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1 Preliminaries and scientific background of the research
work

The research work leading to the results presented in this dissertation is based on the
significant paradigm changes in control theory, mathematics and system theory, appearing
almost simultaneously in the last decades.

Multi-objective nonlinear control theory

The research work leading to the results presented in this dissertation is based on the
significant changes in control theory, mathematics and system theory, appearing almost
simultaneously in the last decade.

In the last decade, the representation of identification models in system theory has
changed significantly. The origins of the paradigm shift can be linked with the famous
speech given by D. HILBERT in Paris in 1900. HILBERT listed 23 conjectures, hypotheses
concerning unsolved problems which he believed would provide the biggest challenge in
the 20th century. According to the 13th conjecture there exist continuous multi-variable
functions which cannot be decomposed as the finite superposition of continuous functions
of less variables [42, 43, 45]. In 1957 ARNOLD disproved this hypothesis [4], moreover, in
the same year, KOLMOGOROV [57] formulated a general representation theorem, along
with a constructive proof, where the functions in the decomposition were one dimen-
sional. This proof justified the existence of universal approximators. KOLMOGOROV’s
representation theorem was further improved by several authors (SPRECHER [91] and
LORENTZ [71]). Based on these results, starting from the 1980s, it has been proved that
universal approximators exist among the approximation tools of biologically inspired neu-
ral networks and genetic algorithms, as well as fuzzy logic [14, 19, 23, 47, 61, 78, 95, 102].
In this manner, these approximators have appeared in the identification models of system
theory, and turned out to be effective tools even for systems that can hardly be described in
an analytical way.

One of the most fruitful developments in the world of linear algebra and linear algebra-
based signal processing is the concept of the Singular Value Decomposition (SVD) of
matrices. The history of matrix decomposition goes back to the 1850s. During the
last 150 years several mathematicians—Eugenio Beltrami (1835–1899), Camille Jordan
(1838–1921), James Joseph Sylvester (1814–1897), Erhard Schmidt (1876–1959), and
Hermann Weyl (1885–1955), to name a few of the more important ones—were responsible
for establishing the existence of the singular value decomposition and developing its
theory [93]. Thanks to the pioneering efforts of Gene Golub, there exist efficient, stable
algorithms to compute the singular value decomposition [40]. More recently, SVD started
to play an important role in several scientific fields [26, 75, 98]. Its popularity also grew in
parallel with the more and more efficient numerical methods. Due to the development of
personal computers it became possible to handle larger-scale, multi-dimensional problems,
and there is a greater demand for the higher-order generalization of SVD for tensors. Higher
Order SVD (HOSVD) is used efficiently in independent component analysis (ICA) [65],
as well as in the dimensionality reduction for higher-order factor analysis-type problems—
thus reducing the computational complexity [64]—to name a few examples. The HOSVD
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concept was first published as a whole multi-dimensional SVD concept in 2000 [66], and
the Workshop on Tensor Decompositions and Applications held in Luminy, Marseille,
France, August 29–September 2, 2005 was the first event where the key topic was HOSVD.
Its very unique power in linear algebra comes from the fact that it can decompose a given
N -dimensional tensor into a full orthonormal system in a special ordering of singular
values, expressing the rank properties of the tensor in order of L2-norm. In effect, the
HOSVD is capable of extracting the very clear and unique structure underlying the given
tensor. The Tensor Product (TP) model transformation is a further extension to continuous
N -variable functions. It is capable of extracting the fully orthonormal and singular value
ordered structure of the given function. Note that this structure cannot be analytically
achieved, since there is no general analytic solution for the HOSVD. The TP model
transformation was also extended to linear parameter-varying (LPV) models in 2003. It
generates the HOSVD of LPV models. To be specific: it generates the parameter-varying
combination of Linear Time-Invariant (LTI) models that represents the given LPV model
in such a way that: i) the number of the LTI components are minimized; ii) the weighting
functions are univariate functions of the parameter vector; iii) the weighting functions are
in an orthonormal system for each parameter; iv) the LTI systems are also in orthogonal
position; v) the LTI systems and the weighting functions are ordered by the singular values.

In conclusion, the TP model transformation finds the clear well defined and unique
structure of the given LPV model. This cannot be achieved via analytical derivations. Thus
the result of the TP model transformation was termed as the HOSVD-based canonical
form of polytopic or LPV models in 2006 [7, 8].

The appearance of Lyapunov-based stability criteria made a significant improvement in
the control theory of nonlinear systems. This change of the viewpoint was invoked by the
reformulation of these criteria in the form of linear matrix inequalities, in the early 1990s.
Herewith, the stability questions of control theory were given in a new representation,
and the feasibility of Lyapunov-based criteria was reinterpreted as a convex optimization
problem, as well as, extended to an extensive model class. The pioneers GAHINET,
BOKOR, CHILAI, BOYD, and APKARIAN were responsible for establishing this new
concept [2, 3, 16, 27, 29, 35, 38, 53, 76, 85]. The geometrical meaning and the methodology
of this new representation were developed in the research group of Prof. József BOKOR.
Soon, it was also proved that this new representation could be used for the formulation
of different control performances—in the form of linear matrix inequalities—beyond the
stability issues together with the optimization problem. Ever since, the number of papers
about linear matrix inequalities guaranteeing different stability and control properties are
increasing drastically. BOYD’s paper [17] states that it is true of a wide class of control
problems that if the problem is formulated in the form of linear matrix inequalities, then
the problem is practically solved.

In parallel with the above research and thanks to the significant increase in the computa-
tional performance of computers, efficient numerical mathematical methods and algorithms
were developed for solving convex optimization problems—thus linear matrix inequalities.
The breakthrough in the use of convex optimization in practical applications dates back
to the introduction of interior point methods. These methods were developed in series of
papers [52], and have real importance in connection with linear matrix inequality problems
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in the work of Yurii NESTEROV and Arkadii NEMIROVSKI [77]. Today, these methods
are used in “everyday” engineering work, and it turns out to be equally efficient in cases
when the closed formulation is unknown. In consequence, the formulation of analytical
problems has gained a new meaning.

It is well-known that a considerable part of the problems in modern control theory
necessitate the solution of Riccati-equations. However, the general analytical (closed
formulation) solution of multiple Riccati-equations is unknown. In turn—with the usage of
numerical methods of convex optimization—we consider solved those problems today that
require the resolution of a large number of convex algebraic Ricatti-equations, in spite of
the fact that a result of the obtained solution is not a closed (in classical sense) analytical
equation.

In conclusion, the most advantageous property of the new, convex optimization
based representation in control theory is that it is possible to easily combine
different controller design conditions and goals in the form of numerically
manageable linear matrix inequalities [17]. This makes it possible to solve
numerous (complex) control theory problems with remarkable efficiency.

This is especially true of Lyapunov-based analysis and synthesis, but also of optimal
LQ control, H∞ control [28,39,94], as well as minimal variance control. The linear matrix
inequality-based design also appeared in other areas such as estimation, identification,
optimal design, structural design, and matrix-sizing problems. The following enumeration
lists further problems that can be managed and solved in a representation using linear
matrix inequalities: robust stability of linear time-invariant systems with uncertainty (µ-
analysis) [80, 92, 105], quadratic stability [18, 46], Lyapunov-based stability of parameter-
dependent systems [37], the guarantee of constraints on linear time-invariant system
inputs, state variables, and outputs, or other goals [17], multi-model and multi-objective
state-feedback control [5, 9, 17, 21, 54], robust pole-placement, optimal LQ control [17],
robust H∞ control [36, 48], multi-goal H∞ synthesis [21, 54, 74], control of stochastic
systems [17], weighted interpolation problems [17].

Friction compensation of mechatronic systems

Friction is omnipresent and a constant issue in any mechatronic system, in high
precision applications as servo drives [100] or pneumatic cylinders [101] for instance.
Friction is highly nonlinear and may result in steady state errors, poor performance, it can
highly reduce the efficiency of machines. Control engineers are faced with the problem of
modeling friction phenomena and reducing undesirable effects by mechanical ways or by
control techniques. It is therefore important for control engineers to understand friction
phenomena. A proper model for friction could provide relief. However, mechanisms of
friction itself are still not fully understood and accurately modeled. Simple linear friction
models do not perform well in solving this problem. Nonlinear approaches have also been
proposed more or less successfully, many of them being based on empirically collected
data. It has become obvious that nonlinear behavior cannot be modeled using linear
models. Friction has been studied extensively in classical mechanical engineering. The
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availability of new precise measurement techniques has been a good driving force, with
the computational power available today, it is in many cases possible to deal effectively
with friction.

Early classical friction models are described by static mappings between velocity and
friction forces which depend on the sign of the velocity, such as Coulomb friction and
viscous friction [44]. However, these friction models are used in mechatronic system
modeling even nowadays for the sake of simplicity.

On the other hand, many of the interesting properties observed in systems involving
friction cannot be explained by static models alone. In addition, any friction compensation
based on static maps defeats at very low velocities. A common dynamic friction model
is the LuGre model, it offers a regularization of Coulomb friction at a velocity crossing
zero, includes stiction without oscillations in stick and also reproduces the Stribeck effect
and frictional lag was introduced in [24, 25] by CANUDAS et al. More recently, other
newer models are elaborated and discussed in literature; like the Leuven model [1] and
the generalized Maxwell-slip (GMS) friction model [1] by LAMPAERT et al. These newer
models can be limited by their more complex implementation and identification process of
generally greater number of parameters. The LuGre model, on the other hand provides
a sufficient integrated view of friction and it is well suited for implementations such as
control applications [11]. In Hungarian respective, KOZMA’s key research in the area of
tribology and friction is well-known [15] and the most up-to-date research is carried out
by PÁLFI, who defines a numerical Finite Element Method (FEM) model of the friction
hysteresis of sliding rubber within the generalized Maxwell friction model [81]. PÁLFI’s
research fits well in the modern trend of numerical modeling.

The two main directions of friction compensation are model-based friction compen-
sation and model-free friction compensation; model-based strategies are the dominant
approach ( [24,79]). Adaptive friction compensation was proposed in [33,67], robust adap-
tive friction compensation is applied in [96]. Learning control based friction compensation
is introduced in [22], [56] deals with time optimal friction compensation. Model-based
robust control for friction compensation is designed in [72], while neural networks are
applied for friction compensation in [62, 63, 84, 86, 106]. Observer-based friction com-
pensation is proposed in [32], partial state-feedback in [10, 73, 99, 103] and LMI-based
multi-objective friction compensation is applied in [55].

Sliding mode control

Sliding mode control of variable structure systems has a special role in the field of
robust control. On one the hand, the exact description of sliding mode needs advanced
mathematics, which was established by FILIPPOV in [30], [31] in the early sixties. On
the other hand, it is quite easy to implement in most engineering systems ( [70] and [82]),
a simple relay is satisfactory in most cases. The main utility of sliding mode in control
design problems is to decouple the highly coupled nonlinear dynamics and to desensitize
the performance to variations of the unknown system parameters.

However, despite the theoretical predictions of superb closed-loop system performance
of sliding mode, some of the experimental work indicated that sliding mode has limitations
in practice, due to its need for a high sampling frequency to reduce the high-frequency
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oscillation phenomenon about the sliding mode manifold, collectively referred to as
”chattering”.

Standard sliding mode control has seen extensions in depth and in breadth by re-
searchers to incorporate new techniques since its introduction. These extensions in-
clude higher order sliding mode control (HOSMC) [68], dynamic sliding mode control
(DSMC) [60], terminal sliding mode control (TSMC) [49] and recently Integral sliding
mode control [69]. Sliding sector was introduced by [34], another approach of sliding
sector is proposed by KORONDI in [59, 104]. The extended techniques retain the main
advantages of SMC and also provide better accuracy in addition to chattering removal.

The systematic sliding manifold design for linear systems was proposed by UTKIN

in [97]. As an extension of that method, various linear control design methods based on
state feedback (pole placement, LQ optimal and H∞) were proposed for optimal sliding
manifold design. In recent years, LMI-based sliding surface design became very popular
for systems with time delay and uncertainties [20, 83, 87]. Besides linear static sliding
surfaces [12] uses a shifting sliding surface, [51] applies rotating sliding surface and [50]
discontinuous sliding surface for sliding mode control. A nonlinear sliding surface is
used in [6]. A theoretical polytopic sliding surface was introduced by GOUAISBAUT et al.
in [13, 41]. However in practical implementation they used linear sliding surface. SILVA

et al. in [88–90] described mismatched and matched uncertainties in polytopic form and
used LMI-based convex optimization to obtain the sliding surface.

1.1 Goal of the dissertation
Based on the Introduction we can conclude that there is a trend of utilizing neural networks,
genetic algorithms and fuzzy logic for system identification and modeling, which leads to
the case that elements of a control system (controlled plant, controller, observer, additive
model error, nonlinear friction etc.) may not be always designed and given in a form that
is common in modern control theory, but as hybrid elements, for example some elements
may be given in analytical form, some as discrete identification data set, while some others
in a soft computing form (as fuzzy logic, neural network, genetic algorithm etc.). To verify
stability of such hybrid system in which we have a min-max Mamdani fuzzy observer
and a Takagi-Sugeno fuzzy controller for example, may be a very challenging task. If
genetic algorithms and neural networks are involved too, the stability test is even more
difficult. On the other hand, soft-computing techniques have several important benefits
such as the online tuning of parameters etc. A possible way to solve the stability test of
hybrid systems is to define the control system elements by a common polytopic structure,
since the stability test of systems given in the same polytopic structure can be solved easily
and systematically in a routine fashion. Therefore, during my research work, one of my
goals was to extend TP model transformation in a conceptual level in order to bring all the
elements of the control system to a common polytopic structure.

Friction is an unpleasant phenomenon of mechatronic systems, which originated many
diverse approaches for friction modeling and compensation. My second goal during my
research was to introduce friction models and friction compensation to the unified common
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polytopic structure concept via TP model transformation and to investigate and analyze
the applicability and feasibility of the methodology.

My third goal was to introduce TP model transformation based LMI convex optimiza-
tion and convex hull manipulation based control design methodology to sliding mode
control design for qLPV models and to investigate and analyze the applicability and
feasibility of the methodology.

Therefore, my comprehensive goals in details are as follows:

• Extension of TP model transformation to describe from a representation point of
view hybrid multi-component systems (which can consist soft-computing-based
identifications etc.) with a common polytopic structure, establishing the possibility
of effective convex hull manipulation and verifying the stability of multi-component
systems systematically, based on stability verification methodologies applicable for
polytopic systems. An important objective is to develop reliable and numerically
appealing algorithm for extending the TP model transformation.

• The goal is to propose a new methodology and viewpoint for representing friction
models, in this case focusing on uniform multi-objective polytopic representation,
which is fit to polytopic LMI-based control design. This leads to the result that
friction compensation can be formulated as convex optimization problem composed
in the form of linear matrix inequalities. As part of the methodology, my aim is to
show that the finite element HOSVD-based canonical form and the convex finite
element TP models of the most widespread friction models exist and the TP model
transformation generates the minimal number of linear time-invariant systems.

– The aim is to check the effectiveness of the proposed methodology by an
academic problem. Experimental measurements of a benchmark system with
nonlinear friction are carried out for this purpose.

– The goal is to apply TP model transformation based friction compensation
methodology for a prototypical aeroelastic wing section, which is an up-to-date
control engineering problem with complex dynamics and description.

• qLPV forms have appeared in the solution methodologies of nonlinear Sliding Mode
Control, which forms are very close to the trends of modern control theory. The
goal is examine the application possibilities and the advantages of applying Tensor
Product model transformation control design methodology to sliding mode control
design. The specific goal is to design the sliding surface and sector in a polytopic
representation, where various convex hull generations of the sliding surface and
sector can be described. Since the type of the convexity significantly influences the
LMI-based design, the aim is to introduce this optimization tool to sliding mode
control (SMC) besides LMI-based multi objective optimization.

The linear matrix inequality-based controller design was well-researched in the last
decade, therefore its validity and applicability analysis is not set as a goal in this disserta-
tion.
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2 Methodologies used in the dissertation

2.1 Brief introduction to Tensor Product model transformation of
qLPV models

Definition 2.1 (qLPV model). Consider the quasi Linear Parameter Varying State Space
model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t) (1)

y(t) = C(p(t))x(t) + D(p(t))u(t),

with input u(t) ∈ Rm, output y(t) ∈ Rl and state vector x(t) ∈ Rk. The system
matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
(2)

is a parameter-varying object, where p(t) ∈ Ω is time varying N−dimensional parameter
vector, where Ω = [a1, b1]× [a2, b2]× ..× [aN , bN ] ∈ RN is a closed hypercube. p(t) can
also include some elements of x(t), in this case (2) is termed as quasi LPV (qLPV) model.
Therefore, this type of model is considered to belong to the class of non-linear models.

Definition 2.2 (Finite element polytopic model).

S(p(t)) =
R∑

r=1

wr(p(t))Sr. (3)

where p(t) ∈ Ω. S(p(t)) is given for any parameter vector p(t) as the parameter varying
combinations of LTI system matrices Sr ∈ R(k+m)×(k+l) called LTI vertex systems. The
combination is defined by the weighting functions wr(p(t)) ∈ [0, 1]. By finite we mean
that R is bounded.

Definition 2.3 (Finite element TP type polytopic model). S(p(t)) in (3) is given for any
parameter as the parameter-varying combination of LTI system matrices Sr ∈ R(k+m)×(k+l)

.

S(p(t)) =

I1∑
i1=1

I2∑
i2=1

..

IN∑
iN=1

wn,in(pn(t))Si1,i2,..,iN , (4)

applying the compact notation based on the previous chapters we have:

S(p(t)) = S
N

�
n=1

w (pn (t)) (5)

where the (N+2) dimensional coefficient tensor S ∈ RI1×I2×···×IN×(k+m)×(k+l) is con-
structed from the LTI vertex systems Si1,i2,...,iN (5) and the row vector wn (pn (t)) ∈ [0, 1]
contains one variable and continuous weighting functions wn,in(pn(t)) ,(in = 1 . . . IN) .

Remark 2.1. : TP model (5) is a special class of polytopic models (2), where the weighting
functions are decomposed to the Tensor Product of one variable functions.
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2.2 Brief introduction to sliding mode control design
The design of a sliding mode controller consists of three main steps. First, the design
of the sliding surface the second step is the design of the control law which holds the
system trajectory on the sliding surface and the third and key step is the chattering-free
implementation.

2.2.1 STEP I. Sliding surface design

A single input, multi output linear time invariant (LTI) system is considered, which has to
be given in regular form.

Definition 2.4 (Regular form of LTI systems). An LTI system is considered regular if it is
given in the following form:

(
ẋ1

ẋ2

)
=

(
A11 A12

A21 A22

)(
x1

x2

)
+

(
0
B2

)
u

y = C

(
x1

x2

)
+ Du

(6)

with input u ∈ R, output y ∈ Rl, state vector x1 ∈ Rk−m, x2 ∈ Rm and B2 > 0. In
this case, input signal u acts upon state vector x2 only. The reference signal is supposed to
be constant and zero.

Definition 2.5 (Sliding surface). The sliding surface s of the sliding mode, where the
control has discontinuity, is designed in a k-dimensional space, where k is the number
of state variables. The sliding surface can be given in the following form as a linear
combination of state variables as:

s = x2 + Fx1 = 0, (7)

where s ∈ R and F ∈ Rk−m is the ”surface vector”. The aim is to keep the system’s
trajectory on the sliding surface.

Corollary 2.1. When sliding mode occurs (s = 0 and x2 = −Fx1), the design problem
of the sliding surface can be regarded as a linear state feedback control design for the
following subsystem:

ẋ1 = A11x1 + A12x2 (8)

In (8), x2 can be considered as the input of the subsystem with state matrix A11. A
state feedback controller x2 = −Fx1 for this subsystem gives the switching surface of the
whole VSS controller.

In sliding mode, the system’s behavior is given by the differential equation:

ẋ1 = (A11 −A12F)x1. (9)
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Remark 2.2. The condition of sliding mode control is that (9) is stable. This means that
several state-feedback design techniques (pole placement, LQ optimal, frequency shaped
method and H∞) can be used for sliding surface design, as long as they stabilize (8) in the
form of (9). The main problem is that these methods are not suitable for a nonlinear system
which is more challenging. The solution can be the Tensor Product model transformation.

2.2.2 STEP II. Control law design

We use the Lyapunov stability criterion to ensure that the system is asymptotically stable
and that it remains in the sliding mode (s = 0). The simplest control law which can lead to
stable sliding mode is the relay:

u = M · sign(s) (10)

Definition 2.6 (Equivalent control signal). If sliding mode exists then there is a continuous
control, a so-called ”equivalent” control, ueq, which can hold the system on the sliding
manifold. It can be calculated from ṡ = 0:

ueq = −
(A21 + FA11)x1 + (A22 + FA12)x2

B2

(11)

Remark 2.3. In practice, there is never perfect knowledge of the whole system and its
parameters. Only ûeq, the estimation of ueq, can be calculated. Since ueq does not
guarantee the convergence to the switching manifold in general, a discontinuous term is
usually added to ûeq.

ueq = ûeq +M · sign(s) (12)

2.2.3 STEP III. Chattering free implementation, Sector sliding mode

The chattering in the basic sliding mode control is essentially due to the requirement
that the system state must stick to the switching surface. There are several solutions for
elimination of chattering. Many scientific papers con be found on this topic, but this section
focuses on sector sliding mode control.

An important approach to reduce chattering is the sector sliding mode, which can
be extended for TP model transformation-based sliding mode control. To implement the
proposed approach, two sliding surfaces are defined first:

sr = x2 + Frx1 = 0 (13)

where r = 1, 2.
The two sliding surfaces divide the whole state space into three regions defined as:

Definition 2.7 (Sliding sector).

R1 = {x | s1(x) > 0 and s2(x) > 0}
R2 = {x | s1(x) < 0 and s2(x) < 0}
R3 = {x | s1(x)s2(x) 6 0}

(14)
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where region R3 is the sliding sector.

The sliding surface of the system is given by the following equation:

s = x2 + Fx1 = 0 where F =
F1 + F2

2
. (15)

This leads to:

s =
s1 + s2

2
. (16)

The control strategy of the proposed modified sliding mode control method is

u = ueq + ud, (17)

where ueq is the continuous ”equivalent” control signal given in Definition 2.6.

Definition 2.8 (Discontinuous control signal).

ud =−M · sign
(
s1 + s2

2

)
if x ∈ R1 ∪R2 (18a)

ud =−M
s1 + s2

|s1|+ |s2|
if x ∈ R3 (18b)

ud is a relay type non-continuous input signal which has the role of disturbance
rejection and compensation of the error of ueq coming from parameter uncertainties. Inside
the sector it is a continuous signal in order to decrease chattering.

3 Scientific Results of the Dissertation

3.1 Research results of the dissertation
3.1.1 Unified TP type polytopic concept of tensor functions and control system ele-

ments, Multi TP model transformation

I extended the TP model transformation to simultaneously transform a set of functions
into common type TP functions. I defined this extended TP model transformation as
multiple TP model transformation. The multiple TP model transformation is capable of
transforming a set of functions to the polytopic representation over a common weighting
function system. Multi TP model transformation is able to handle scalar, vector or even
tensor functions.

Multiple TP model transformation conserves all the benefits as single TP model transfor-
mation, such as construction of HOSVD-based canonical form, possibility of constructing
and manipulating polytopic convex hulls, ensures the tradeoff between complexity reduc-
tion and accuracy, has a reliable and numerically appealing/tractable way, which means
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that not only analytical functions, but functions given in other soft-computing form (e.g.
as a fuzzy logic based, a neural network or a genetic algorithm) can also be transformed.

Based on the multiple TP model transformation I established the concept of representing
multi-component and hybrid complex qLPV systems in a uniform polytopic structure.
The components of such system may be available in an analytical form, in the form of a
numerical data set or in a soft computing form (e.g. as a fuzzy logic based model, a neural
network or a genetic algorithm). I proved that such systems can be transformed to uniform
type polytopic forms using the multiple TP model transformation, regardless of whether or
not the components are given in the same or different types of representation. I proved that
by this concept convex hull manipulation can be realized in a uniform and systematical
way efficiently for multi-objective control performance optimization in a wide class of
control engineering problems.

Due to its special nature as control system element I gave a special focus on reference
signal compensation of complex systems. I gave an example which shows that the reference
signal compensation can be determined from the LTI vertex points of the system in certain
cases if the complex hybrid system is transformed to uniform polytopic form.

3.1.2 Friction compensation of mechatronic systems based on TP model transfor-
mation control design methodology

I investigated friction separately from the system, because friction phenomenon is a special
element of control systems. In order to continue the investigation I examined the most
commonly used friction models.

I proved that the most commonly used friction models (Coulomb friction, Coulomb
with viscous friction, Stribeck and LuGre friction models) can be defined as finite element
TP type polytopic models.

I provided the HOSVD-based canonical form of these friction models. I proved that
the Coulomb friction, Coulomb with viscous friction and Stribeck friction models can be
reconstructed from minimum two LTI vertex systems, while the LuGre friction model
can be reconstructed from minimum six LTI vertex systems in case of TP type polytopic
forms. I showed that the reconstruction is equivalent to the analytically derived form of the
models, the error of reconstruction is in the order of magnitude of 10−16.

I proved that the minimal number of LTI vertex systems is the same in case of convex
TP type polytopic models. I provided the SNNN, CNO and IRNO type convex TP type
polytopic forms for these friction models.

I showed that the uniform polytopic representation of control system elements of the
first thesis does not lead to an explosion in the number of LTI systems in the case when the
friction and the system model can be treated separately. I proved that if the friction and the
system model are additive the number of weighting functions is summed up.

The results of this and the previous thesis were applied for friction compensation of
an academic problem, a real DC servo drive with planetary gear. I gave a dynamical
qLPV/LMI-based multi-objective control (such as asymptotic stability and decay rate)
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design methodology. I showed that the nonlinear friction model is additive to the linear
model of the DC servo drive. The resulting qLPV model can be reconstructed from 2 LTI
vertex systems, which equals to the minimal number of vertex points of the friction model.

I proved that the convex polytopic forms of the DC servo drive with CNO type
weighting functions satisfies the conditions of the TP model transformation-based controller
design and within the transformation space Ω the Lyapunov stability criterion formulated
in terms of LMIs is satisfied. Utilizing this controller design technique I derived controllers,
which guarantee multi-objective control performances such as asymptotic stability and a
specified decay rate.

The results of the previous theses were applied for friction compensation of a complex
problem of 2 DoF prototypical aeroelastic wing section. I gave a solution to friction
compensation of a 2 DoF prototypical aeroelastic wing section, which is an up-to-date, real,
complex control engineering problem with a dynamical qLPV/LMI-based multi-objective
control (such as asymptotic stability and decay rate) design.

I provided the HOSVD-based canonical form of the 2 DoF prototypical aeroelastic
wing section model. I proved that the qLPV model of the 2 DoF prototypical aeroelastic
wing section can be reconstructed from 24 vertex systems and the friction is not additive
in this case. The number of LTI vertex systems of the 2 DoF prototypical aeroelastic
wing section model in case of linear friction models is 6. Adding two Coulomb friction
phenomena to the 2 DoF prototypical aeroelastic wing section model increases the number
to 6× 2× 2 = 24, thus the increase is equal to the number of LTI vertex systems of the
Coulomb friction model.

I proved that the minimal number of LTI vertex systems is the same in case of convex
TP type polytopic models. I provided the CNO type convex TP type polytopic form for 2
DoF prototypical aeroelastic wing section model.

I proved that the convex polytopic forms of the 2 DoF prototypical aeroelastic wing
section model with CNO type weighting functions satisfies the conditions of the TP model
transformation-based controller design and within the transformation space Ω the Lyapunov
stability criterion formulated in terms of LMIs is feasible. Utilizing this controller design
technique I derived controllers, which guarantee control performances such as asymptotic
stability and a specified decay rate.

3.1.3 Sliding Mode Control of qLPV Systems, Sector SMC

The goal in this thesis was to make use of the Tensor Product model transformation control
design methodology in sliding mode control design. More specifically, the goal was to
design the sliding surface and sector in a polytopic representation, where LMI-based
multi-objective control design is applicable. Various convex hull generations of the sliding
surface and sector can be described by TP model transformation. Since the type of the
convexity significantly influences the LMI-based optimization, the aim was to introduce the
TP model representation as an optimization tool for sliding mode control (SMC) design.

The qLPV model of the system is transformed to the regular form as:(
ẋ1

ẋ2

)
=

(
A11(p(t)) A12(p(t))
A21(p(t)) A22(p(t))

)(
x1

x2

)
+

(
0

B2(p(t))

)
u
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I examined the case where all elements of the system matrix can have nonlinearities
i.e., a nonlinearity can be found in subspace ẋ1 = A11(p(t))ẋ1 + A12(p(t))ẋ2.

I proposed TP model transformation-based polytopic sliding surface design for sub-
space ẋ1 = A11(p(t))ẋ1 + A12(p(t))ẋ2. Through the proposed method I applied multi-
objective control design methodology for sliding surface design. Based on UTKIN’s
statement that the sliding surface determines the dynamic behavior of the whole system I
introduced polytopic LMI-based multi-objective control design to sliding mode control of
qLPV models.

I developed convex hull manipulation based optimization of the sliding surface design
besides LMI based optimization. Therefore, I defined several different types of sliding
surfaces which are suitable for convex hull manipulation based optimization.

I designed the equivalent control signal of SMC in such way as to stabilize the subsys-
tem.

I extended sector SMC for classes, where the sliding surface is given in convex
polytopic form. I proposed the polytopic sector to be designed in such a way that the sector
bounding surfaces remain at a constant distance from the polytopic sliding surface at every
time instance, thus keeping the width of the sector constant.

I proved that polytopic sector SMC of qLPV systems with nonlinearity inside subspace
ẋ1 = A11(p(t))ẋ1 + A12(p(t))ẋ2 is structurally stable inside and outside the polytopic
sector, namely the Lypunov stability criterion is always satisfied.

I compared classical polytopic SMC and sector polytopic SMC by simulation. I
designed multi-objective LMI-based polytopic sliding surface with asymptotic stability
and decay rate goals. I showed that sector polytopic SMC control achieved the desired
results without chattering, whereas classical polytopic SMC can only be achieved at the
cost of a high chattering phenomenon.

I proved with simulations that the sector SMC is not sensitive to the width of the sector,
thus a rather wide sector can be successfully applied and there is no need for additional
conditions concerning the width of the sector.

4 Theses
Based on the research results of the dissertation my scientific results can be concluded in
the following theses:

Thesis 1: [P–18, 27]
TP model transformation can be extended to Multiple TP model transformation conserv-
ing all the benefits of single TP model transformation, the extended Multiple TP model
transformation is able to simultaneously transform a set of functions (scalar, vector or
tensor) and multi-component and hybrid complex qLPV systems into a common, uni-
form polytopic structure, it is able to fit multi-component and hybrid complex qLPV
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systems to qLPV/LMI-based multi-objective control design and convex hull manipulation
based optimization effectively and stability verification of such systems can be achieved
systematically in a routine fashion.

Thesis 2: [P–5, 19–22, 24, 29]
Friction compensation of mechatronic systems can be fit in the modern TP model transfor-
mation based control design methodology, during which the most commonly used friction
models (Coulomb friction, Coulomb with viscous friction, Stribeck and LuGre friction
models) can be defined as finite element TP type polytopic models. The uniform polytopic
representation of control system elements and friction models does not lead to an explosion
in the number of LTI systems in the case when the friction and the system model can be
treated separately, the number of weighting functions is summed up if the friction and the
system model are additive.

Thesis 3: [P–3, 6, 16, 17, 23, 30, 31]
Tensor Product model transformation control design methodology can be effectively
applied in sliding mode control design for qLPV systems (any element of the system
matrix can have nonlinearity) and by applying TP model transformation LMI-based multi-
objective control optimization and convex hull manipulation based optimization is available
for sliding surface design thus directly defining the dynamics of the control, additionally,
the SMC designed in such a way fulfills the Lyapunov stability criterion and polytopic
sector SMC of qLPV systems is capable of chattering-free implementation.
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2010-0002).

15



Publications
[P–1] M. Lambic, N. Grbic, N. Hornjak, D. Lambic, M. Krnjacki, and B. Takarics.

Grejne instalacije - katalog opreme. Srbija Solar, ISBN 978-86-87599-01-7, 2008,
Belgrade, Serbia.
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[P–9] T. Kovács, and B. Takarics. Confirmation of a Probability-based Accuracy
Prediction Method for Line Extraction. In Proceedings of the 7th International
Conference on Technical Informatics, Timisoara, Romania, June 2006.

[P–10] B. Takarics, T., P., Szemes, and P. Korondi. Virtual Master Device for Telema-
nipulation In Proceedings of IEEE 3rd International Conference on Mechatronics
(ICM 2006), Budapest, Hungary, July 3–5 2006.

[P–11] B. Takarics, and T., P., Szemes. Superflexible Welding Robot Based on the
Intelligent Space Concept In Proceedings of the 7th International Symposium

16



of Hungarian Researchers on Computational Intelligence, Budapest, Hungary,
November 2006.

[P–12] G. Sziebig, B. Takarics, T., P., Szemes, and P. Korondi. Virtual Master Device In
Proceedings of the 5th Slovakian-Hungarian Joint Symposium on Applied Machine
Intelligence and Informatics, Poprad, Slovakia, January 2007.

[P–13] B. Takarics, T., P., Szemes, Gy. Németh, and P. Korondi. Welding Trajectory
Reconstruction Based on the Intelligent Space Concept In Proceedings of IEEE
3rd International Conference on Human System Interaction, Krakow, Poland, May
2008.

[P–14] B. Takarics, T., P., Szemes, and P. Korondi. Superflexible Welding Robot Based
on Ubiquitous Computing Concept In Proceedings of the 7th International Con-
ference on Global Research and Education INTER-ACADEMIA, Pécs, Hungary,
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