Y wy(i)HE <
> > > > wsli)

IEAY gGAﬁ 1EAY gGAB
Sa+e€ sgte
Bi
¢y ( ) +ed (—) (3.2.4)
a.
ZEAQ lEAE z

and similarly

. . Sa—¢€ . SB—E
N, >t (e - (%) +et T Y (é) . (3.25)

o}
1EAY ieAl Nt

T

Let d,(t) and dg(t) be the unique solutions for ¢ > — min {s,, sg} of

m Sa+t sp+t
Z 8% da(t) Z B; ()
— (E) B =1 and (QZ) Oél- =1.

1=0
We remark that d,(0) = d, and dg(0) = dp.

Lemma 3.2.2. Let f; be in form (3.1.2) for i =0,...,m and let us suppose
that ¥ = {fi(xz,y)}, satisfies (3.1.3), then the attmctor A of ¥ satisfies
that dimpA < max {d,, ds}.
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Proof. Let € > 0 be arbitrary small. Then by (3.2.4)

1 ;)\ Sate 3; sgte
log N, log ¢ o8 <Zi€Ag <5_1> + 2iear <O‘_A> ) log ¢
< + <

—logr = —logr —logr — —logr
D\ Sete da(€) N\ P ds(e)
d d ] log p log (ziGAﬁ (g_;) Bi o deAf <a_;) %B
ma o (€) do(e)} (14 252 )+ e |
. . el ; Sate da(E)
Since A, is a partition, > A <ﬂ—:> B = 1 and

N\ Spte e . . .
Dica, <ﬁ> 7 a%©) — 1 which implies that

) Sa+e€ ) sgte
> (7)) #r S (n) o<
IEAY BL ieA? i
Therefore

log NT - log c log 2

+max {da (), ds(e)} (1 ’ logp) "

—logr = —logr log r —logr’

Taking limit superior as r tends to 0 and by Lemma 3.2.1
dimpA < max {d,(g),ds(c)}

for every € > 0. Finally, since € > 0 was arbitrary, we proved the lemma.
O

Lemma 3.2.3. Let f; be in form (3.1.2) for i =0,...,m and let us suppose
that U = { fi(x,y)};~, satisfies (3.1.8), then

dimpA > max{d,,dg} .

Before we prove the lower bound of the lower box dimension, we have to
state another lemma about the dimension of the projections. To state this
lemma we need a sublemma about the partitions of X. First let us introduce
some notation. Let G be a partition of ¥ containing only cylinder sets, and
denote [G] the length of the longest and denote |G| the length of the shortest
cylinder set of G. h

Sublemma 3.2.4. Let G be a partition of ¥ = {0,...,m}" containing only

cylinder sets and let v;, © = 0,...,m be positive real numbers such that
Yoo > 1. Then

d vz (i %-) ’ :

i€g i=0
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Proof. We prove the statement of the sublemma by induction for the length
of the longest cylinder set of G.

For [G] = 1 the statement holds trivially. Let us suppose that the state-
ment of the sublemma is true for every partition in which the length of the
longest cylinder set is equal to n . Let G be a partition containing only
cylinder sets with [G] =n + 1.

If [G] = |G] then the statement is true since

- (i %) 9| |

Therefore without loss of generality we may assume that |G| < [G]. Let
lig - - ~in] € G be one of the longest cylinder sets of G. Since G is a partition
of ¥, [ig-+-ip_17] € G for every j = 0,...,m. Using this fact we can define
a partition Gy such that for every i € G with length strictly less than n + 1,
i € Gy and for every i € G with length n + 1, i|,, € Go. Then

DuZ D uz <§;7> LGJ‘

i€g 1€Ga

In the last inequality we used the inductional assumption and |G| = [Gs] by
the definition of G,. O

Lemma 3.2.5. Let f; be in form (3.1.2) fori=0,...,m and let us suppose
that U = { fi(x,y)}~, satisfies (3.1.8), then

D apepr <L (3.2.6)
1=0

Proof. We begin the proof of the lemma by dividing the [0, 1] interval on the
x and y axis into r long intervals. Let € > 0 be arbitrary small but fixed.
Let us take the intervals which intersect proj,A on the x axis and proj,A on
the y axis, moreover take the left and the right neighbor interval of those
intervals. Then for every sufficiently small r the number of intervals on the x
axis (and y axis) is at most 3 (%)SCA—6 (and 3 (%)SB%). Let us take the direct
product of these intervals. It is easy to see that the cover constructed in this
way covers the approximate squares C® U C? and this implies that the area
of C2UC? is less than or equal to the area of the squares constructed above.
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That is

1 Sate 1 sgte ) . oy o2 . 63 Nene
o(5) () rzet Sageer et T g e

IEAY B ic AP Wﬁ (Z)

1EAN
- C_ -(,da_. o B 3 L B_Ea
> Y Blwai) T et ajws(i)

1EAR ieA?

where ¢ is a constant depending only on ¢ as in (3.2.3). By simple algebraic
manipulations and using the definitions of w,(i),ws(i) and A%, A? we have

Y Blwa(@) et 2 et Y a5, and

LISANS €AY

2 \NSg—E,.Sa+Sg—2 5 S Sp
E a;wp(i)®EreTS8 TS > o E ;B
icAl icAl

where ¢; depends only on . Then there exists a constant ¢ depending only
on ¢ such that for every sufficiently small r

~ . —3¢ Sa Q5B
cr > E a; @ .

€A,
Since € was arbitrary we have that
l0g ) ien, @ ° ;"
0 < liminf 2ien, 4", . (3.2.7)
r—0+ log r

Now we argue by contradiction. Let us suppose that > /" 87" > 1.
Then by using Sublemma 3.2.4 we have

m [Ar]
S azeg > (z a:aﬁfﬂ) |
0

It is easy to see that |A,] = [127], where p = min; {a;, 3;}. This implies

log p
that o g )
log ) .cn @i°f; 1 m - sa 358
lim sup 2ica, 01"y < 08 2izo " f <0,
r—0+ log r log p
which contradicts (3.2.7). O

Proof of Lemma 3.2.3. By Lemma 3.2.5 we divide the proof into two parts.
First let us assume that

D g =1 (3.2.8)
=0
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Let us observe that in this case d, = dg = s, +sp. Then by inequality (3.2.3)
we have

a; Sa—€ ,61 5[3 —€
g, (Do (3) e (2))
> >

— log r - — log r
N Sa—¢ A\ Sg—¢€
log (ZzeA? (3) " o+ Siea (%) azam)
—logr
b (3.4) b (S o07)
+ .
—logr —logr

Sa+85+

Sat+Sg—€

It is easy to see that [A,] = logm;i%' Applying this fact and our as-

sumption (3.2.8) we get for every € > 0 that

.. . log Nr 1
lim inf > Sat+Sp—¢€ ’
r—0 — ogr — log max; {ai, /B’L}

and this completes the proof in the first case.
In the second case let us assume that

> app <1 (3.2.9)
=0

Without loss of generality we may suppose that d, > dg.
Then there exists an €* > 0 by (3.2.9) such that for every 0 < ¢ < &*,

Dol <L
i=0
This implies that
dg(—¢€),da(—€) < Sq + 55 — 2¢. (3.2.10)

Then for every i € AP

sa—e pda(—€)—sate Sa+s5—2e—da(—¢)
" "B _ (a) ’ QD) el ()

o dp(—o)— 7. i
B ae T Bi :

(3.2.11)
and for every i € A?

/685—6 dg(—e)—sp+e

L L dp(—e)—da(—¢)
Qsa—aﬁda(—s)—sa—f—a < 63 . (3.2.12)
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Now we prove the lemma in the case when d, > dg. Then there exists a
£** > 0 such that for every 0 < ¢ < **, d,(—¢) > dg(—¢). Then by (3.2.11)

sa—¢ nda(—€)—sa+te 1 sg—e dg(—e)—sg+e 1
Dol <58 <3
icAl icA?
holds for sufficiently small » > 0. Therefore
ramegla(-e)msate 5 1 3.2.13
Z az /82 —_— 2‘ ( V4 )

SZANS

Using (3.2.5)

—19—(8a—¢ i Sa—¢€ e (sa—g ﬂi Sp—¢€
logj\vf log (c Lo—( )Zg’GA? <;_1> 4+ ¢ 192 (sp )ZgGAE <a_l> )
= >

—logr — —logr

_ _ [e7} Same da(—¢
log(c_12—(max{sa,35}—e)) N logr da(—¢) ZQEAS <ﬂ_;> 51 (—¢)
—logr —logr

Y

and by (3.2.13)

log N, N

1 7127(max{sa,55}75) 1 2
> do(—e) + og(c ) | log

—logr logr’

—logr
Taking liminf as r goes to 0 implies by Lemma 3.2.1 that

Since € > 0 was arbitrary small we proved the lemma in the case d, > dp.
Now let us consider the case d, = dg. The fact (3.2.10) and (3.2.11),
(3.2.12) imply for every sufficiently small £ > 0 that

Sa—e nda(—€)—sa+te sp—e dg(—e)—spg+e
§ Q; Bg < § Bl Q; or

iea; ieA]
3 A 3
IEAY . ) 1EAY . .
Therefore
O\ Sa—¢€ 2\ S8~ ¢

S (9)" g By ™ gt > q. (3.2.14)

; Bi - Q; -

iEAY = ieA? -
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Using (3.2.5)

log N, S log(c‘12_(max{savsﬁ}_5))
—logr — —logr

ST g NPT dg(—e
log (ZieAg <;_;> Bl =) + ZQGAE <§_;) OZZB( ))

—logr

+ min {d,(—¢),ds(—¢)} +

and by (3.2.14)

log N, S log(c‘12_(max{savsﬁ}_5))

in{dy(—¢),dg(—¢)}.
L —— + min {da(—2), ds(—2)}

Taking liminf as r goes to 0 implies by Lemma 3.2.1 that
dimpA > min {d,(—¢),ds(—¢)}.

Since € > 0 was arbitrary small and d, = dg this completes the proof of the
lemma. ]

Proof of Theorem 3.1.1. The proof is the combination of Lemma 3.2.2 and
Lemma 3.2.3. O
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Chapter 4

Dimension Theory of the
intersections of the Sierpinski
Gasket and lines with rational
slope

4.1 Definitions and Statements

Denote by A C R? the usual Sierpinski gasket, that is, A is the unique
non-empty compact set satisfying

A = S5(A)U S (A) U Sy (A),

where

1 1 1 11 1 11 V3
So(z,y) = (5% 5y) Sz, y) = <§$+ 575y) , So(x,y) = (5954— 1 §y+ T) .

(4.1.1)
It is well known that dimpy A = dimg A = }ggg =
We denote by proj, the projection onto the line through the origin making

angle 6 with the z-axis. For a € proj,(A) we let

Ly, ={(z,y) : projy(z,y) =a} ={(z,a+xtanb) : z € R}.

The main subject of this chapter is to analyze the dimension theory of the
slices g, = Lgo, N A. Since A is rotation and reflection invariant, without
loss of generality we may assume that 6 € [0, T).
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Denote by v the natural self-similar measure of A. That is, v = %'AA),

where H?® denotes the s-dimensional Hausdorff measure. In this case, v sat-

isfies that )

1 —1
V= ZZ:; 5V © S
Denote by vy the projection of v by angle 6. That is, vy = v o proje_l.
Similarly, let Ay be the projection of A.
For typical line segments, we have a special case of a theorem of Marstrand
(see [Marl] or [Mat, Theorem 10.11]).

™

Proposition 4.1.1 (Marstrand). For Lebesgue almost every 0 € [0, %) and
vg-almost all a € Ay

diIIlB Eg,a = dlIIlH Eg,a =s— 1.

Let us define the (upper and lower) local dimension of a measure 1 at the
point x by

. logn(Bi(z) . log 1(B;(x))
an(x) = thn_}glf T’ dy(z) = hfil_?élp T.

In the first result of this chapter, Proposition 4.1.2, we will show that
a dimension conservation principle holds, connecting the local dimension of
the projected natural measure and the box dimension of the slices. Manning
and Simon proved such dimension conservation phenomena for the Sierpinski
carpet, (see [MS1, Proposition 4]).

Proposition 4.1.2. For every 0 € (0,%) and a € Ay

C—ZVQ (CL) +ﬁ3Eg,a = S, (412)
dy,(a) +dimgFy, = s. (4.1.3)

Feng and Hu proved in [FH, Theorem 2.12] that every self-similar measure
is exact dimensional. That is, the lower and upper local-dimension coincide
and this common value is almost everywhere constant. Moreover, Young
proved in [You] that this constant is the Hausdorff dimension of the measure.
In other words, if n is self-similar then

for n-almost all z, d, (z) = d,(z) = d,(z) = dimpg n = inf {dimy A : n(A) = 1}.

Using the above results we easily deduce.
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Corollary 4.1.3. For every 0 € (0,%) and vp-almost every a € Ay we have
dimp By, = s —dimy vy > s — 1.

Furthermore, in Theorem 4.1.4 we prove that whenever tanf = Q‘qf—i’; for
positive integers p, ¢, the direction 6 is exceptional in Marstrand’s Theorem.
More precisely, the dimension of Lebesgue almost all slices is a constant
strictly smaller than s —1 but the dimension for almost all slices with respect
to the projected measure is another constant strictly greater than s — 1.
Theorem 4.1.4. Let p,q € N and let us suppose that tanf = 2‘5_—17; and
0 € (0,%). Then there exist constants a(0), 3(6) depending only on 6 such
that

1. for Lebesque almost all a € Ay

a(f) :=dimp Ey, = dimpy By, < s—1,

2. for vg-almost all a € Ay

5(9) = dimp Egﬂ = dimpg Egﬂ > s — 1.

A simple calculation reveals that the tangent of the set of angles in this
theorem is equal to Q' = {0 <\/§% <v/3: if m is odd then n is odd }

In [Fur], Furstenberg introduced and proved a dimension conservation for-
mula [Fur, Definition 1.1] for homogeneous fractals (for example self-similar
sets with IFS containing only homothetic similarities). As a consequence of
Theorem 4.1.4(2) and Corollary 4.1.3 we state the special case of Furstenberg
dimension conservation formula for the Sierpinski gasket and rational slopes.
By [Fur, Theorem 6.2], the formula is valid for arbitrary angles.

Furstenberg in [Fur, Theorem 6.2] stated the result as an inequality but
combining the result as stated with the Marstrand Slicing Theorem (see
[Mar2] or [Fa3, Theorem 5.8]) we see that

Lemma 4.1.5 (Marstrand Slicing Theorem). Let F' be any subset of R?, and
let E be a subset of the y-axis. If dimpy(F N Lg,) >t for all a € E, then

Corollary 4.1.6 (Furstenberg). Let us fix p,q € N and let us suppose that

tanf = 2\((—1’; and 0 € (0,%). Then the proj, satisfies the dimension conser-

vation formula [Fur, Definition 1.1] by 5(6). Precisely,

6(0) + dimgy {CL € Ay : dimy Eg,a > 6(0)} = S. (414)
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Proof.

dimg {CL € Ay : dimy Egﬂ > 6(0)}
> dimpgy {CL € Ay : dimp Egﬂ = dimpgy Egﬂ = 5(9)}
> dimy vp = s — ().

The other direction follows from Lemma 4.1.5. O

One can prove by similar argument that
6(0) + dimg {CL c Ag cdimpyg Egﬂ = 5(9)} = Ss.

The other main goal of the chapter is to analyze the behavior of the func-

tion I' : § — dimpy {a € Ay : dimy Ey, > ¢} in the case when tanf = %,
where p, g € N and (p, q) = 1. For the analysis we use two matrices generated
naturally by the projection and the IFS {Sp, S1,S2}. For the simplicity, we
illustrate these matrices for the right-angle gasket.

More precisely, for technical reasons, we elect to prove our statements for
the so-called right-angle Sierpinski gasket A which is the attractor of iterated

function system

o= [ = (5.2). ron = (3+3.2). s = (524 2)1.

(4.1.5)
and intersections with rational slope lines. There is a linear transformation T’
-
3

which maps the Sierpinski gasket into the right-angle Sierpinsi gasket. Since
an invertible linear transformation does not change the dimension of any set
we state our results for the usual Sierpinski gasket and for appropriate slopes.
For the transformation see Figure 4.1.

Denote the angle 6 projection of A to the y-axis by Ay.  Then
Ay = [—tan@, 1]. Moreover, let us consider the projected IFS of ®. Namely,
let

B ot ot 1 1 D

By straightforward calculations and [NW1, Theorem 2.7.] we see that ¢

satisfies the finite type condition and therefore, the weak separation property.

k-1
q

for k =1,...,p+ q. Moreover, let us divide [} for every k into two equal

Let us divide Ay into p+ ¢ equal intervals such that [, = [1 — s, 1—
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Figure 4.1: The transformation between the usual and right-angle Sierpinski
gasket.

parts. Namely, let I = [1 — %, — %} and I} = |1 — %, 1-— % . Let

us define the (p + ¢q) x (p + ¢) matrices Ag, A; in the following way:

(An)ij = 88k € {0, 1,2} : fi(l;) = I} (4.1.7)

2

5 of the construction in Figure 4.2 and the

For example, see the case § =
matrices are

10000 01000
001 0O 1 0010
Ao=1 01 0 0 1 and A; =] 10100
01010 00101
0001O0 000O01

We note that by some simple calculations the matrices Ay, A; can be
written in the form

(A,);;j=1lifand onlyif 2i+1—n=j modp+qor
2q+p>2i+n—1>¢g+land2i+1—n—qg=j modp+q (4.1.8)

forn = 0,1 and 1 < 7,7 < p+ ¢q. Using these matrices we are able to
explicitly express the quantities «(0), 5(6).
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Figure 4.2: Graph of the projection and construction of matrices Ay, A; in

the case 2 = 2.
q 3

Proposition 4.1.7. Let p,q € N and let us suppose that tanf = 2‘[—1’; and
0 € (0,3). Moreover, let a(0) and 3(0) be as in Theorem 4.1.4. Then

1
1 1 1
0) = lim — —logeAe -+ A
o) log;QnEQOT,,5 > gilogeds o Age

1 1 1
B(0) = lim — Y —edg - Agplog (eAg, -+ Ag,p)

where e = (1,---,1) and p 1is the unique probability vector such that

The proof of Proposition 4.1.7 will follow from the proof of Theorem
4.1.4. In order to obtain further information on the nature of the func-
tion I' : § +— dimpy {a € Ay : dimpy Ey, > §} we will employ the theory of
multifractal analysis for products of non-negative matrices [Fel, Fe2, FL2].
Let P(t) denote the pressure function which is defined as

1

P(t) = lim llog > (e - Age) (4.1.9)

n—oo M,
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and let us define

bmin = lim &t), bmax = lim @
t—w—oco0 t—oo

Proposition 4.1.8. Let p,q € N and let us suppose that tan = V3 gnd

2q+p
0 € (0,3). Then

1. dimpy {a € Ay : dimp Ey, = o} = inf; {—at + 1og2} forbmin < a < bpax.

2. dimy{a € Ay :dy,(a) =a} = inft{—(s— a)t + ng} for

S_bmaxgags_bmhv
Both of the functions are concave and continuous.

Proof. Proposition 4.1.8(2) follows immediately from [FL1, Theorem 1.1],
[FL1, Theorem 1.2]. Proposition 4.1.8(1) follows from combining the dimen-
sion conservation principle Proposition 4.1.2 with Proposition 4.1.8(2). O

We note that Proposition 4.1.8(1) follows also from the results of [Fe2]
and we will present a short alternative proof later by using it.

Theorem 4.1.9. Let p,q € N and let us suppose that tanf = V3 ond

2q+p
0 € (0,%). Then

1. T(0) = dimg{a€Ag:dimy By, >0} = inft>0{ ot P )} if

log 2
bnax > 0 > «af) and I'(6) = 1 if § < «(f). The function I' is
decreasing and continuous.

2. x(6) = dimg{a € Ay :dimy Ey, =0} = inft>0{ —0t + 1og2} for

every buax > 0 > «(0). The function x is decreasing and continuous.

For an example of the function 6 — dimpy {a € Ay : dimy Ey, = 0} with
tanf = 7 in the usual Sierpinski gasket case, see Figure 4.3.

The chapter is based on [BFS] which is a joint work with Andrew Ferguson
and Karoly Simon.

The organization of the chapter is the following: We prove Proposition
4.1.2 in Section 4.2, Theorem 4.1.4 in Section 4.3 and Theorem 4.1.9 in
Section 4.4.
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B (0)~0.5962

Figure 4.3: The graph of the function ¢ — dimy {a € Ay : dimy Ep, = 0} of
the case g =1

4.2 Proof of Proposition 4.1.2

In this section we modify the method of [MS1, Proposition 4].

First, let us introduce some general notation. Let Sy, Si, S be as in
(4.1.1), moreover let & = {0,1,2}" and ©* = |J2°, {0,1,2}". Writeo : ¥ — ¥
for the left shift operator. Moreover, let Il : 3 — A be the natural projection.
That is, for every i = (iyig---) € X

(i) = 71113010 Siy 08, 0---08; (0).
Let p be the equally distributed Bernoulli measure on .. That is, for every
i € ¥* the measure of [i] = {i:i=iw} is u([i]) = 37, where |i| denotes the
length of 4. Then v = IT*y = po II71.

For simplicity we denote by A;,..;, = S;, 0---05; (A). Let us call the n’th
level “good sets” of a € Ay the set of (iy---i,) such that A, .., intersects
the set Fy,. More precisely,

Gn(g, CL) = {(21 s Zn) . A“Zn N Eg@ 7’é Q)} . (421)
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Lemma 4.2.1. For every 0 € [0,%) and a € Ay

log 4G, (6, _ o log G0,
dimpFp, = limin fm and dimpFEy , = lim sup M.
nmee mlog2 ’ n—00 nlog 2

Proof. Let us denote the minimal number of intervals with length r covering
the set Ep, by N,.(0,a). It is easy to see that

No—n(0,a) < 1G,(0,a). (4.2.2)

On the other hand, for a minimal cover of Ej , with intervals of side length
27" for every interval there exists an i in G, (6, a) and for every “good” A,;
there exists an interval in the minimal cover such that A; intersects the
interval. Moreover, for every interval with side length 27" there are at most

{%—‘ cylinders in G, (0, a) which intersects it. Therefore

43(2 + )

1Gn(0,a) < { 3

w No-n (0, a). (4.2.3)

The equations (4.2.2) and (4.2.3) imply the statement of the lemma. O

Proof of Proposition 4.1.2. Let 6 € (0, %) and a € Ay. Consider the C'(0)2~
neighbourhood of a, where C(#) = § min {tan6,cos(f + %) }. Then

v9(Begyz-—n(a)) = v(Beosoco)2-—n (Lo,a)) > v U Ay | =374G, (0, a),
l‘eGn—c(G)

where ¢(0) = w. Taking logarithm and dividing by —nlog 2 we have

log v9(Be(gy2-»(a)) < (n=c(0))log3  logiGcu) (0, a)
—nlog?2 - nlog?2 —nlog2

Taking limit inferior and limit superior and using Lemma 4.2.1 we get

d, (a) +dimply, < s,
v, (@) e (4.2.4)
dy,(a) +dimgFEy, < s.

For the reverse inequality we have to introduce the so called “bad” sets
which do not intersect Fjy, but intersect its neighbourhood. That is,

Rn(ea &) = {(7/1 e Zn) : Azlzn N EG,a = @ and Auzn N BCOSGC(G)Q*" (LH,a) 7é (D} .
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27" min(cos(f + ). tan(é))
2

Figure 4.4: A “bad” set of the Sierpinski gasket

Then

vo(Begy2-n(a)) = v(Beosoc(oyz—n (Loa)) < 37" (HR,(0,a) + 1GL(0,a)) .

It is enough to prove that §R, (6, a) is less than or equal to §G, (0, a) up to a
multiplicative constant.

Let A; be an arbitrary n’th level cylinder set of A. It is easy to see that if
A, is not one of the corners of A then every corner of A; connects to another
n’'th level cylinder set, see Figure 4.4. We note that the constant C'(6) is
chosen in the way that if the cos #C(6)2™" neighbourhood of the line Ly,
intersects a cylinder but not the line itself intersects it (that is it is a “bad”
set) then the line intersects the closest neighbour of the cylinder. Therefore,
for every i € R,(0,a) there exists at least one j € G,(0,a) such that A,
and A; are connected to each other (by the choice of C'(6)). Moreover, a
cylinder set can be connected to at most 6 other cylinder sets. Therefore,
R,(0,a) <6G,(0,a).

Applying this, we have

vo(Be(pya—n(a)) < 37"T8GL(0, a).

Taking logarithms, dividing by —nlog2 and taking limit inferior and limit
superior we get by Lemma 4.2.1

C_iye (a) + di—mBEQ,a 2 S,

. _ (4.2.5)
dy,(a) +dimgFEp, > s.
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The inequalities (4.2.4) and (4.2.5) imply the statements. O

We note that Proposition 4.1.2 holds in the case when A is transformed
in an invertible linear way, as well.

4.3 Proof of Theorem 4.1.4

Throughout the section we use the method of [MS1, Theorem 9] with a
slight modification. We follow the way of the proof but the construction of
the matrices are strictly different.

In the rest of the chapter we will focus on the right-angle Sierpinski gasket
A and for rational slopes. We prove the statements in that case. For precise
details of the right-angle Sierpinski gasket and the transformation between
the right-angle and the usual one, see Section 4.1.

For the rest of the chapter we assume that 6 € (0, 7) such that tan = §
where p,q € N and the greatest common divisor is 1. (This is equivalent
with the choice § € (0, 3) for A.)

Lemma 4.3.1. Let 0 and a € Ay be such that tanf = § and

1= &
a—l———azli

then

loge,Ae, - Aee loge,Ae, -+ Ag, e

dimgFy, = liminf and EBEM = lim sup

oo nlog?2 n—00 nlog2
where ¢, is the k’th element of the natural basis of RP*? and e = ZJ”{ [

Proof. By the definition of the matrices Ay, A; it is easy to see that for every
n>1and&,...,& € {0,1} we have

(e Ag,),, = t{i € 0.1« filly) = 175}

where 1'51’ “&n denotes the interval 1 ;—— Zz . 5—1—112%, 1—%—% Sy %]
Therefore

e e - Ag e =1 {z € {0,1}" : there exists a 1 < j < p+ ¢ such that f;(I;) = I,fl""’én} :
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For every [,fl""’én and every (i, ...,1,) if there exists a 1 < j < p + ¢ such
that fi, .. (I;) = I,fl""’fn then I,fl""’g" C projyA;, . 4,. This implies that for
every a € I,fl""’g"

erAe - Ag,e < 1G(0,a).

On the other hand for every a € proj,A if a € int(I;""*") then for
every (i1,...,i,) € G,(0,a) there exists a 1 < j < p + ¢ such that
Fivin (1) = TS9% Tf g € 9(I54) then for every (i1, ..., in) € Gn(6,a)
there exists a (i},...,i,) € Gp(f,a) and a 1 < j < p+ ¢ such that

77777 i and Aifl ..,ir, are connected or equal.
Since for every cylinder set can be connected to at most three other cylinder

sets, for any a € I,fl""’fn

8G(0,a) < 3e,Ae, - - Ag, e

n

The proof is complete by Lemma 4.2.1.
O

One of the main properties of the matrices Ay, A; is stated in the following
proposition.

Proposition 4.3.2. Let p, g be integers such that the greatest common divisor
is 1, and let Ay and Ay be defined as in (4.1.7) (or equivalently as in (4.1.8)).
Then there exists anng > 1 and a finite sequence (&1, ..., &ny) € {0, 1} such
that every element of Ag, -+ Ae, is strictly positive.

Moreover, for everyn > 1

no

jj{(ﬁl, &) €40,13 031 <4, 5 < p+q such that (A&,...,En)i,j = 0} <
(p+a—1)(p+q)—1 n
> <l>21. (4.3.1)
1=0
We note that (:1) = 0 whenever n < m.
The most of the proof of Proposition 4.3.2 is divided into the following
three lemmas.

Lemma 4.3.3. Let p, q be integers such that the greatest common divisor is
1, and let Ay and Ay be defined as in (4.1.7). Then there are at least one
and at most two 1 in each column and in each row of A,. Moreover, the sum
of each column of Ay + Ay is three.

The proof is straightforward from the definition.
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Lemma 4.3.4. Let p, q be integers such that the greatest common divisor is
1, and let Ay and Ay be defined as in (4.1.7) and in (4.1.8). Then for every
1 <m < p+q distinct columns 1 < ji,...,Jm < p+ q and every n = 0,1
there exist m distinct rows 1 < iq,...,1, < p-+ q such that (A,) =1 for
every k =1,...,m. Note that iy, ...,1, may depend on n.

ik, Jk

Proof. If p + ¢q is odd then for any j, there exists a unique 7; such that
2iy, — 1 +n = ji modp+ ¢ and, by (4.1.8), (A")ik,jk = 1. Moreover, if
Jrk # Jrr then iy # i, This implies the statement of the lemma.

Now, let us assume that p+ ¢ is even. Further, assume that there are two
non-zero elements ji, jo in the row 7;. Then

2ty —1+n=j modp+gqgand2i, —1+n—qg=j> modp-+q.

It is easy to see that every element of the column js is 0 except (i1, 7j2).
Moreover, there exists 1 < ¢} < p+ ¢ such that 2i{ —1+n =75, mod p+q.
In this case, every element of the row i} is 0 except (i],71). Otherwise,
if there would be j3 # j; such that 2 — 1+ n — ¢ = j3 mod p + ¢ then
J3 = 7J1—q = j» mod p+q, but every element of the column 7, is zero except
(11, J2), which is a contradiction. Therefore, for A,,, n = 0,1 and for every m
distinct columns jq, ..., j,, there are at least m distinct rows iy, ..., %, such
that (A,); ; = 1. O
Lemma 4.3.5. Let p,q be integers such that the greatest common divisor
is 1, and let Ay and Ay be defined as in (4.1.7) and in (4.1.8). Then for
every 1 < m < p+ q distinct columns 1 < jy, ..., Jm < p+ q there exists an
n € 40,1} and at least m+ 1 distinct rows 1 < iy, ..., ime1 < p+q such that
(A,) =1 fork=1,...,m and there ezists a j € {j1,...,jm} such that
=1.

n Z.’m+1 7j -

U\ Jk

Proof. We argue by contradiction. Let us fix the m distinct columns
1< 751,...,0m < p+q By Lemma 4.3.3 in every column there are at
least one and at most two “1” elements and by Lemma 4.3.4 there are at
least m different rows 1 < iy,...,4,, < p+ ¢ in Ay and at least m different
rows 1 < sq,...,8, <p+qin Ay such that (Ao)ikyjk =1 and (A;) =1.
To get a contradiction we assume that

Vi ¢ {il, cee ,Zm} ,VS g {81, .. .,Sm} ,\V/k’ : (Ao)ivjk = O, (Al)s,jk =0. (Al)

SksJk

By Lemma 4.3.3, in the matrix Ay + A; in every column there are exactly 3
non-zero elements. Therefore we can assume without loss of generality that
there is an 0 < [ < m such that in Ay the columns ji,...,7 and in A;
the columns 7,41, ..., j, contain two non-zero elements. Namely, there are [
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distinct rows 1 <49,...,7 < and m —1 distinct rows 1 < 8)4,..., 5, <p+q
such that (AO)Z';CJk =1lfork=1,...,land (Al)s;,jk =1lfork=101+1,...,m.
Moreover, by our assumption (A1) and Lemma 4.3.4, for every ) there exists
a iy, such that [+1 <, <m and ¢} = i, , similarly for every s there exists
a s, such that 1 <t <!l and s} = s,.

Let us define now a directed graph G(V, E) such that the vertices are
V = {J1,...,Jm} and there is an edge j, — j, if and only if s, = s, or
i), = in. It is easy to see that

Jn—q=Jr modp+q ifp-+qisodd

Jk—q=Jjn modp+gq if p+qiseven. (4.32)

Since from every vertex of G there is an edge pointing out, there is a circle
Jny = Jng = =+ = Jny — Jny, Where 1 <t < m. By (4.3.2) we have

Jny = Jns = =jp— (t—1)q=j,, —tg modp+qifp+qisoddor

—q
jnlzjnt_q

= Jpy — (t—=1)¢ = ju, —tqg mod p+ qif p+ q is even.

Then tg =0 mod p+q. Since (¢,p+¢q) = 1, thent =0 mod p+gq. Therefore
p+q <t<m < p+ q which is a contradiction. O

Proof of Proposition 4.3.2. First, we prove the existence of such a sequence.
It is easy to see by Lemma 4.3.4 that for every matrix B with non-negative
elements and n = 0, 1, if the ’th column of B contains m non-zero elements
then the ’th column of the matrix A, B contains at least m non-zero ele-
ments. Moreover, by Lemma 4.3.5, for every column [ of B there exists an
n € {0, 1} such that if it contains m non-zero elements then the {’th column
of A, B contains at least m + 1 non-zero elements.

Therefore, there exists an at most n = (p+¢)(p+¢—1)+1 length sequence
{&}r_,0f 0,1 such that every element of the matrix Ag, --- A, is non-zero.

For the second statement, let us observe that for any non-negative matrix
B and any column 1 < 5 < p + ¢ there is at most one matrix A, such that
the number of non-zero elements of the {’th column of A, B is equal to the
number of non-zero elements in the [’th column of B. Therefore, if for a
finite word (1, ..,&,) and the matrix Ag, -- -, Ag, there is at least one zero
element then the word (&, . ..,&,) may contain at most (p+¢—1)(p+¢q) —1
arbitrary elements, but in the other places there have to be the matrix, which
does not grow the number of non-zero elements in the columns. This implies
the inequality. O

It is natural to introduce the dyadic symbolic space. Let = = {0, 1}N and
=" be the set of dyadic finite length words. Define the natural projection
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72+ [0,1] by
L ik
(i) = Zg_k
k=1

Moreover, let o be the left shift operator on =.
For any 6 with tanf € Q and a € Ay let us define I', = {a—i— é eENg:i € Z}

and Fg,a = UbeFa Eg,b.

Proposition 4.3.6. Let p,q € N be such that (p,q) = 1 and let § € (0,F) be
such that tan f = 75’. Then for Lebesque-almost every a € Ay

diIIlB Eg,a = 04(0),

where

o)

1 1
- og 2 nh—>r£10 - logeAg, - - Ag e, for P-a.a. (§,&,...) €=, (4.3.3)

where P is the equidistributed Bernoulli measure on Z. Similarly,

.1 1
=gy ¥ grlsededee (134)
fl ----- fn
Proof. Since Ay, A; are non-negative matrices, we have for any (&1,...,&,) € =*

and 1 <k <n

eAg - Age S eAg - Age edg,, - Ag e

Let P = {%, %}N be the equidistributed Bernoulli measure on =. Then by
the sub-additive ergodic theorem (see [Wa, p. 231]) we have for P-almost all
§ € = the limit (4.3.3) exists and constant. The equation (4.3.4) follows also
from the sub-additive ergodic theorem.

It is easy to see that the measure ZZ’:{ p_Jqu Por~tohy 1, is equivalent
with the Lebesgue measure on Ay, where hy(z) = —qz + ¢ — k, so that
hi(Ix) = [0,1]. This and Lemma 4.3.1 implies that for Lebesgue almost
every a € Ay

max dimp Epp = dimp Fp, = a(0). (4.3.5)
elq

Let (&1,...,&n,) € {0,1}™ be as in Proposition 4.3.2. Then for every

1 < k < p+q and every finite length word ((y, ..., ) € {0,1}" and Lebesgue-

----- gnflfn()

almost every a € [ ,gl we have

diIIlB Egﬂ = dlIIlB Fg,a/ = 04(0),
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n+n k—1 1 n n+np—1 1 n no—1 k—1
Wherea/:2+0<a—1+7)+52i:12+0 Gitg 2imy 27 +1— %2,
The statement of the proposition follows from the fact that the set

MU, Ui ceronn [h o850 hag full Lebesgue measure in Ag. [

Lemma 4.3.7. The function a(0) < s —1 for every 0 such that tanf € Q7.

The proof of Lemma 4.3.7 coincides with the proof of [MS1, Theorem 9],
(see [MS1, Subsection 3.4, Subsection 3.5]), therefore we omit it.

Finally, we have to state a proposition about the coincidence of the Haus-
dorff and box dimension for “typical” points before we prove Theorem 4.1.4.

Proposition 4.3.8. Let p,q € N be such that (p,q) =1 and let 6 € (0, %) be
such that tanf = 75’. Let n be a left shift invariant measure on = such that

| U U G Gé &l ] =1 (4.3.6)

=0 (§17,,,,Cn)€{0,1}n

where (€1, ...,&n,) s as in Proposition 4.3.2. Let n = >""9n, be an ar-
bitrary positive decomposition of n. (That is, nk([C1,...,Ca)) > 0 for any
1 <k< p+ q and any cylinder set.) Then for A\-almost every a € Ag

dlIIlH Eg,a = dlIIlB Egﬂ,

where
ptq

)\:anmr’lohk}lk.
k=1

The proof follows the proof of [LXZ, Theorem 1.1(3)] and [MS1, Proposi-
tion 8.]. The following lemma appears in a paper of Kenyon and Peres [KP,
Proposition 2.6], the proof is attributed to Ledrappier. We state the lemma
only for our special case.

Lemma 4.3.9 (Ledrappier). Let T, be the endomorphism Ty(x) = 2z mod 1
on the one-dimensional torus S*. Assume that F C S' x S' = T? is compact
and invariant under Ty x Ty and v a Ty-invariant probability measure on S*.
Then for v-a.e. x

dimp proj ' (z) = dimp proj ' (x),

where proj : F' +— St is the projection to the second coordinate.
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Proof of Proposition 4.3.8. 1t is easy to see that
Fyo=ANn{(z,y) : pr —qy = —ga mod 1}.
Let P: (z,y) = (z,(pr — qy) mod 1) be a map of T? into itself. Then
dimz P(Fp,) = dimgFy,, dimpP(Fy,) = dimpFy, and dimy P(Fp,) = dimg Fp,.

and P(A) C T? is compact and Ty x Th-invariant. — Moreover, let
Q(a) = — ga  mod 1 be the mapping Ay into S*. Since 7 is left shift
invariant then Ao Q~' = non~! is T, invariant. Since

proj '(—qa mod 1) = P(Fy,)
by Lemma 4.3.9 we have for A-almost all a € Ay that
diIIlH Fg,a = dlIIlB Fg,a. (437)

Let (&1,...,&m,) € {0,1}™ be as in Proposition 4.3.2. Then by the as-

sumptions, for every 1 < k < p+q and every finite length word (¢y,...,¢,) € {0,1}"

the measure A > 0 and for A\-almost every a € [ ,fl """ nltfno o
equation (4.3.7) holds. Moreover, the fact that the matrix Ag, --- Ag

strictly positive coefficients implies that

has
0

m,

diIIlB Eg,a = dlIIlB Fg,a/ = dlIIlH Fgﬂ/ = dlIIlH Egﬂ,

where o/ = 2ntno <a —1+ %) +% Yoy 2”+”O’iéi+% yoro 2meTiE 41— %.
The proof is completed by applying the assumption (4.3.6). 0

Proof of Theorem 4.1.4. Theorem 4.1.4(1) is an easy consequence of Propo-
sition 4.3.6, Lemma 4.3.7 and Proposition 4.3.8.

The equalities of Theorem 4.1.4(2) follow from Corollary 4.1.3 and Propo-
sition 4.3.8. It is enough to prove that 3(6) > s — 1. To prove this fact, we
use the method of [R].

Define a probability measure 1 on = as

1
—eAg - Ag,p,

77([517 s 7571]) = 3n=

where p is the unique probability vector such that 5 (4o + A1) p = p. Then
it is easy to see that n is left shift invariant. Moreover, by Perron-Frobenius
Theorem, the measure 7 is mixing (that is, for any cylinder sets A, B of =,
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lim,, o n(c™"ANB) = n(A)n(B)) and therefore, an ergodic probability mea-
sure. Decompose = > 771, as

1
nk([glv s 7571]) - S_anAfl o Aan

for every cylinder set [£1,...,&,]. Let us recall that vy is the projection of
the natural self-similar measure on A. Observe that vy 1, Ol =1k o 71 and
define 7y(.) = iJrq Vg , oh=mno 7L Then 7 is Ty invariant and mixing
probability measure satisfying the assumptions of Proposition 4.3.8.
By the Volume lemma [PU, Theorem 10.4.1] and [PU, Theorem 10.4.2]
we have
1

L~ . 1 1 1

.....

(4.3.8)
On the other hand, since V@‘Ik o h, < 1y for every 1 < k < p+ ¢ which
implies that dimy vy = dimpy Vg 1, © hy < dimp vp. However,

dimg vy = inf dimpg vy|, ohy = inf dimpy 1/9\[ dimp v.
1<k<p+q K 1<k<p+q

By Lemma 4.3.7 there exists a 0 > 0 such that for sufficiently large n
there exists a sequence (&1, ...,&,) that

ﬁAél s A§n£ < 2f(n+6n)'

This implies that the limit in (4.3.8) is strictly less than 1. The proof can be
finished by Corollary 4.1.3. O

Proof of Proposition 4.1.7. The statement of the proposition follows from
Proposition 4.3.6 and the proof of Theorem 4.1.4(2). O

4.4 Proof of Theorem 4.1.9

In this section we would like to apply the results of [Fel], [Fe2] and [FL2].
Let

~ EF—1 1§
Ng=<a= ————Zf—e/\g Fe>1, A - Ag >0
q q=2
By Proposition 4.3.2 we have
dimpAg\Ag = 0. (4.4.1)

Moreover, we can reformulate Lemma 4.3.1.
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Lemma 4.4.1. Let 0 and a € Kg be such that tanf = g and

then
logede, - - Ag, e

n

logeAe, -+ - Age

dimgzFEy, = liminf and dimpgFEjp , = lim sup
’ n—00 n log 2 ’ n—00 n IOg 2

Proof of Proposition 4.1.8(1). As a consequence of Lemma 4.4.1 and (4.4.1)
we have

dimpy {a € Ay : dimp Fy, = a} =

k-1 1&  ~ logeAe, --- A
dimH{l————Zg—,EAgihm 08 L 6 éngzalogQ}:

A n—o00 n

dimH{(gl,gg,...)eE: lim 28&86 T E }

n— oo n
By Proposition 4.3.2, one can finish the proof using [Fe2, Theorem 1.1]. O

By [Fe2, Lemma 2.2] and [FL2, Theorem 3.3] we can state a lemma for
the pressure function.

Lemma 4.4.2. Let P(t) be defined as in (4.1.9). Then P(t) is monotone
increasing, convex and continuous fort € R. Moreover, fort > 0 the pressure
15 differentiable.

Lemma 4.4.3. For every 0 < § < «(6),
dimg {CL € Ny : dimpy Eg,a > (5} =1.

Proof. For every 0 < § < a(f) we have

dimyg {CL € Ag cdimpg Eg,a > (5} >
dimy {a € Ap : dimpy By, = dimp Ey, = o(0)} = 1.

The last equation follows from Theorem 4.1.4(1). The upper bound is trivial.
]

Lemma 4.4.4. Let P(t) be defined as in (4.1.9). Then

. / -
tl_l)Ig:LP (t) = () log 2.
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Proof. First, we prove limy;_,o; P'(t) > a(f)log2. Suppose by way of contra-
diction that that there is a ¢’ > 0 such that P'(#) = «(f)log2 and for every
0<t<t, P(t) <a(d)log2. Then

/
1 =dimy {a € Ay : dimp By, = a(f)} = iItlf {—a(@)t + %} = —a(@)t'—i—%.
Therefore P(0) = log2 and P(t') = log2a(f)t' 4+ log2 contradicting the
assumption that P'(t) < a(6)log?2.
We now prove the other inequality, lim; o P'(t) < «(f)log2, by contra-
diction, as well. Suppose that there is a lim;_,o. P'(t) > 6 > «(f) then by
Theorem 4.1.8(1) thereisa t~ <0

P(t P(t~
dimg {a € Ay : dimp Fy, = d} = inf —(5t+ﬁ :—(5t_+g>
’ t log 2 log 2

_ P(tT) _ . P(t) _ ,
— R — > — _ — . = =
a(f)t™+ g2 > Htlf{ a(f)t + o 2 dimpy {a € Ay : dimp Ep, = a(0)} = 1,

which is a contradiction. (The last equality follows from Theorem 4.1.4(1).)
U

Before we prove the case when «(0) < § < byax we need the so-called
Gibbs measure.

Lemma 4.4.5. For every t > 0 there is a unique ergodic, left shift invari-
ant Gibbs measure p; on = such that there exists a C' > 0 that for any

(fl, . 7§k) €=
pe((€1s- 5 &x))

c' < ; <
(QA& .. 'AEkQ) e—kP(t)
Moreover,
. —tP'(t) + P(t)
d = 4.4.2
N p [ log 2 ( )
and
IOg €A§1 cee AE & Pl(t)
= = = -a.a. 4.4.3

The proof of the lemma follows from [FL2, Theorem 3.2] and [FL2, Proof
of Theorem 1.3].

Lemma 4.4.6. For every a(0) < § < bpax,

. . . P(t
dimy {a € Ay : dimy Ey, > 6} = glg{—étjt %}
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Proof. Let us observe by Lemma 4.4.4 that

) Pt)\ . P(t)
u;lf{ logQ}_gg{ 5t+log2 ’

First, we will prove the upper bound with the method of [Wi, Lemma 3.18].
Let us define

It is easy to see that the set

p+q

J=1(&1,08k)EAR(E)

covers the set Gs := {a € Ay : § < dimpzFy,}. Let B, (g) be the set of disjoint
cylinders of A,,(¢) such that

p+q p+q

&1yl ISTRTNS
U U el U
J=1(&1,.,€x)EBR () J=1 (&1, ,k)EAR(e)

By Lemma 4.4.5

—5t+ £ 4o

log

Hyn (I5) < Clp+q)2 =™ pe((Er, - €0) < C(prq)2e=m,

This implies that

P(t
dimpy {a € Ap: 0 < dimpy Ep,} < dimpy{a € Np:d <dimpFy,} < —5t+%+€’t
0g
for any ¢t > 0 and &' > ¢ > 0. This proves the upper bound.

Now, we prove the lower bound. By Lemma 4.4.2, for every a/(f) < 0 < bpax

there exists a t > 0 such that P'(t) = §log2. By Lemma 4.4.5, let p; be the
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Gibbs measure. The measure p; is shift invariant and ergodic. Moreover, by
the Gibbs property, pu,; satisfies the assumption of Proposition 4.3.8 and we
have

dimy Ey, = dimp Ey,, for p;-almost all (&;,&,...),

where a =1 — % - %Z;’il & for some 1 < k < p+gq. Then by (4.4.2) and

(4.4.3) we have

dimg {CL € Ny : dimpy Eg,a > (5} > dimpy {CL € Ny : dimpy Egﬂ = dimp Egﬂ = 5} >

() > inf {—t(5 + P(Y) } .

log2 — >0 log 2

If § = by then

dimyy {CL € Ag cdimpg Eg,a > bmax} < lim dimpg {CL € Ag cdimpg Eg,a > (5} =

6_>bmax+
P(t P(t
lim inf< —¢d + L =inf < —tbpax + L) =0
5—bmax+ t>0 log 2 >0 log 2

In the last two equations we used the continuity property [Fe2, Theorem 1.1]
and the definition of by, .. O

Proof of Theorem 4.1.9(1). The proof is the combination of Lemma 4.4.3
and Lemma 4.4.6. 0

Proof of Theorem 4.1.9(2). By the observation

dimg {CL €Ny Idi_IIlBEgﬂ > 5} > dimy {CL € Ny : dimpy Eg,a = 5} >
dimy {a € Ay : dimp E(g,a = dimgy E(g,a = 5}

one can finish the proof as Lemma 4.4.6. O

90



Chapter 5

The absolute continuity of the
invariant measure of Random
Iterated Function Systems

5.1 Definitions and Statements

In this last chapter, we study the invariant measure of random iterated
function systems. Let {fi,..., fi} be an iterated function system (IFS) on
the real line, where the maps are applied according to the probabilities
(p1,-..,p1), with the choice of the map random and independent at each
step.

Suppose that for each ¢ € {1,...,1}, f; maps [—1, 1) into itself, such that
fi([=1,1)) is bounded away from —1 and 1, f; € C**%([—1,1)) and

0 < Ajmin < |fj(@)] < Ajjmax <1 (5.1.1)

for every x € [—1,1). Moreover let us assume that for every ¢ the fixed point
of fiis a; € (—1,1), and

Denote the invariant measure of the IFS {fi,..., f;} with respect to the
probability vector (pi,...,p) by v. That is

I
v = Zpil/ o fit. (5.1.3)
i=1

Let pn = (py1,...,p)" be a Bernoulli measure on the space ¥ = {1,..., Z}N
and let Y. be uniformly distributed on [1 — &, 1 + £]. Denote the probability
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measure of Y. by n.. Let
fiv.(x) =Y. fi(x) + a;(1 = Y7) (5.1.4)

for every ¢ € {1,...,{}. Then f;y.(x) isin [—1,1) for all values of x € [—1,1)
and Y, provided ¢ is sufficiently small. The iterated maps are applied ran-
domly according to the stationary measure p, with the sequence of indepen-
dent and identically distributed errors w1, yo, . . ., distributed as Y., indepen-
dent of the choice of the function. The Lyapunov exponent of the IFS is
defined by

x(p,m:) = E(log(Yof"))

and it is easy to see that

l
X(,U> 775) < sz log((l + 8))‘i,max) < 07
=1

for sufficiently small ¢ > 0. Let Z. be the following random variable

Ze = HILH;O fi1,y1,a o fi2,y2,a -0 finyyn,5(0)7 (515)
where the numbers iy, are i.i.d., with the distribution g on {1,...,1}, and vy .

are pairwise independent with distribution of Y. and also independent of the
choice of i;. Let v. be the distribution of Z..
One can easily prove the following theorem.

Theorem 5.1.1. The measure v. converges weakly to the measure v as
e— 0, see (5.1.3).

Theorem 5.1.2. Let v. be the distribution of the limit (5.1.5). We assume
that (5.1.1) and (5.1.2) hold, and

l \
> p Agma" <1 (5.1.6)

i=1 7,min

Then for every sufficiently small € > 0, we have that v. is absolutely
continuous with respect to the Lebesque measure, with density in L?, and
there exists a constant C' such that the density of v. satisfies

C
lvellz < —=.

Ve
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Remark 5.1.1. Let

o 32
e — 1 (1+€))\i,max
(1- S e ) o
and
C” = min |ai — a| +e(—lai + a;] — 2) .
€ ik 1—¢?

The proof of Theorem 5.1.2 will show that we have ||v.||2 < C./+/e. Hence
we can choose any C' > lim._,o C.

Remark 5.1.2. Actually the proof of Theorem 5.1.1 shows that Z. conditioned
on the perturbations ¥ ., Y2, . . . has density in L* for almost all y; ., Yo, . . ..

We can state an easy corollary of the theorem.

Corollary 5.1.3. Let {\;Y.x + a;(1 — )\iYa)}ﬁzl be a random iterated func-
tion system. We assume that (5.1.2) holds, and

l

2
b;
4 < 1. 1.
E )\i< (5.1.7)

i=1

Then for every sufficiently small € > 0, we have that v. is absolutely
continuous with respect to the Lebesque measure with density in L?, and there
exists a constant C' such that

C

lvells < —=.

Ve

We study another case of random perturbation, namely let Xi,g be uni-

~
formly distributed on [\, — e, \; + ¢]. Let {)\mx +a;(1— /\i,g)}. be our

random iterated function system, where a; # a; for every i ;Z 7. Let
A= (A,...,N), and X, . be the following random variable

00 k—1
Xye =Y (ai, (1= X)) [ M e (5.1.8)
k=1 j=1
where the numbers i), are i.i.d., with the distribution x on {1,... I}, and

Ai, e are pairwise independent. Let v, . denote the distribution of the ran-
dom variable X .. Moreover let vy be the invariant measure of the iterated
function system {\z + a;(1 — \;)}._, according to p.
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Theorem 5.1.4. The measure vy, converges weakly to the measure vy as
e — 0.

To have a similar statement as in Theorem 5.1.2 we need a technical
assumption, namely
aj/\i — CLZ‘)\j

N — A

min
i#]

> 1. (5.1.9)

Theorem 5.1.5. Let us suppose that (5.1.9) and (5.1.2) hold, and moreover
that

L 9

b;
E — < 1. 5.1.10
i=1 Ai ( )

Then for every sufficiently small € > 0, the measure vy, is absolutely con-
tinuous with respect to the Lebesque measure, with density in L?, and there
exists a constant C' such that

C

[rellz < —=.

\/E
Remark 5.1.3. Let

32
(ESA ST

Cl =

and

O — o 18N~ @Al = A = A
: i# A ’
where 0 < o < 1. As in Remark 5.1.1, the proof of Theorem 5.1.5 will show
that we have ||y |l» < CL/\/c for small ¢.

The main difference between Theorem 5.1.5 and Corollary 5.1.3 is the
random perturbation. Namely, in Theorem 5.1.5 we choose the contraction
ratio uniformly in the € neighborhood of A;, but in Corollary 5.1.3 we choose
the contraction ratio uniformly in the \;e neighborhood of A;.

The chapter is based on [BP] which is a joint work with Tomas Persson.

5.2 Proof of Theorem 5.1.2
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gﬁ,m | S

—

Figure 5.1: Picture showing the action of g. ,, restricted to Q; .

Let Q = [—1,1)% and m € N. We partition the cube @ into the rectangles
{Qup, -, Ql,k}izo_l, where

i—1 i
Qi,k - { (x,y,Z) € Q : _1+22pj S ) < _1+22p17
J=1 J=1
— 1+ k27 <z < —1+ (k+1)27mH }

where we use the convention that an empty sum is 0. Hence we slice @) in
2™ slices along the z-axis and [ slices along the y-axis. We thereby get 2™
pieces which we call ); , according to the definition above.

Let

2m—1
Qi= | Qin
k=0

On each of the slices @;;, we define the map g.,, to map @, into @
such that @;; is expanded as much as possible in the second and third
coordinate. In the first coordinate it is mapped according to a perturbation
of f;, and hence contracted. Which perturbation is chosen depends on the
third coordinate. There is a picture of this in Figure 5.1.

More precisely, for (z,y,2) € Q;x, we define g.,,: Q@ — Q by

Ge,m' (.’E, Y, Z) — (d(z)fl(x) + ai(l - d(z))? iy + b(y)? 2"z + C(Z)> ’

pi
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1
d(z)=14+2"(z— (-1+ (k+ 5)2_’”“), for (z,y,2) € Qik,
1 i
b(y) = 1= ; <_1 + sz]> ) for (xuyv Z) € Qi,ka
4 =1
c(z) =2" -2k — 1, for (z,y,2) € Qik.

Hence g.,, maps each of the pieces ();; so that it is contracted in the
x-direction and fully expanded in the y- and z-directions.
Let L3 be the normalised Lebesgue measure on (). The measures

-1
1 n
E —k
75,m,n - ﬁ EB o gg7m
k=0

converge weakly to an SRB-measure 7., as n — oo, see [Pes2] and [ST].
The measure 7, ,, is ergodic by the Hopf argument, since g. ,, is hyperbolic
and the stable and unstable manifolds are parallel to the coordinate axes and
have maximal extension in the box (). Moreover, let v, ,, be the projection of
Ye,m onto the first coordinate. More precisely, if £ C [—1,1) is a measurable
set, then we define v. ,,,(E) = 7em(E x [—1,1) x [—1,1)).

The measure v, , is the distribution of the limit

]'lm fihyl,s © 12,Y2,¢ ©---0 in,Yn,e (0)’
n—o0o

where y; . are uniformly distributed on [1 — &,1 + €], but not independent.
However, one can easily prove the following lemma.

Lemma 5.2.1. The measure v, converges weakly to v, as m — oo.

Let
A; ={(4,0), (4,1),..., (4,2 = 1)}

and

If a = (i,k) € A we will use the notation Q. to denote Qi . With this
notation we have

Q=JQ. and Q=[] Q. i=01,... 1L

acA acA;
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Let ©, = AN} If p € ( then there is a unique sequence
po(p) = {Po(p)k}zio € 0O such that

gf,m(p) = QPO(?’)IN k=0,1,...

The map py: @ — Oy is not injective. We have py(x,y, z) = po(2’,y/, 2') if
y =19y and z = 2/, but po(z,y,2) # po(z’,y,7") otherwise. Hence we can
(and will) use the notation pg(y, z) instead of po(z,y, 2).

We will denote elements in ©¢ by a, b and so on. We let o denote the left
shift on O, defined in the usual way.

We can transfer the measures 7, ,, to a measure vo, by Yo, = Ve,m © Py L

We let © denote the natural extension of ©y. That is, © is the set of
all two sided infinite sequences such that any one sided infinite subsequence
of a sequence in O is a sequence in ©p. The measures g, defines an er-
godic measure 7o on © in a natural way. If £&: © — O is defined by
E{intrez) = {intrenuioy, then we define Yo(§'E) = vo,(E). We can de-
fine a map p~': © — @ such that p~'(c(a)) = g..m(p~'(a)) holds for any
sequence a € O.

We note that the L? norm of the density v, ,, is not larger than twice that
of the density of . .. If h,_,, (x) and h,_,, (x,y, 2) denote the density of v,
and 7y, respectively, then by Cauchy—-Schwarz’s inequality

1 1 1 1 du d 2 d
Hl/e,m”% < / hy57m($)2 dr = 32/ / / h"{a,m (x’ Y, Z) _y_Z _.Z'
-1 -1 —1J-1 2 2 2

1 1 el
dy dz dx

< 32 h 22—y cm 2,

— /1/1/1 'YE,"L(x’y’Z) 2 2 2 Hry7 ||2

This proves that if 7., has L? density, then so has v.,,, and

||V€,m||2 S 2||'75,m“2' (521)

If p is a point in @, then we let 7,() denote the tangent space at p. For
each p in () we define the following cone in the tangent space T,Q:

OP: {(uvv7w) eTpQ : )%

v omtle
12« |
w 2m — )\max,max(l + 5)

where Apax,max = MaxX; \i max = MaX; SUP,e(_ 1) | f/(x)|. The following lemma
states that the set of cones (), defines a family of unstable cones, and that
images of certain curves intersect transversally. There is an illustration of
the transversality in Figure 5.2.
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e

Figure 5.2: Every two different @); , and @);; on the same height (i = j) share
the same image, but in the case when i # j their images have transversal
intersection if they intersect.

Lemma 5.2.2. The cones C, make up a family of unstable cones, that is
dpgem(Cp) C Cyonr)-

Moreover, for sufficiently large m and every 0 < € < min,x; Qﬁ;:iﬂﬂ, if
C1 C Qg and (3 C Qg, are two curve segments with tangents in C, such that
& e A and & € Ay, i # j, then if ge,n(C1) and g, (o) intersect, and if
(u1,v1,1) and (ug,ve, 1) are tangents to g..m,(C1) and g..m(Ca) respectively, it
holds |uy — ug| > C. e, where

{ |CLi — aj| + 5(—|6Li + Clj| - 2) 4(1 + 5))\max,ma.x }

1—¢2 2™ — Amax.max(1 + €)
Proof of Lemma 5.2.2. The Jacobian of g, ,, is

A 0 2e(fle) =)

C.,, = min
' 1#]

dpgs,m = P 0
0 0 2m
where p = (2,y,2) € Qix. If (u,v,w) € C,, then

d(z) fi(@)u +27e(fi(z) — a;)w
dpga,m(ua v, w) - ;Diiv
2w

We just need to check that this vector is in (), provided that m is
large. This is easily checked, using that |d(z)] < 1+ ¢, [f/(z)] < Aimax
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and |f;(x) — a;| < 2. Indeed,

A i )u+ 27 (@) — aw] _ (14 &) Ay Jul

— +2
27| ST o o OF
) m—+1 m+1
- (14 )N max 2mtle Lo < 2mtle
- 2m 2m - (1 + 6))\max,max - 2m - (1 + 5))\max,max
and .
’p_f}‘ 1 2m+1&j 2m+1€

<
\me\ B p12m 2m — (1 + 5))\max,max - 2m— (1 + 5))\max,max

proves that d,g.m(Cp) C C,. . if m is sufficiently large, so that
2™ — (14 €)Amaxmax > 0 and p;2™ > 1.

To prove the other statement of the Lemma, assume that p = (z,, yp, 2,) € Q;
and q = (z4,Yq, 2¢4) € Qj, 1 # j, are such that g.,,(p) = gem(q) = (2,9, 2).
Then, if p € Q;

u -+ (fz(mp) - ai)gu

d /
dpGem: (u,v,1) — 2™ <w 37 1)
" Di

Then

Poall ) g g - 2o d)

Without loss of generality, let us assume that a; > a;. For simplicity
we study the case x > a; > a;. The proofs of the cases a; > = > a; and
a; > a; > x are similar. Then

fi(zp) =

T — a; T — a;
d C,) C < w(u,v,1): ‘e —Ne<u< ‘e + Aje o,
(€ € { o, 1) 55 % - Ae < u s T ek A
o 2(1+5))\i,max
where A; = 57— JW— G Therefore
T —a,; T — a;
Uy — U| > le — Lo — (A, + A))e
’ 2 1’ - 1 +€ 1 — ¢ ( + .7)
> ai—aj+6(ai+aj—2)_2maXAi -
1 — &2 i
for every z > a; > a;. Let A = max; A;. Since 0 < € < min,; QEZ__iﬁ,‘,
iTaj

we have
a; —aj+e(a; +a; —2)

o > 0.
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Therefore
ai—aj—i-e(aﬁ—aj —2)

1 — g2

for sufficiently large m. By similar methods, we have for a; > = > a;

|U2 - U1| Z (a;_:_z] - 2Amax) g,

— 2Ahax > 0,

and for a; > a; > x

a; —a; —e(a; +aj + 2
‘UQ—U1| Z ( J 1£52 J )_2Amax) E.

Therefore we can choose

Py —la; 1—92
Com —min { @il eClaita =2\ 1 O
’ i#j 1 — &2

The rest of the section will follow the method of Tsujii’s article [T].

Proof of Theorem 5.1.2. For any r > 0 we define the bilinear form (-,-), of
signed measures on R by

(P12 = | (B Br(a)) da
R
where B,(x) = [¢ —r,x 4+ r]. It is easy to see that if
lim inf 1 (p, p)
im inf = (p, p); < 00
then the measure p has density in L?, see [T]. Moreover

1
2 <1 . -
lpllz < liminf - (p, o).

Let «, denote the conditional measure of ~., on the set
R, = {(u,v,w) € @ : v = y,w = z}. Since the one-dimensional
Lebesgue measure is invariant under the action of g. ,, projected to the sec-
ond coordinate, we conclude that v, is independent of y almost everywhere.
Therefore, it follows that

1
el = | -l (5:22)

100



Let
1 1
J(r) = / (Vzr v2)r dz.

r? ) 4

By the invariance of 7. ,, it follows that

!
=27 P Y Vg © Yo (5.2.3)
1

1= aEAi

where g_ 7 denotes the inverse branch of g.,, such that the image of g_, is
in Qa. Recall that a € A; means that a = (i, k) for some k, so that Qa = Qik
for some k. We denote the measure Vgzo.(z) © Yem DY Oa,z. Then by (5.2.3)
and the definition of J(r)

Lo 1
J(r)= ﬁ ZZpipj Z Z /1(0a72,0b7z)r dz. (5.2.4)

i=1 j=1 acA; beA; Y~

For fixed a,b € A; it holds,

1 1
(Ua,za Ub,z)r S (Ua,27 O-a,z)r2 (Ub,27 O-b,z)r2
1

X (Vgzt (2 Vaztu()) 2

(1*5)/\i,min

1
2

_r
(1*5)>‘7j,min

< (14 €)ANimax(Vgze, (2)0 Vgrn ()

(Vg;?n(Z)’ 79;&&))% + (Vgs’,i’n(Z)’ 7gs’,rbn(Z))W

7, min

S (]- + 6)/\i,max

9
(5.2.5)
Moreover, if a € A; and b € A;, @ # 7, then
(Ua,zaab,z)r
_ / 0ua(By(2))00-(By(x)) da
= /// H{s:\sfx\<r}(S)H{t:\tfor}(t) do—a,z(s)dab,z(t)dx
< / / T (oo i1 <ar ) (5, 1) A0 (8) o2 (1)
= / / L (c.)ilo=1(ec_se—rapo())—p=1 (d—2d_1bpo(2))] <2 } (€, &)
dve(c)dve(d).

Let us comment on the notation py(z). Actually po(z) is not defined, but
rather po(z,y,z). Recall that po(z,y,2) is independent of x and that we
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therefore have introduced the notation py(y, z). Moreover, as noticed above,
the measures 7., and therefore also o, ., are independent of y. Hence we can
choose arbitrary z, y and let po(z) denote po(z,y,2) = po(y,z). Since all
the estimates below will be independent of this choice of y, we will use the
notation py(z) instead of po(z,y, 2).

By a change of order of integration we get that

1
/ (0a270bz) dz

< 27“/ Li({z:]p (- coac_rapo(2))
T rdadabpo(2))] < 2r}) dye(e)dye(d).  (5.2.6)

We will now use Lemma 5.2.2 on (5.2.6). Note that

2 p (e c_gc_1app(z))
2 p (oo d_ad_1bpo(2))

defines two curves with tangents in the cones C),. Lemma 5.2.2 states that
these curves have a transversal intersection, if they intersect, so that

4r
Li({z:]p7 (- coacmiapo(2)) — p (- - d_ad_1bpo(2))| < 2r }) < o
Hence
1 il 5.2.7
a,z» z Td S . L.
[ (G e < (527

By using (5.2.4) we have

7“ 22m7n2 Zpl Z / Jaz;abz r
=1 a,beA;
QWszz/%% 5 (5:28)

acA; beA;

We first give an upper bound for the first part of the sum in (5.2.8), using
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(5.2.5) and an integral transformation. By (2.2.7) we have

E / O—azao—bzr

a,beA;

(1 + 8 Z max2 Z / ryga m ’yga ’m(z)) (1 5)>‘7, min dz

a€A;

2m_1 1+(k+1)2-m+!
= (14 &) Aima2™ Y 2’”/ (V22 72) gy 2.
prt 71+k2_m+1 i, min

Hence

22m7n2 Zpl Z / Jaz;abzr

i=1 a,beA;
gm_q —1+(k+1)2—m+!

N 3 A

—14k2-mt1
! 1
2 (1 + 6)>‘i,max 1
R e R S O
(1 - 6))\1 min
(1 + &)X max
< max./ (/\Z — ) sz s (5.2.9)

For the second part of the sum in (5.2.8), we use (5.2.7), to prove that it
is bounded by

22mr2 szpj Z Z/ Uazaabz

i) a€A; bEA;
< 22mr2 > o> Y, Cg —= E,mg. (5.2.10)

i#£j acA; bEA;

By combining (5.2.9) and (5.2.10) we have

J(r) <

5.2.11
ST (5.2.11)

)
Amax] (ﬁ)

where =31 p f% is less than 1 by (5.1.6).
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We define a strictly monotone decreasing sequence ry. Let g < 1/2 be
fixed and define r; recursively. Assume that r,_; has been defined. Then we
define r;, = (1 — €) A\, minTk—1, Where i is chosen such that

Tk Tk

e (i) = (i) ~ 0

Hence we have r, = 7o(1 — ¢)* H]:L:1()\in,min)-

We note that 7y is a well defined sequence. By induction and (5.2.11), we
have

g8 1-—p3*
Come 1 =0

for every k > 1. Hence by (5.2.1), (5.2.2) and (5.2.12) we get

J(ry) < + B%J(ro) (5.2.12)

|vemll3 < 4lim iglf J(r) < 4liminf J(ry)
r—

k—o0
32 1

S C 61 1 2 (1+5)>\i,max ’
emE 1 = it D =%y )

(5.2.13)

We now use that L? is a Hilbert space, and that in a Hilbert space, a closed
ball is compact in the weak topology. (See for instance [Yos, Theorem V.2.1].)
Hence, if h,,, is the density of v, ,,, then h,,_,, is in Lo, and from above we
know that there is a constant C. such that ||h,,,,|ls < CL/\/E.

By the compactness statement above, there is an h with [|h|ls < CL/\/e,
such that some subsequence of h,,_,, converges weakly to h. Moreover h
defines a probability measure since 1 = [1-h,_, dLs — [1-hdLs.

Since v, converges weakly to v. we get that v. has density in L? and
that

[[vell2 < %C;, (5.2.14)
where
o - 32
(1~ S piees:)
and

m—s00 iA] 1—¢2

O/l_ hm O _mln{‘a’l_a3|+€(_|al+a3‘_2)}
e e,m .

5.3 Proof of Theorem 5.1.5
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We do not give the whole proof of Theorem 5.1.5, because it is similar to
the proof of Theorem 5.1.2. We prove only the modification of Lemma 5.2.2,
which is important as it proves transversality.

First we define a new dynamical system g.,,: @ — @, similar to the
dynamical system g.,,: @ — Q. Let @Q;; and A, be as in Section 5.2. Let
Geom: @@ — @ be defined by

Gem: (2,y,2) — (glv(z)x +a;(1 —d(2)), p%y +b(y), 2™z + c(z)) ,

for (z,y, z) € Q;, where

1
d(z) = i +2e(z — (-1+ (k+ 5)2*7”“))7 for (z,y,2) € Qik,

1 7
b(y) =1- ]7 <_1 + 2 E p]) ) fOI‘ ([L’,y,Z) € Qi,k>
i =1

c(z) =2m -2k —1, for (z,y,2) € Qik.

Hence the only difference between g. ,, and g. ,, is in the first coordinate,
where the perturbations of f; are made. Figure 5.1 also serves in visualizing

the action of g, .
gmtle
<—
2M — Apax — € }

We define the cones
where p € @ and A\, = max; \;. Similar to Lemma 5.2.2, we show that
these cones define a family of unstable cones, and that a certain transversality
property holds.

6= { twow) e1,0: ||

(%
w

Lemma 5.3.1. Let us suppose that (5.1.9) holds. The cones C,, defines a
family of unstable cones, that is dpgem(Cp) C Cq. . (p)-

Moreover, for sufficiently large m and every sufficiently small 0 < e, if
G C Q¢ and (o C Qg, are two line segments with tangents in C, such that
& € A and & € Ay, i # j, then if Gem(C1) and gem(Ca) intersects, and
if (u1,v1,1) and (ug,ve, 1) are tangents to Gem(C1) and Ge m(C2) respectively,
there exists a constant Cy ,,, depending on £ and m, but bounded away from
0 and infinity, such that |uy — ug| > C. e,

Proof of Lemma 5.5.1. The Jacobian of g. ,,

d(z) 0 2me(z —a;)
dpga,m - 0 p% 0 ,
0 0 2m
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where p = (2,y,2) € Qix. If (u,v,w) € C,, then
dpGem(u, v, w) = )

The estimate

|d(2)u + 2Me(x — a;)w)| - d(2)|ul

2
2] = ]
)\i +ée 2m+1€ 2m+1€
o —
- 2m 2m—)\max—€+ ©= 2M — Ajax — €

shows that d,g.,(C,) C Cj..,.(»)- Now we prove the other statement of the

Lemma. Assume that p = (x,,yp, 2p) € Qi and ¢ = (24, Yy, 29) € Qj, @ # 7,
are such that g. »(p) = g-m(q) = (z,y,2). Then

_ d|
peEQR; = dpgem: (u,v,1)—2" <%u + (xp — a;)e, E, 1) ,

and

_Tr= a;(1— a?(zp)) T a;(1— j(zq))

Tp = = . Tg = =

d(zp)

Therefore

Tr — a; €r —aj

|ug — uq| > (

The term

can be estimated by

Tr — a; xr —aj

>

Cfiv(zzo) d(z,)
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Hence, this term is positive provided that

|a;d(2p) — aid(zq)| > |d(zp) — d(zg)|.
Since \; —e < g(zp) <A+ecand \j —e < g(zq) < \j + ¢, this is implied by
(2.1.1) if € is sufficiently small.
If we let
1 . ‘&z)\]_&j)\z’_‘)\z_)\]‘

C.,m = —min ,
e 2 i#] Az)\]

then
|ug — u1| > Ce e,

provided that ¢ is small and m large.
In fact we can let
- aihy = aghi| — [N — N

C.,, = omin ,
’ i#j YV

for 0 <o < 1. O
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