
DEPARTMENT OF TELECOMMUNICATIONS AND MEDIA INFORMATICS
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

NOVEL ALGORITHMS FOR IP FAST REROUTE

Ph.D. Theses
By

Gábor Enyedi

Research Supervisor:

Dr. Gábor Rétvári
Department of Telecommunications and Media Informatics

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
BUDAPEST, HUNGARY

FEBRUARY 2011

c© Copyright by Gábor Enyedi, 2011

BUDAPEST UNIVERSITY OF TECHNOLOGY AND
ECONOMICS

Date: February 2011

Author: Gábor Enyedi

Title: Novel Algorithms for IP Fast ReRoute

Department: Department of Telecommunications and Media
Informatics

Degree: Ph.D. Convocation: February Year: 2011

Permission is herewith granted to Budapest University of Technology
and Economics to circulate and to have copied for non-commercial purposes, at
its discretion, the above title upon the request of individuals or institutions.

The reviews and the records of the department debate are available at
the Dean’s Office.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

ii

Table of Contents

Table of Contents iii

Abstract vii

Kivonat ix

Acknowledgements xi

1 Introduction 1

1.1 Principles . 1

1.2 IP Fast ReRoute – principles . 4

1.3 IP Fast ReRoute – proposals . 8

1.3.1 Simple techniques with no marking 9

1.3.2 Techniques based on incoming interface 10

1.3.3 Techniques using tunneled detours 12

1.3.4 Multiple Routing Configurations 14

1.3.5 Rerouting multicast packets 15

1.4 Research Objectives . 16

1.5 General Assumptions . 17

1.6 Notations . 18

2 Loop-free Interface-based routing 21

2.1 Introduction . 21

iii

2.2 Loops using FIR and FIFR . 23

2.3 Loop-Free Failure Insensitive Routing 27

2.3.1 2-edge-connected networks . 27

2.3.2 Non-2-edge-connected networks 30

2.4 Implementation questions . 31

2.4.1 Finding branchings . 32

2.4.2 Finding cut-edges . 33

2.4.3 Using LFIR in distributed environment 33

2.5 Evaluation . 33

2.5.1 Probability of forming an FRR loop 34

2.5.2 Lengths of paths . 35

3 Finding Vertex-Redundant Trees 37

3.1 Introduction . 37

3.2 Problems with implementing Zhang’s linear time algorithm 39

3.3 Finding redundant trees in strictly linear time 43

3.3.1 Phase I – DFS traversal . 44

3.3.2 Phase II – Finding an ADAG 45

3.3.3 Phase III – Constructing redundant trees 50

3.3.4 Evaluation of total cost . 51

3.3.5 Notes on st-numbering . 52

3.4 Computing multiple redundant trees 54

4 Improving Redundant Trees 59

4.1 Introduction . 59

4.2 Finding Maximally Redundant Trees 60

4.2.1 Generalized ADAG . 61

4.2.2 Constructing the maximally redundant trees 65

4.3 Computing multiple maximally redundant trees 66

iv

4.4 Optimizing maximally redundant trees 70

4.5 Evaluation of heuristics . 72

5 Lightweight Not-Via 75

5.1 Introduction . 75

5.2 IPFRR using not-via addresses . 76

5.3 An improved lightweight Not-via . 79

5.3.1 Redefining the semantics of not-via addresses 80

5.3.2 Removing corner cases . 83

5.3.3 The endpoints of detours . 84

5.4 Performance evaluation . 85

6 Conclusion 91

6.1 Further possibilities . 92

Index 92

References 95

Publication of new results 100

v

vi

Abstract

The popularity of Internet and IP networks have risen dramatically in the last few
decades. Unfortunately, this increasing popularity has brought serious problems as
well. Currently, IP networks transport not only elastic traffic, as they did tradition-
ally, but also real time traffic, like Voice over IP (e.g., in 3G or 4G mobile networks),
IPTV, on-line gaming or stock exchange transactions. Long service disruption is not
acceptable for these applications.

Recovery in current IP networks is based exclusively on reactive restoration tech-
niques like OSPF and IS-IS. When restoration is applied, the network starts dealing
with the way of bypassing the failed resource, after the failure occurred. Naturally,
such mechanism needs some time to restore connectivity.

Faster recovery can be realized by protection techniques. These techniques are
proactive, and compute detours long before the failure occurs. Thus, when a fail-
ure actually happens, traffic can be quickly switched to these precomputed detours.
Unfortunately, there exists no native protection technique for IP networks, which is
an important shortcoming nowadays. Therefore, serious efforts are made in order
to endow IP with such capability. This native protection is called IP Fast ReRoute
(IPFRR).

Unfortunately, although several IPFRR proposals do already exist, none of them
was able to meet all the needs. Some of them are not able to cover all the failures,
others may create long lasting forwarding loops. There are few, which could be
applied, however, their extra administrative burden is unacceptable for operators.

This dissertation shows a possible way for overcoming these problems by applying
special directed spanning trees called redundant trees. Since a pair of redundant
trees has the capability that no single failure can disrupt the connection with the
destination on both of the trees, they can be well applied in the field of IPFRR.

Therefore, the concept of redundant trees is improved in several ways in this
dissertation. First, heuristics are proposed in order to decrease their costs and the
length of paths along them. Second, a distributed algorithm is proposed, which

vii

viii

significantly reduce the complexity of finding redundant trees. Finally, the serious
limitation of redundant trees that they can be found only in 2-connected graphs is
lifted by generalizing the original concept; maximally redundant trees are introduced,
which can be found in arbitrary connected graphs.

In order to utilize these results, I propose new IPFRR techniques as well. Loop-
free Failure Insensitive Routing always avoids forming loops, in this way overcoming
the drawback of IPFRR techniques using interface-based forwarding. Moreover, one
of the most promising IPFRR proposals, Not-via, is improved by introducing its
lightweight version having significantly decreased management and computational
burden.

Kivonat

Az elmúlt évtizedekben az Internet és általánosságban az IP hálózatok népszerűsége
drámai növekedést mutatott. Sajnos azonban ez a növekvő népszerűség komoly gon-
dokat is hozott magával. Manapság az IP hálózatokat már nem csak elasztikus for-
galom továbbítására használjuk – ellentétben azzal, ahogy ezt korábban tettük –,
hanem olyan valós idejű átvitelekhez is, mint amilyen a hangátvitel (Voice over IP –
VoIP, például 3G vagy 4G mobil hálózatokban), IPTV, on-line játékok vagy tőzsdei
kereskedés. A hosszú szolgáltatáskiesés ezen alkalmazások számára nem elfogadható.

A mai IP hálózatokban a helyreállás kizárólag olyan reaktív újjáépítő (restora-
tion) megoldásokra alapul, mint amilyen az OSPF vagy az IS-IS. Mikor azonban
újjáépítést alkalmazunk, a hálózat csak az után kezd foglalkozni a meghibásodott
erőforrás elkerülésének módjával, hogy a hiba maga bekövetkezett. Természetesen az
ilyen megoldásoknak bizonyos időre van szükségük a kapcsolat helyreállításához.

Gyorsabb helyreállás érhető el védelmi technikák alkalmazásával. Ezek a tech-
nikák proaktívak, azaz jóval azelőtt kiszámítják az elkerülő utakat, hogy a hiba
bekövetkezne. Így aztán – mikor a hiba ténylegesen bekövetkezik – a forgalom
gyorsan ezekre az előkészített utakra irányítható. Sajnos azonban az IP nem ren-
delkezik saját védelmi módszerrel, ami egy fontos hátránnyá vált manapság, és ko-
moly erőfeszítéseket váltott ki az IP-t védelmi képességekkel történő felruházására
érdekében. Ezeket a védelmi módszereket nevezzük összefoglalóan IP alapú gyors
hibajavításnak (IP Fast ReRoute – IPFRR).

Habár számos IPFRR módszer létezik, ezek egyike sem minden igényt kielégítő.
Néhány nem képes minden hibát védeni, mások pedig továbbítási hurkokat képezhet-
nek. Van néhány, amely alkalmazható lenne, ám ezek extra adminisztrációs terhe
elfogadhatatlan az operátorok számára.

Ez a disszertáció egy lehetséges utat mutat redundáns fának nevezett speciális fes-
zítőfák segítségével ezen problémák orvoslására. A redundáns fák jól alkalmazhatóak
az IPFRR területén, mivel rendelkeznek azzal a tulajdonsággal, hogy egyszeres hiba
nem szakíthatja meg a céllal a kapcsolatot mindkét fán.

ix

x

A redundáns fák koncepcióját számos ponton kiterjesztem ebben a disszertá-
cióban. Először is heurisztikát javaslok költségük, valamint a fák mentén talál-
ható utak hosszának csökkentésére. Ezen kívül javaslok egy elosztott algoritmust,
ami számottevően képes csökkenteni a redundáns fák kereséséhez szükséges számítá-
sok komplexitását. Végezetül a redundáns fák általánosításával azok egy komoly
hiányosságát orvosolom, nevezetesen hogy ezek a fák csak 2-összefüggő hálózatok-
ban találhatóak. Bevezetem a maximálisan redundáns fákat, amelyek már tetszőleges
összefüggő hálózatban léteznek.

A kapott eredményeket új IPFRR technikákban alkalmazom. A Loop-free Fail-
ure Insensitive Routing mindig képes a továbbítási hurkok elkerülésére, így megoldja
az interface-alapú IPFRR módszerek fontos hibáját. Továbbá az egyik legigérete-
sebb javaslat, a Not-via is kiterjesztésre kerül annak egyszerűsített verziójával. Ez a
megoldás számottevően csökkenti a szükséges menedzsment terheket valamint számítási
komplexitást.

Acknowledgements

In the first place, I would like to thank all the help and support I got from Gábor
Rétvári; no student could even wish a better supervisor. Furthermore, special thanks
go to András Császár, who also helped me countless times, and who spoke me first
about IP Fast ReRouting.

I would like to thank the support of my family, who always made me possible to
study, and who always believed in me, even when I did not. Without them I would
have no chance to even become a PhD student.

Last, but not least, I would like to thank Róbert Szabó, Tamás Henk, Tibor Cin-
kler, Erzsébet Győri and everyone else from the Department of Telecommunications
and Media Informatics, who made me possible to focus exclusively on my research. I
know how unique this possibility was.

xi

xii

Chapter 1

Introduction

1.1 Principles

In the last few decades, communication has changed our world. Thanks to the mas-
sive improvement of both Internet and mobile telephony, now it takes almost no time
to find the decent information or reach somebody almost anywhere. Moreover, cor-
porations have changed and nowadays the whole economy depends more or less on
communication networks.

Communication networks have one responsibility: transporting information from
one to some other points. Naturally, since it is impossible to directly connect all the
devices, it is needed to find path(s) in the network from the source to the destina-
tion(s). Mechanisms for finding these paths are called routing mechanisms.

Since communication networks mesh the world, they need to be quite huge in
size. Naturally, in a system huge enough, sooner or later a failure occurs. It is a
natural desire that if after the failure of some resources transporting information is
still possible, network should remain operable. Mechanisms providing this self-healing
aspect are called recovery mechanisms.

There are two fundamentally different types of recovery [VPD04, MP06, RSM03].
One approach, called restoration, reactively deals with the failure after it occurred.
Although some precomputation can take place, the way of bypassing the failed re-
source is computed only after the failure.

The main advantage of this approach is its simplicity and robustness. Since the
failed resource is exactly known, it can well adapt to all the situations. Unfortunately,
since significant part of the operation is done only after the failure, this approach can
become slow in some cases.

1

2 CHAPTER 1. INTRODUCTION

In order to overcome the problems of restoration, protection techniques are ap-
plied. Protection techniques are proactive, since they find the way of bypassing some
failures long before they happen. Naturally, since preparing to arbitrary number of
failures is next to impossible, these techniques prepare to only a given number and
given type of failures.

The advantage of protection techniques is their speed. Although, some signaling
can be needed after the failure, the most important tasks are done long before it.
Obviously, protection techniques, even with limiting the number of failures which
can be bypassed, are much more complex than restoration ones are. Moreover, they
cannot adapt to the new situation as well as restoration can, so they are commonly
used together with restoration: as a first aid, protection recovers the service instantly,
then restoration optimize the configuration and gives the possibility to prepare to new
failures using protection.

Before further discussing recovery techniques, it is important to deal first with the
two most common ways of routing. In a (virtual) circuit switched network a path for
transporting is established, which is the basic object of routing. Therefore, this type
of routing is called connection oriented. In these networks, all the paths are managed
separately and it is possible to establish two paths between the same two endpoints,
which were computed in fundamentally different ways. This approach provides quite
high control on forwarding, making it relatively easy to bypass a failed resource. In
connection oriented networks typically both protection and restoration techniques are
applied.

On the other hand, it is possible to send data in a connectionless manner, with-
out explicitly establishing the paths. This scheme can be applied mostly in packet
switched networks, where the transported information is split into small pieces called
packets. Each packet has a header with the information needed for forwarding it to
the proper destination. Typically, packets contain a destination address, and they
are forwarded based on this address. Therefore, I assume in the sequel that the next
hop is determined by the destination.

Any routing, where the next hop is selected based on the destination address, de-
fines a partial order of nodes per destination, where each node, except the destination,
has at least one lower neighbour. Say that node a is lower than node b, if a packet
heading to destination d from a can never reach b, but there is a possible packet flight
from b to d through a. Observe that this order has a lower bound, destination d. The
inverse of this claim is also true; if there is a partial order of nodes, where each node
has at least one lower neighbour, expect exactly one node d, always forwarding pack-
ets to a lower node eventually makes up a routing towards d. In this way, computing

1.1. PRINCIPLES 3

a routing is the same problem as computing a proper partial order for each node as a
destination. In the common case, when links have lengths and packets are forwarded
along the shortest path, this partial order is a total order; packets are forwarded to a
node with smaller distance to the destination.

If a failure occurs, closer nodes may become unavailable. Therefore, restoration in
packet switched networks typically means recomputing the partial orders. Protection
in these networks is usually not used, although it would mean to switch to another,
precomputed order.

This lack of protection is a growing problem nowadays due to the development
of Internet. Current Internet is based on Internet Protocol (IP) [Pos81], a typical
connectionless, packet switched protocol, with forwarding (typically) based on the
destination address, and with extremely robust restoration but no protection. Thus,
the recovery provided by IP is quite slow, it can take several seconds even in the
simplest but very common case, when a single failure occurs [ICM+02, MIB+04]. This
slow recovery is acceptable for the traditional elastic traffic, which IP was designed for.
Unfortunately, current IP networks are used to transport real-time traffic too, such
as the traffic of (video)telephoning (e.g., 3G, 4G mobile networks), on-line gaming,
TV broadcasting or even business critical stock exchange transactions. These types
of traffic need to avoid seconds of service disruption.

Moreover, currently several companies use Virtual Private Networks (VPN) in
order to interconnect their geographically separated divisions. The quality of service
of these VPNs is typically defined in a contract called Service Level Agreement (SLA).
Since some of these companies use several real-time or delay sensitive applications (like
continuous database connection or remote desktop), these SLAs can be quite strict
with serious consequences, if the service provider fails to fulfil their requirements. In
order to provide such VPN connections on pure IP, a native protection scheme is
indispensable.

Currently, there is only one possibility for providing fast recovery in IP networks:
operators need to use the protection capabilities of another network layer below IP.
Fortunately, there is usually some connection oriented layer under IP, e.g., MultiPro-
tocol Label Switching (MPLS) [PSA05] or some optical layer [SRM02]. Naturally,
in order to use the protection capabilities of this layer, intensively using its routing
techniques is needed, which brings up management issues. Since Internet is based
on IP, configuring IP routing cannot be avoided, so configuring an additional layer
means extra management cost. Moreover, some operators completely rely on IP rout-
ing, ignoring protection capabilities [ICM+02, MIB+04], thus, native IP protection
techniques would be desirable alternatives for them.

4 CHAPTER 1. INTRODUCTION

Hence, serious efforts are being made, in order to endow IP with protection, known
as IP Fast ReRoute (IPFRR). Internet Engineering Task Force (IETF) has already
standardized the IPFRR framework [SB10b], and several proposals were made. Some
of them are already on their ways to be applied in real networks [AZ08, BSP10].

The rest of this dissertation is organized as follows. In this chapter, I introduce
the concept and possibilities of IPFRR, and I briefly review current solutions. In
Chapter 2, the problems of IPFRR methods using interface-based forwarding are dis-
cussed. There, I show a concept, which can be applied more generally. In Chapter 3
and Chapter 4, I generalize this concept and give significant new results on a well
studied area of graph theory. Finally, in Chapter 5, I use this concept in order to
improve Not-via addresses, an IPFRR technique, which may have the most signifi-
cant IETF and industrial backing currently. Finally, the results are summarized in
Chapter 6.

1.2 IP Fast ReRoute – principles

Previously, the recovery problems of current IP networks were discussed. In this
section, I introduce the concept of possible solutions, the IPFRR techniques. First,
we discuss the requirements and then focus on the realization in general.

The basic requirement IP Fast ReRoute techniques are needed to meet, is pro-
viding fast protection capability inside an autonomous system [SB10b]. Although
there is no theoretical limitation, which would avoid us making inter-domain IPFRR
mechanisms, but, as it will turn out, native protection in a pure IP network raises
numerous problems even without policy routing or security issues.

Second, it is also very important to retain the forwarding system of IP. Naturally,
some changes are needed, but these changes must be as moderate, as it is possible.

Third, the time needed for recovery must be significantly decreased to a level,
which is acceptable even for real-time traffic. Going by a rule of thumb, it is usually
said that the recovery must be done in about 50 milliseconds [VPD04, Gjo07], since
it is tolerable even for telephone calls in SDH/SONET networks.

Forth, it is needed to recognize that preparing to arbitrary number of failures
is impossible. Moreover, multiple unrelated failures are extremely rare [MIB+04].
Therefore, complete protection against multiple unrelated failures is not in the scope
of IPFRR [SB10b], albeit protection against as many single failure cases as it is
possible is needed.

Finally, since fast rerouting using only pure IP is complicated, protection paths

1.2. IP FAST REROUTE – PRINCIPLES 5

cannot meet such capacity guarantees like the ones in a connection oriented network.
In this way currently, only a “best effort” congestion mitigation is required by possibly
decreasing the length of detours.

To fulfil these requirements, first, fine tuning of current IP restoration techniques
was attempted. For the most common Interior Gateway Protocols (IGP), namely for
Open Shortest Path First (OSPF) [Moy98] and Intermediate System to Intermediate
System (IS-IS) [fS02], it was proven that theoretically, it is possible to reach some
100s of milliseconds convergence [FFEB05, AJY00, ST08], but by fine tuning of real
routers, reaching only some seconds is more likely [ICM+02].

In order to overcome the problems of current solutions, it is needed to discuss the
main reasons why IP networks provide slow recovery after a failure. In current IP
networks typically a Link State Routing mechanism, OSPF or IS-IS, is responsible
for computing the paths. This means that the routers in the network advertise the
current state of their links, and in this way in a non-transient state all the nodes
have the same complete topology of the network. Using this topology, distributed
computation of the shortest paths is possible.

When a failure occurs, routers have three main tasks1: first detecting the failure,
second advertising the fact of the failure and finally recomputing and installing the
new forwarding information base.

Detecting a failure can be done basically in two ways: either the physical layer
can detect it (e.g., the loss of voltage can be detected) or some kind of fast hello like
protocol can be used. A proper candidate could be Bidirectional Failure Detection
(BFD) [KW08]. Naturally, the speed of physical detection depends on the hardware
configuration, but it takes typically some milliseconds at most. Detecting a failure
with BFD takes more time, but it is possible to reach stable failure detection in about
9ms at most [ST08].

Unfortunately, there is no time for advertising the fact that a failure occurred.
Since broadcasting a message takes time depending on the size of the network, IPFRR
techniques must be able to reroute packets without advertising any information. This
means that the rerouting must be done locally , so only the routers neighbouring the
failed resource change their state, and packets bypass the failed resource based on
their local actions.

This means that most of the network do not “know” anything about the failure,

1These are the unavoidable tasks, which are needed to be done by any router using arbitrary
distributed restoration technique. However, for real routers some additional time is needed (e.g.,
waiting for timers in order to avoid CPU overload) for completing restoration; more detailed de-
scription is presented in [ICM+02, VPD04]

6 CHAPTER 1. INTRODUCTION

while only IPFRR reroutes the packets. Since other routers need to handle packets
on detour differently for providing 100% failure cover, the packet itself must contain
some information about the failure, it must be marked somehow. This marking can
be implicit or explicit.

Implicit packet marking can be done by using some extra information the router
has. Such an information can be the direction, the incoming interface from where
the packet has arrived. In contrast, explicit marking modifies the header somehow.
The simplest way is to use some bits in the IP header, however, finding free bits in
IPv4 header is impossible. On the other hand, it is possible to add a completely new
header to the packet by using IP-in-IP tunneling. In this extra header the best place
for the marking is the destination address. Special destination address can mark
the packet, since this is the field, which is usually processed by a forwarding engine.
However, when tunneling is used, special care is needed for the Maximum Transfer
Unit (MTU). Since the additional header increases the size of the packet, it is possible
that fragmentation will be needed, which should be avoided in some networks.2

Note that sometimes, it is needed to send packets back where they came from, in
order to bypass a failure. In these cases, packets may visit some nodes more than once.
As an illustration, consider the transport network depicted in Figure 1.1 without node
g, and suppose that ingress router a got some packets for egress d. Let the default
path be the shortest one, namely a−b−c−d. When the link between c and d is down, c
reroutes packets locally, marks them somehow, sends them back to b and b sends them
to a. Thus, all the packets will use path a−b−c−b−a−f−e−d till some restoration
technique reconfigures the network. Observe that this is a natural behaviour, which
stems from local rerouting; till only the neighbours of the failed resource have changed
their states, all the packets need to get to the failure. Moreover, observe that packets
must be marked, since both a and b must handle packets on detour differently.

As a final task, IP restoration techniques need to compute the new paths with
respect to the topology change. In contrast, since IPFRR mechanisms are protection
and not restoration techniques, IPFRR is proactive. This means that these techniques
compute the way of bypassing a failure long before any failure occurs.

Before turning to discuss current IPFRR proposals, it is very important to discuss
their typical usage. As it was mentioned above, protection can be considered as a first
aid in order to keep up service, but while the service is still available some restoration
technique (like OSPF or IS-IS) is needed in order to optimize the routing with respect

2Fragmentation doubles the number of packets. This is usually not a problem, it does not mean
that the network load is doubled, since routers are usually designed to reach their maximum speed
even when 64 byte packets are forwarded, but undoubtedly brings significant extra complexity.

1.2. IP FAST REROUTE – PRINCIPLES 7

Figure 1.1. Example for local rerouting and FRR loop

to the new situation. In this way, a network using IPFRR should locally reroute
packets, when a failure occurs. Since about 50% of failures is transient [ICM+02]
(e.g., the layer below IP has its own recovery, router can reboot) and link may return
after some time, it is needed to wait at this point. When the failure proved itself to
be permanent, the node starts to advertise the fact of the topology change, but till
then other nodes are not informed. Recall that the service is still available, so there
is no need to expedite the recovery. Naturally, while restoration is not started, the
routing is stable; however, conserving this stability during the restoration can become
a challenge. Traditionally, routers reconfigure themselves with no sync, which may
easily cause short-lived loops called microloops. Since microloops cause some service
outage again, restoration must be done with a loop-free manner, which problem is
well studied, and several solutions do exist [SB10a]. Thus, microloop prevention is not
in the scope of this dissertation. After restoration, the new topology is explored, and
there is time for recomputing the protection paths of IPFRR with respect to the new
state. Naturally, since downloading alternatives does not change packet forwarding,
the system is stable during this operation.

However, there are some IPFRR proposals, which may form loops, if they are not
able to handle a failure case (e.g. there are multiple failures). Consider the network
depicted in Figure 1.1 again (without node g), and now suppose that not only link
c− d, but also link d− e is down. Packets would get to node e, as previously, where e

must detect that a detour has failed. If e is able to detect this fact, some restoration
may be started immediately, which can be as fast as restoration is in current networks,
since avoiding microloops is pointless, it does not keep up an already down service.
If, however, e is not able to detect that there is more than one failure, it reroutes the

8 CHAPTER 1. INTRODUCTION

packets again to c along path e−f −a− b− c, and a loop is formed3. Observe that in
contrast to microloops, which are short term results of transient misconfiguration, this
kind of loops, named FRR loop in the literature, is a result of inadequate protection
capability. Furthermore, observe that FRR loop is not a result of losing the connection
with the destination, since the same loop can be formed, if there is a path from a

to d through g, since a may select always the shortest detour, which is not the one
leading through g4.

Moreover, observe that FRR loops may have devastating effects. Since an IPFRR
technique waits for spontaneous restoration of the failed resource, this waiting time,
which can be even in the order of minute, delays service restoration. Furthermore,
FRR loops are long term phenomenons thanks to the same waiting, so they can cause
significant congestion as well. Thus, if an IPFRR technique is applied, which may
create FRR loop, restoration must be started immediately after a failure occurred.
This still means that IPFRR restores the connection, however, the fact of the failure
is started to be advertised without any additional wait.

Observe that IPFRR techniques, which may form loops, have several disadvan-
tages. First, with respect to the reasoning above, these techniques cannot be used
for overcoming transient failures. Thus, in the case of a transient failure, a second
reconfiguration is needed, when the resource finally comes back. Second, in order to
avoid link flapping, special care is needed: when a resource recovers (“good news”)
some extra wait is needed before the node could notify other routers in the network.
Third, after IPFRR protection was invoked, either microloop-free restoration cannot
be provided (which causes short term service disruptions again), or a slower restora-
tion is present, which may be awkward in the case of multiple failures, when IPFRR
cannot help and the speed of restoration is critical.

According to the concept discussed above, one may find that the most important
aspects defining an IPFRR technique are the ways of solving the problem of local
rerouting and proactive computation. Therefore, the discussion of proposals in the
next section focuses on these problems.

1.3 IP Fast ReRoute – proposals

Previously, the main concept of IP Fast ReRoute was discussed. It was found that
the main aspect identifying an IPFRR technique has two parts, namely the way of

3Recall that there is only local rerouting, so both c and e know only the failure of the local link.
4Recall that a do not know any failure, it just do, what is dictated by its forwarding table, and

this is the optimal behaviour, when there is only a single failure.

1.3. IP FAST REROUTE – PROPOSALS 9

Figure 1.2. Example for ECMP, LFA and U-turn Alternates

local rerouting and the way of marking packets. In this section we briefly discuss
current IPFRR solutions in the light of this claim.

1.3.1 Simple techniques with no marking

The first IPFRR techniques try to use the current infrastructure of IP. This means
that these techniques do not mark the packets in any way, but simply forward it to an
available neighbour. Naturally, this means that there are some failures, which cannot
be covered.

The simplest case of this packet rerouting is when multiple shortest paths to the
destination exist. Naturally, if there are multiple shortest paths from the node, which
cannot forward the packet on the default path, forwarding the packet on the other
shortest path solves the problem. One may observe that in the network depicted in
Figure 1.2 node b could forward the packet heading to d either to a or to c, if the
length of the link between b and c is 2.

Observe that it is already possible to forward packets on this Equal Cost MultiPath
(ECMP) [TH00] in IP networks, albeit it is used for dividing the traffic in order to
balance the load in the network. Now, the situation is almost the same, except that
if one of the paths fails, packets should be forwarded only on the remaining paths.

Naturally, it is quite rare that multiple shortest paths exist, so covering all the
failures is not possible in this way. Therefore, a natural generalization of ECMP, called
Loop-Free Alternates (LFA) [AZ08] was proposed. Although this generalization still
does not provide 100% protection, but it can increase the number of covered failures.
The main observation leading to the idea of LFA is that equal cost paths are not
necessary for loop-free fast reroute; node a can send a packet with destination d to
neighbour b, if a is not on any of the shortest paths from b to d (Figure 1.2, length of
b− c is 1).

10 CHAPTER 1. INTRODUCTION

Unfortunately, only using this simple idea may produce FRR loops in special cases.
As it was presented in [AZ08], multiple failures or a single node failure, if protection
was computed for link failure, can cause loops. When loops must always be avoided,
only the neighbours strictly closer can be used for rerouting (these paths are called
“downstream” paths). Observe that there is a trade-off: in this way loops can be
avoided, but the number of protected failures is decreased. Back to our example,
suppose that either both link b− c and link a− c go down (multiple failures) or node
c is failed. In this case, applying LFA for both a and b would cause forwarding loops;
since c is unavailable, both a and b would try to reroute using its LFA. On the other
hand, using only the downstream paths would mean that there would be no LFA,
neither for a nor for b.

As these techniques cannot cover all the possible failures, a very important ques-
tion is their efficiency, which was studied in [Gjo07, FB05]. According to these works,
ECMP gives very limited protection, at most 30% of the potential single failure cases
can be covered in very special networks, and LFA has usually about 50-80% coverage
with respect to the network topology and the type of protected failures (link or node).
According to these results, despite the simplicity of these mechanisms, it is possible
to bypass most of the failures with applying only LFA. However, it can be observed
that further techniques are needed for covering the remaining cases.

1.3.2 Techniques based on incoming interface

As it was discussed previously, IPFRR mechanisms need to mark packets in order to
cover all the single failure cases. Techniques in this part use implicit marking, and
benefit from the extra information supplied by the incoming interface. Forwarding,
which takes both the incoming interface and the destination address into considera-
tion, is known as interface-based forwarding.

The first technique, which uses this idea is U-turn Alternates [Atl06]. U-turn
Alternates is some extension of LFA. A given neighbour b of a can be used as a U-
turn alternate with respect to destination d, if there is a loop-free alternate from b to
d avoiding a, and a is the next hop on one of the shortest paths from b to d. In order
to keep this definition simple, one may consider U-turn Alternates as a possibility to
send a packet back one hop, if there is an LFA from that neighbour. In the network
depicted in Figure 1.2 (length of b−c is 3) b should recognize that the packet heading
to d was received from a. In this case, it should be forwarded to c.

Naturally, U-turn raises the problem of identifying the traffic sent back from the
next hop. According to [Atl06], this can be done by marking the packet somehow or

1.3. IP FAST REROUTE – PROPOSALS 11

by identifying the incoming interface. Since, as it was discussed previously, finding
extra bits in IPv4 header for this purpose is impossible, the later possibility is the
realizable one. This means that U-turn needs a forwarding, which depends on the
incoming interface.

Observe that U-turn alternate neighbours not necessarily exist, so even this so-
lution gives only cover for a part of the failures. On the other hand, by using LFA
and U-turn together, it is possible to protect a very significant part of the resources.
According to [Gjo07, FB05] it is quite common that 90% of the failures can be covered.

The concept of using the extra information of the incoming interface can be gener-
alized. The main idea of Failure Inferencing based Fast Rerouting (FIFR) [ZNY+05,
NLYZ03, NLY+07, LYN+04, WN07]5 is that not only the next hop can indicate a
failure by sending a packets back, but basically any node. Here, it is not some special
bits in the IP header that mark the packet as being on detour, but rather the fact
that it has been received on an interface usually not applied in failure-free case. As
it was proven in [NLY+07, ZNY+05], it is possible to bypass any single link or node
failure using this simple idea.

Unfortunately, there are some problems with techniques using interface-based for-
warding. As it is discussed in Chapter 2, they are prone to form loops in the case
of a failure they have not prepared for. Namely, the version capable to bypass single
link failure may form loops in the case of multiple link failures or single node failure
and the version capable to bypass single node failure may form loops in the case of
multiple node failures.

In order to overcome loops, I have proposed a new interface-based IPFRR mech-
anism named Loop-free Failure Insensitive Routing (LFIR) [C2, C3]. LFIR is able
to bypass any single link failure. Moreover, it can never create loops, albeit it uses
interface based forwarding. However, there is a trade-off: LFIR does not always use
the shortest paths, when the network is intact, but these paths are only slightly longer
than the shortest ones. Further details are discussed in Chapter 2.

One important issue remained unanswered: the implementation impact of interface-
base forwarding. Theoretically, realizing this forwarding scheme is possible with slight
modification of current router architectures. In modern routers there are linecards
at each interface. Due to speed issues, each linecard has its own memory, where the
forwarding information is downloaded. If the same information is downloaded, we
get the traditional IP forwarding. If there is different information, interface-based
forwarding is realized.

5A version of FIFR is also called as Failure Insensitive Routing (FIR) in Chapter 2.

12 CHAPTER 1. INTRODUCTION

Unfortunately, there are some difficulties with this principle, albeit it is undoubt-
edly realizable. Since usually more than one interface belongs to a given linecard,
simply downloading different forwarding information base cannot provide forward-
ing, which fully depends on the incoming interface. The processor of a linecard could
take care of the incoming interface, but it would need extra effort. Moreover, chang-
ing the forwarding is not simple either. Since traditional IP forwarding was supposed
during each phase of the development of a router, changing this scheme necessarily
raises serious implementation problems too.

1.3.3 Techniques using tunneled detours

Marking packets with additional IP header is popular in the field of IPFRR, since
finding extra bits in the header is very difficult. In this section we discuss the tech-
niques using this additional header of an IP-in-IP tunnel. Mechanisms using multiple
different routing configurations are discussed in the next section.

First, IPFRR tunnels [BFPS05] were proposed. This technique is based on the
idea that node s can locally reroute, if there is a node a, reachable using the normal
forwarding even after a failure, with a path or at least an LFA to d, which bypasses
the failed resource. If there is such node, then push the packet into an IP-in-IP tunnel
with address of a.

Unfortunately, there are several serious problems with this scheme. First, it needs
a mechanism called “directed forwarding”, which means that s can force a to select
LFA instead of the shortest path. Unfortunately, it is not clear, which mechanism
could provide directed forwarding in IP networks. Moreover, even with directed
forwarding, it is not always possible to bypass a failed node, so IPFRR tunnels are
just another partial solution, although it can protect numerous failures (according
to [Gjo07, FB05]: all link failures can be protected, but bypassing nodes has about
60%-80% chance).

An example is depicted in Figure 1.3. Suppose that the destination is node d and
the link between node e and node d is down. In this case node e could put the packet
into an IP-in-IP tunnel in order to send it to b. Now, the packet is decapsulated, and
directed forwarding tells b to send the packet to c and in this way it reaches d.

100% failure coverage can be reached by Not-via [BSP10]. The idea behind Not-
via is to encode in the outer IP address of the IP-in-IP tunnel not only the endpoint
of the tunnel, but also the identifier of the failed resource. Since in Chapter 5 this
technique is improved, a more detailed description can be found there, and here I give
only a brief picture.

1.3. IP FAST REROUTE – PROPOSALS 13

Figure 1.3. Example for IP tunnels

Figure 1.4. Example for Not-via

In order to understand the way Not-via handles a failure, suppose that node a

cannot forward the packet (Figure 1.4), heading to destination d, to node b. Node a

assumes node failure (Not-via always assumes node failure, if it is possible to reroute
without the next hop, since in this way link failures are also handled), and selects its
next-next hop, the next hop of b, let it be c. Now, a encapsulates the packet into an
IP-in-IP tunnel, selects a destination address for the outer header with the meaning
“forward the packet to c, but not-via b” and forwards the packet to e. Although both
the shortest paths from e and from f are through a, packets do not return to a,
thanks to the special address. In this way the packet reaches the next-next hop c,
where it is decapsulated, and the packet can reach the destination using the default
routing.

Not-via computes a detour for each possibly failing resource. However, there
are other possibilities using “redundant trees”. The first technique, which used re-
dundant trees [IR84, MBFG99] for rerouting in IP networks is IP Redundant Trees
(IPRT) [CHA07]. A pair of redundant trees is a pair of directed spanning trees of
an undirected graph with a common root vertex, where the root can be reached on
both trees, but the two paths on the two trees are node-disjoint. Redundant trees
are well studied in this dissertation, for further details reader is referred to Chapter 3

14 CHAPTER 1. INTRODUCTION

and Chapter 4.
IPRT computes a pair of redundant trees rooted at each node. If there is no

failure in the network, the shortest paths can be used as usual. On the other hand,
if there is a failure, one of the redundant trees rooted at the destination is used, the
one which bypasses the failure.

IPRT has some desirable attribute in contrast to Not-via. If it is implemented
using tunneling, each node requires only 3 IP addresses. On the other hand, the
number of IP addresses needed by Not-via scales quadratic with the number of nodes
in Local Area Networks (LAN). Unfortunately, redundant trees can be found only in 2-
vertex-connected networks, which criterion cannot always be fulfilled by real networks
(see e.g., Abeline, AT&T in [SND] or Italian backbone in [GO05]). Moreover, even if
a network is 2-vertex-connected, it can easily lose this property, when a failure occurs.
Therefore, redundant trees are needed to be improved.

In order to always provide the maximum possible redundancy, I introduced the
concept of maximally redundant trees [C7, J4]. The first technique, which used max-
imally redundant trees for IPFRR is Lightweight Not-via [C5, C6, J4, P2]. Moreover,
this technique uses a special algorithm for computing maximally redundant trees in a
distributed way with significantly decreased computational complexity. Furthermore,
Lightweight Not-via can completely avoid the use of extra IP addresses in several
IP networks, thanks to utilizing interface addresses. Finally, as Lightweight Not-via
is an improved version of Not-via, which uses the next-next hop as the endpoint of
the tunnel, the suboptimal repairing paths are usually shorter. Further details of
Lightweight Not-via are discussed in Chapter 5.

There is another IPFRR proposal [KRKH09] on the traces of Not-via using re-
dundant trees. This technique can cover any two link failures but no node failure. It
uses 4 IP addresses – one for default forwarding and 3 for the additional 3 detours.
Unfortunately, simultaneous link failures are uncommon and this mechanism cannot
provide node protection. Moreover, 3-edge-connected network is needed, which cri-
terion can rarely be fulfilled. The technique has two versions called Red Tree First
(RTF) and Shortest Tree First (STF). STF finds shorter paths, but can form loops
in case of 3 simultaneous link failures or in the case of a single node failure.

1.3.4 Multiple Routing Configurations

In this section, I introduce Multiple Routing Configurations [KHC+06, KHv+09] and
relaxed Multiple Routing Configurations [KHC+08, CHK+10]. These techniques use
essentially the same concept for bypassing a failed resource.

1.3. IP FAST REROUTE – PROPOSALS 15

The main idea of these techniques is creating multiple link length configurations.
Naturally, since the shortest paths differs, in this way multiple routings are produced.
If there is a configuration for each resource, where shortest paths do not contain
that resource, switching among these configurations can provide protection. The
configuration, the packet is needed to be forwarded on, is selected by either some
bits in the IP header, or by the destination address in the same way as Not-via does.
When a node fails to forward the packet on the shortest path, it simply switches to
a topology (e.g., puts the packet into an IP-in-IP tunnel with a special destination
address), where the next hop is not on the shortest path. The difference between MRC
and rMRC is that relaxed MRC needs less configurations to cover all the resources.

It is easy to observe that the number of required routing configurations is a weak
point of these techniques. Moreover, the most important problem is the almost com-
plete lack of upper limit for this number. As it was presented in [Cic06], the number
of needed configurations is less than the number of nodes in the largest minimal cycle
of the graph of the network. The minimal cycle of an edge is the smallest cycle con-
taining the edge; the largest minimal cycle is the largest among the minimal cycles for
all the edges. This upper bound is strict, since it is always reached by a network with
ring topology. Unfortunately, this means that the number of topologies can be equal
even with the number of nodes. Since each configuration needs an extra IP address
for each of the nodes, the high number of configurations means that the number of IP
addresses in the network can scale quadratic with the number of nodes in the network
in the worst case.

On the other hand, authors have shown that the number of topologies needed
is usually between 2 and 7, so much less than the number of nodes in most of the
networks. Unfortunately, if it is needed to mark packets using destination addresses,
even this result means that each node needs 2 to 7 extra IP addresses, which is much
higher than the number of IP addresses needed by e.g., Lightweight Not-via (it needs
only 2).

1.3.5 Rerouting multicast packets

Although protection of multicast IP traffic is usually considered less important, re-
cently this question was also studied. Currently, there is only one solution, known
by the author, proposed in [LLW+09], which provides multicast fast reroute in case
of single link failures. The main idea is based on the special way of path computa-
tion using Protocol Independent Multicast (PIM) [FHHK06]. Multicast trees built
by PIM use the paths, which would be the shortest ones from the destination to the

16 CHAPTER 1. INTRODUCTION

source6, while unicast traffic is forwarded differently on the shortest path from the
source to the destination. Since setting asymmetric link costs is possible both by
OSPF and IS-IS, it is possible to route multicast and unicast traffic on completely
different paths. When a given link fails packet is encapsulated to an unicast IP-in-IP
tunnel, and sent to the other side of the link. Although the authors of [LLW+09] did
not recognize, they computed redundant trees by applying a version of the algorithm
presented in [MBFG99].

1.4 Research Objectives

Previously, we have discussed the main concept of IPFRR and current techniques
were briefly reviewed. In this section, my research objectives are introduced. As it
was observed, almost all the previously discussed techniques suffer some serious short-
comings. In order to overcome these drawbacks and make better IPFRR mechanism,
first we discuss the requirements a modern IPFRR technique must meet.

First, recall the basic requirements, discussed in Section 1.2, every IPFRR tech-
nique must fulfil: such a mechanism is needed to be applicable inside a single au-
tonomous system, traditional IP forwarding can be only slightly modified, recovery
time must be in at most 50ms and as many single failure cases must be protected as
it is possible with best effort congestion mitigation.

Since the most important goal of rerouting is rebuilding the connection, we can
immediately extend the last requirement and say that a modern IPFRR technique
needs to provide 100% protection against single failure cases, which do not partition
the network into two. This means that such a technique necessarily marks packets
on detour either implicitly or explicitly.

Moreover, a proper IPFRR technique never makes a situation worse. This means
that a modern IPFRR technique must never create FRR loops. In this way, overcom-
ing the transient failures using fast reroute is possible.

Furthermore, IPFRR techniques must not increase the overhead significantly. Nat-
urally, IPFRR always adds some complexity to routing, but this additional complexity
must be as low as it is possible, and it must scale well with the size of the network.
The requirement of keeping the additional complexity low applies to all kinds of
complexity including e.g., the management (managing extra IP addresses).

6PIM builds the multicast tree using messages, which are sent to the source on the shortest path
by the destination; this is the “reverse” shortest path of the source. Naturally, this is suboptimal, if
the link lengths are asymmetric.

1.5. GENERAL ASSUMPTIONS 17

In this way my research objective is creating IPFRR techniques, which can pro-
vide fast reroute for unicast packets in the case of any single failure. It must be able
to always avoid forming FRR loops and it needs very moderate additional compu-
tational and management complexity. As one may observe, none of the techniques
fulfil these requirements. Mechanisms using interface-based forwarding, except LFIR
(Chapter 2), are immediately ruled out, since they are prone to create FRR loops.
Not-via and MRC need too much management overhead thanks to the high number
of additional IP addresses. IPRT is not able to deal with non-2-vertex-connected
networks, the technique presented in [KRKH09] cannot handle node failures. The
last remaining technique, Lightweight Not-via, is discussed in Chapter 5.

As it was already discussed, after fast rerouting, there must be some restoration
technique, which reconfigures the network with respect to the new topology. As it
was mentioned in Section 1.2, this is a quite well solved problem (further details
can be found in [SB10a]), thus they are not among my research objectives. Moreover,
although the importance of multicast traffic is improving with the spreading of IPTV,
I deal with unicast traffic, which is far the most important currently. Multicast IPFRR
is out of the scope of this dissertation.

1.5 General Assumptions

In this dissertation, I deal with IP networks. Although there are IP networks, where
the forwarding is based on much more information, I suppose that the forwarding
engine determines the next hop based on only the destination address contained by the
packet. No other information (e.g., source address) can be taken into consideration,
albeit a router may have multiple forwarding engines, even one for each interface, and
each of them can be configured in different ways (interface-based forwarding).

Furthermore, I suppose that the topology of the network is explored. This means
that there is some routing protocol in the background, like OSPF or IS-IS, which does
this task. Moreover, I suppose that the network is connected, since an unconnected
network can be considered as some connected networks. Therefore, I suppose that the
graphs of networks used by the algorithms in this dissertation are always connected.

Moreover, since the traffic transported by current IP networks is almost exclusively
unicast, I suppose that only unicast traffic is needed to be forwarded.

Since IPFRR is applied inside autonomous systems, I suppose that only paths
towards interior destinations must be protected. This assumption is very realistic,
since in several routers outer prefixes are resolved by a recursive lookup, so first only

18 CHAPTER 1. INTRODUCTION

the egress router is found and the next hop is calculated by a second lookup based
on this information; hence IPFRR protecting interior paths protects outer prefixes
as well. Moreover, even if there is no recursive lookup, routing can be originated in
the same problem by considering outer IP addresses as addresses of egress routers.
In this dissertation, I do not deal with the case, when a sole prefix can be reached
through multiple egress routers.

As it was discussed previously, fast rerouting techniques need to prepare to failures
before they actually occur. Since preparing to handle arbitrary number of simultane-
ous failures is next to impossible, IP fast reroute techniques prepare to bypass only
single link or node failures. Naturally, this seems like an artificial assumption at first,
since sooner or later another resource will fail. Fortunately, using some restoration
technique, IPFRR can prepare to a new failure after the network was reconfigured,
as it was discussed in Section 1.2. Therefore, I suppose that failures only happen one
by one in normal operation, and although multiple failures can occur, they are very
rare.

My graph algorithms commonly assign some values to the vertices and edges of
some graph. In these cases, I always assume that getting these values can be done in
O(1) time, when the corresponding vertex/edge is given; in this way e.g., the length or
the endpoints of an edge can be reached rapidly. Moreover, I also assume that these
values can even be pointers to some linked lists, thus it is easy to enumerate e.g.,
the edges connected to a given vertex, or the children of a vertex in a tree. Finally,
I assume that there are two linked lists for each graph, one contains all the vertices
and the other contains all the edges.

1.6 Notations

In the sequel, graphs are commonly dealt with, which are usually simple graphs. A
simple graph G is a pair (V,E), where V is the set of vertices and E is the set of
edges. If graph G is undirected, then E ⊆ {{v1, v2} : v1, v2 ∈ V, v1 6= v2}, so elements
are unordered pairs, denoted by {v1, v2} (v1, v2 ∈ V). Otherwise, if G is directed,
E ⊆ V × V \ {(v, v) : v ∈ V } (× denotes the Cartesian product), so elements are
ordered pairs, denoted by (v1, v2) (v1, v2 ∈ V), where v1 is the source and v2 is the
target. Moreover, V (G) and E(G) denotes the set of vertices and edges of graph G.
The number of elements (cardinality) of a given set S is denoted by |S|.

In Section 2.3.2, I use graphs with multiple edges. Therefore, simple graphs are
generalized to multigraphs. The definitions above still hold for multigraphs as well,

1.6. NOTATIONS 19

expect for E. The set of edges, is not a simple set anymore, but a multiset. The
multiset is a set, which can contain the same element multiple times. Formally
defined, a multiset is a pair (A,m), where A is some set and m : A→ Z+, where Z+

is the set of positive integers; function m denotes the multiplicity of an element. In
this way, the formal definition of E: E = (E ′, f) where E ′ ⊆ {{v1, v2} : v1, v2 ∈ V }
or E ′ ⊆ V × V for undirected or digraphs respectively and f : E ′ → Z+. Naturally,
for multigraphs the number of edges is |E| =

∑
∀e∈E′ f(e).

A graph is connected, if there is a (directed) path from any u ∈ V (G) to any
v ∈ V (G). Connected directed graphs are also referred as strongly connected graphs.
In contrast, a digraph is weakly connected, if replacing its directed edges with undi-
rected ones produces a connected undirected graph. A graph is n-edge-connected or
n-vertex-connected, if after removing any n − 1 edges or vertices respectively, the
remaining graph is connected. A digraph is weakly n-edge-connected or n-vertex-
connected, if after removing any n − 1 edges or vertices respectively, the remaining
graph is weakly connected. Let v ∈ V (G) and e ∈ E(G). Vertex v is a cut-vertex,
if without v the graph is not connected and edge e is a cut-edge, if without e the
graph is not connected. Vertex v is a weak cut-vertex, if without v digraph G is
not weakly connected and edge e is a weak cut-edge, if without e digraph G is not
weakly connected. Observe that the two endpoints of a (weak) cut-edge are (weak)
cut-vertices.

In this dissertation, directed spanning trees with a given root vertex, commonly
denoted by r, are often dealt with. Therefore, it is essential to define some notations
in connection with these trees. The parent of a vertex is the neighbour on the path
towards r (even if this path is not a directed one). The children are the neighbours,
which are not the single parent. The ancestors of a given vertex v are the vertices
along the path from v to r. The successors of v are the vertices, which have v as
an ancestor. Finally, the term walking up along a tree means walking towards r.
Similarly, walking down denotes the opposite direction.

Since in this dissertation numerous algorithms are presented, it is needed to deal
with their complexity. For upper approximation notation f(x) = O(g(x))⇐⇒ ∃M ∈
R+, lim supx→∞

|f(x)|
|g(x)| ≤ M , for lower approximation f(x) = Ω(g(x)) ⇐⇒ ∃M ∈

R+, lim infx→∞
|f(x)|
|g(x)| ≥M is used, where R+ is the set of positive real numbers.

A brief enumeration of further notations used in this dissertation is presented in
Table 1.1. Further details and exact definitions are presented before the first use of
these notations.

20 CHAPTER 1. INTRODUCTION

Notation Comment

V (G) Set of vertices of graph G
E(G) Set (or multiset) of edges of graph G
(a, b) An edge of a digraph (ordered pair of vertices); a is the source,

b is the target
{a, b} An edge of an undirected graph (unordered pair of vertices)
|S| Number of elements of set S
Dn DFS number of vertex n
Ln Lowpoint number of vertex n
v(n) Voltage of vertex n
hP
u (d) Edge going out from u belonging to the primary (maximally)

redundant tree rooted at d
hS
u(d) Edge going out from u belonging to the secondary (maximally)

redundant tree rooted at d
r Root of an ADAG, or global root of a GADAG
rx Local root of vertex x
rA Local root of cluster A
C Set of clusters
V +
u Set of vertices greater than vertex u

V −
u Set of vertices less than vertex u
Dv Default address of node v
Pv Primary detour address of node v
Sv Secondary detour address of node v
nh(A) Next hop node towards address A
nnh(A) Next-next hop node towards address A

Table 1.1. Common notations used in this dissertation

Chapter 2

Loop-free Interface-based routing

2.1 Introduction

It was discussed previously that each fast rerouting technique, which provides 100%
cover for single failure cases, needs to mark the packets on detours. Packets can
be marked explicitly (using some bits or tunneling), or implicitly by using the extra
information of incoming interface. In this chapter, I deal with the latter concept,
with IPFRR techniques using interface-based forwarding.

The main idea behind these techniques is that a failure must exist, if a packet
arrives through an uncommon interface. In this case, it is possible to compute the
possibly failed resources, and forward the packet to the destination on a path, which
does not include them.

For realizing this concept interface-based forwarding is needed. Interface-based
forwarding is an extension of IP forwarding. Traditionally, IP forwarding uses the
destination address for determining the next hop. In contrast, if a router uses
interface-based forwarding, then not only the destination address, but also the in-
coming interface is taken into consideration.

It is possible to realize interface-based forwarding with only moderate modifica-
tion on modern router architectures. In modern routers, there are linecards at each
interface, determining the outgoing interface of the incoming packets. For perfor-
mance issues there is dedicated memory at each linecard, where the forwarding table
is downloaded. If the same forwarding table is downloaded to each linecard, tradi-
tional IP forwarding is realized. On the other hand, if different forwarding tables are
download, exactly the same hardware can realize interface-based forwarding.

21

22 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

The most important problems of this way of implementation were already men-
tioned in the previous chapter, namely that a linecard may have multiple interfaces
and the serious implementation problems stemming from changing IP forwarding.
However, taking everything into consideration, interface-based forwarding can be re-
alized on current hardware with no doubt, albeit it is not easy.

As it was mentioned in Section 1.3.2, the first algorithm, which used the extra
information of incoming interface is the U-turn Alternates [Atl06], which gives the
possibility to a node a to send packets one hop back to a neighbour b with a as a default
next hop and with a Loop-free Alternate [AZ08] to the destination. Unfortunately, one
hop detours cannot provide 100% failure cover. Therefore, the concept of detecting
the packet flight was generalized, so that detour can be longer and packets on detour
may arrive on any uncommon interface. The first IPFRR mechanism, which used
this generalized scheme was the Failure Insensitive Routing (FIR) [NLYZ03, LYN+04,
NLY+07]. This technique can always bypass a single failed link, which is the most
common type of failures [ICM+02, MIB+04]. Later, this technique was improved
to Failure Inferencing based Fast Rerouting (FIFR) [ZNY+05] capable to reroute
packets even in the case of a single node failure.1 Unfortunately, FIFR needs 2-
node-connected networks, thus cannot cover failures, when only a link of a cut-node
fails (since it always supposes node failure, which would cut the network into two).
Therefore, the two techniques were combined in [WN07], making FIFR capable to
protect any resource which can be bypassed.

FIFR has several advantages. First, with interface-based forwarding, it is possible
to provide IPFRR without changing IP itself, using extra addresses or dealing with
the extra load and packet fragmentation of tunneling. Second, if all the interfaces
have their own forwarding information bases, interface-based forwarding brings no
overhead and easily realizable with current hardware. With considering linecards with
several interfaces, the situation is a bit more complicated, but it is still undoubtedly
realizable with updating only the software of these linecards.

Unfortunately, there is a significant drawback as well: FIR and FIFR may create
FRR loops in case of multiple failures. Avoiding loops is an important task of fast
rerouting algorithms. As it was discussed in Section 1.4, one of my main goals is to
create IPFRR mechanism always capable to avoid loops.

1Although the authors later renamed FIR to FIFRL, I refer on it as FIR in this dissertation.
Thus, FIFR is the algorithm sometimes referred as FIFRN in the literature. Moreover, there is an
improved version of FIFR presented in [WN07]; I make it always clear, when I deal with this special
version.

2.2. LOOPS USING FIR AND FIFR 23

The authors of FIR and FIFR also recognized the problem of loops and pro-
posed Blacklist-based Interface-Specific Forwarding (BIFS) [WZN06]. Unfortunately,
this solution is inapplicable in backbone networks, because of not only the signifi-
cant modification of IP forwarding, but also the overhead stemming from keeping up
blacklists.

In this chapter, first, I show that the possibility of loops when multiple failures
exist is not the result of some design problem, but a natural behavior of IPFRR
methods using interface-based forwarding. Understanding the limitations makes pos-
sible to propose a new IPFRR technique, which can overcome this problem of FIR
and FIFR; Loop-free Failure Insensitive Routing (LFIR) [C2, C3, P1] is capable to
always handle any single link failure, and it can never create loops.2 Moreover, since
LFIR needs only interface-based forwarding, it can be applied in backbone networks.
Unfortunately, as it turns out in Section 2.2, there is a trade-off: in some cases LFIR
does not forward the packets on the shortest paths when the network is intact. How-
ever, as it is proven in Section 2.5 by extensive simulations, these default paths are
only slightly longer than the shortest ones.

2.2 Loops using FIR and FIFR

It was mentioned previously and proved in [NLYZ03, ZNY+05] that it is possible to
correct one link failure with FIR or a node failure with FIFR in a network using
interface-based forwarding. First, we recall these algorithms and I prove that both
can make loops in the case of multiple failures.

The base idea of FIR and FIFR is simple: if a node gets a packet from a neighbour
which usually does not use this direction for forwarding, then there is a failure in the
network. FIR calculates which links, called keylinks, could have been failed and a path
to the destination without all these links. Using this information, FIR precomputes
an alternative route for each incoming interface, which guarantees that the failed link
will be bypassed. Similarly, FIFR computes the possibly failed nodes, called keynodes,
and bypasses them. It is important that both techniques use shortest paths as default.

Perhaps a simple example is in order. Consider the network in Figure 2.1, and
suppose that the lengths of links are uniformly 1 and FIR is applied in this network.

2Naturally, as all the other IPFRR techniques, LFIR prepares to protect against single failure
cases. When, however, multiple failures occur, LFIR is capable to detect the situation, and to drop
packets instead sending them into forwarding loops. Furthermore, detecting that there are multiple
failures makes it possible to start restoration technique immediately, and to reach as fast restoration,
as it would be possible without IPFRR.

24 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

Figure 2.1. A network with ring topol-
ogy

Figure 2.2. Default forwarding in the
ring from s to d

If there is no failure the shortest path, depicted in Figure 2.2, is used from s to d. If
link {e, d} fails, node e locally reroutes the packet to d on the shortest path without
{e, d}, and the packet is sent back to f . There is only one keylink for destination d and
directed edge (e, f), namely link {e, d}, so the packet is forwarded to s on the shortest
path to d without {e, d}. Similarly, the keylinks for destination d and directed edge
(f, s) are {f, e} and {e, d}. Node s forwards the packet to a on the shortest path
without these two links. Finally, a has no keylink for (s, a) and destination d, so the
packet is forwarded on the shortest path (depicted in Figure 2.3).

Similarly, FIFR computes the keynodes for each destination and incoming inter-
face. When node e fails (Figure 2.5), node f reroutes the packet, and sends it back
to node s. Since s computed the keynodes for (f, s) and destination d, which consist
of node e, it forwards the packet to a, which is the next hop along the shortest path
without e. Node a computes no keynodes, so it forwards the packets on the shortest
path to d.

Although this method is very effective, it has a serious disadvantage. Theo-
rem 2.2.1 demonstrates this disadvantage. In the sequel I call a routing optimal,
if packets are always forwarded along shortest paths in an intact network. I call a
routing loop-free, if there is no loop even if any subset of links and/or nodes is failed.
A routing is link failure insensitive or node failure insensitive, if traffic can pass be-
tween all node pairs even if one link or one node is down respectively. A rerouting is
local, if only the neighbours of the failed resource have information about the failure.

Theorem 2.2.1. Suppose that packets are forwarded based on only the destination
address and the interface they arrived through. In this case, there are some networks

2.2. LOOPS USING FIR AND FIFR 25

Figure 2.3. Forwarding if the link be-
tween node d and node e is down

Figure 2.4. Loop if the link between
node d node e and node c node d are
both down

Figure 2.5. Forwarding if node e is
down

Figure 2.6. Loop if both node c and e
are down

26 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

where no optimal, loop-free, link failure insensitive, interface-based local IP protection
technique exists. Moreover, there are networks where no optimal, loop-free, node
failure insensitive, interface-based local IP protection exists.

Proof. Consider the network depicted in Figure 2.1 and let all the lengths of the links
be 1. Indirectly suppose that an optimal, loop-free, link failure insensitive, interface-
based local IP protection technique is applied in this network. Hence, if there is no
failure the shortest path is used (since the routing is optimal) and node s will send its
packets to node d on path s−f−e−d (Figure 2.2). If link {e, d} becomes unavailable
packets will be able to reach node d because the routing is link failure insensitive.
Since we have local rerouting in the network, node e has no other choice than sending
packets back to node f which is its only reachable neighbour, so packets will follow
path e− f − s− a− b− c− d (Figure 2.3). One may observe that node f and s does
not send packets back to node e because interface-based forwarding is used. If link
{c, d} is also unavailable, a loop will be formed. Node c gets a packet from node b,
which has c as a default next hop, so c has no information about the previous failure.
It tries to bypass link {c, d} – node c “thinks” that this is the first unavailable link –
and in this way a loop is formed (Figure 2.4), which contradicts the assumption that
this routing is loop-free.

Similarly, if the rerouting is node failure insensitive, the failure of node e inducts
rerouting at node f , and packets reach d as depicted in Figure 2.5. If node c fails too,
node b got the packet from a, which has b as a default next hop towards d. In this
way, b has no information about the first failure, so it reroutes the packet to node a

and a loop is formed as depicted in Figure 2.6.

Because FIR is interface-based, optimal, link failure insensitive local rerouting
mechanism, Theorem 2.2.1 proves, that there are some networks where using FIR
can cause loops. Section 2.5 shows that these networks are not rare; FIR can cause
loop in numerous networks. Moreover, since FIFR is interface-based, optimal, node
failure insensitive local rerouting mechanism, FIFR can create loops too. Observe
that FIFR is still node failure insensitive even if it is improved to cover both link and
node failures at the same time [WN07].

Furthermore, although in the proof of Theorem 2.2.1 multiple failures were sup-
posed, it is possible to create loops when the rerouting is capable to bypass link
failures in 2-edge-connected networks, and a single node fails. Consider the network
depicted in Figure 2.7 first without g, and suppose that node s tries to send packets to
d. If all the length of links are uniformly one, the shortest path is s− f − c−d. Now,
assume that f cannot forward the packet to c. Usually, f cannot decide, whether c or

2.3. LOOP-FREE FAILURE INSENSITIVE ROUTING 27

Figure 2.7. Example network for FIFR loops

the link {f, c} is down. If an interface-based technique tries to bypass the failed link,
it may create loop, if node c is the failed resource. On the other hand, it is possible
to suppose that c has failed and avoid loops, but then the failure cannot be bypassed
if only the link was down. In this way, techniques supposing link failures, like U-turn
alternates, FIR and the improved version of FIFR presented in [WN07], can create
loops even if only a single node is down.

Moreover, observe that adding g (the length of {f, g} 10 others are 1) would not
help either for U-turn alternates, or for FIR. Since the shortest detour is not through
g, they would form the same loop, even if a path to the destination does exist.

2.3 Loop-Free Failure Insensitive Routing

It was shown in the previous section that both FIR and FIFR can create loops. With
respect to my research objectives (Section 1.4), in this section I propose the Loop-
Free Failure Insensitive Routing (LFIR) [C2, C3, P1], an IPFRR mechanism using
interface-based forwarding, which always avoids loops. LFIR can always bypass a
single failed link like FIR does. Naturally, according to Theorem 2.2.1, there must be
a trade-off: for the price of always avoiding loops, LFIR is not an optimal routing.
However, as it turns out in Section 2.5, the default paths are only slightly longer
than the shortest ones. First, I study 2-edge-connected networks, then we lift this
assumption.

2.3.1 2-edge-connected networks

The basic idea of LFIR is to find paths from each node to each destination in such a
way that when a node gets a packet from a specific incoming interface, it can always

28 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

decide if either the default path was used or the packet is on a detour due to a failed
link. If the detour has also failed, the packet must be dropped, and other nodes must
be immediately informed about the need of falling back to restoration. In order to
realize this scheme, we must recall a version of a theorem of Edmonds [Edm73].

Definition 2.3.1. A branching rooted at vertex r is a directed spanning tree with
edges directed in such a way, that each vertex x 6= r has one edge going out.

Remark: Note that branchings are usually defined in the reverse direction in the
literature. Moreover, observe that edges in these branchings are directed so that the
root can be reached along a directed path from any other vertex.

Proposition 2.3.1 (Edmonds). Let G be a digraph, which is n-edge-connected. It is
possible to find n edge-disjoint branchings in this graph rooted at any r ∈ V (G).

One may observe that a branching is something like routing; if a packet can follow
the directed edges of a branching, it eventually reaches the destination without loops.
The only difficulty is that typically links can be used in both directions, so networks
can be modeled by an undirected graph.

It is possible to solve this problem and find decent branchings in the undirected
graph. Let G be the undirected 2-edge-connected graph of a network. Let G′ be a
directed graph, such that V (G) = V (G′) and if {i, j} ∈ E(G), then both (i, j) ∈ E(G′)

and (j, i) ∈ E(G′). Trivially, G′ is also 2-edge-connected.
Now, the version of LFIR for 2-edge-connected networks is the following. Convert

the undirected graph G to a digraph G′, find two edge disjoint branchings – a red
and a blue one – in G′ rooted at each vertex. When a packet arrives on a branching,
forward it on the same one, if it is possible – there is exactly one edge going out from
each node belonging to that branching. If it is not possible (e.g., due to a link failure)
and the packet used the red branching, try to forward it on the blue one. If it used the
blue one, drop the packet and start restoration immediately. By default (at the source
node), the packet is on the red branching. The branching is selected by the destination
address and the incoming interface together; a pair of branchings belongs to each IP
address (the branchings rooted at the destination) and the incoming direction selects
the branching for forwarding, since they are edge-disjoint.

Back to our example, the two branchings of the previous network are depicted in
Figure 2.8. Naturally, in a real network two branchings would be computed to each
destination, not only to d, but a packet heading to d will use only these branchings.
If there is no failure packets sent by s to d reach the destination on path s−f−e−d.
If {e, d} fails, e changes the branching, and sends packets back to f . Since (e, f) is

2.3. LOOP-FREE FAILURE INSENSITIVE ROUTING 29

Figure 2.8. The two branchings of LFIR rooted at d (red – solid arrow, blue – dashed
arrow

in the blue branching of d, f forwards the packets on this branching to s. Following
the same branching d is reached, if there is no more failure. Observe that the path
of packets is now s− f − e− f − s− a− b− c− d, since packets are locally rerouted.
Moreover, if {c, d} fails too, c detects that packets arrived on the blue branching
cannot be forwarded on the same one, so drops them and starts informing other
nodes about the immediate need of restoration.

However, observe the drawback of this technique: if the source is e.g., node a, the
default path is still the red branching, which means that packets would be forwarded
on path a− s− f − e− d, which is not the shortest one.

The next theorem shows that packets always reach the destination if at most one
link is down and loops can never be created.

Theorem 2.3.2. The version of LFIR used in 2-edge-connected networks is correct
(it never creates forwarding loop) and complete (packets arrive if at most one link is
down).

Proof. It is easy to see that packets can travel on each link at most twice – once
using the red branching and once using the blue branching –, so there cannot be a
forwarding loop. It is also easy to see that packets arrive along the red branching, if
all the links are available.

Now suppose that exactly one link, {i, j} ∈ E(G) is failed. Naturally (i, j) ∈
E(G′) and (j, i) ∈ E(G′) and these two edges cannot belong to the same branching,
because there is no cycle in branchings. Suppose that a packet cannot reach the

30 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

destination. First, it is forwarded along the red branching. But its forwarding failed,
so link {i, j} was tried to use, which means that either (i, j) or (j, i) is in the red
branching. Without loss of generality, we can suppose that this edge is (i, j). So the
packet left node i using the blue branching. Failing the forwarding again means that
link {i, j} was tried to use again, so (j, i) is an edge of the blue branching. But the
packet could reach node j from node i, meaning that there is a path from i to j in
the blue branching and with (j, i) there is a cycle, which contradicts the assumption
that there is no cycle in a branching.

2.3.2 Non-2-edge-connected networks

Next, I deal with non-2-edge-connected networks. If the network is not 2-edge-
connected, two edge-disjoint branchings cannot be found, but bypassing the failures
when the network remains connected is still possible.

An undirected graph can be partitioned into some disjunct inextensible 2-edge-
connected components. Naturally, it is possible that some components contain only
one vertex. If removing a link causes the network to fall into two parts, it means that
this link – a cut-edge – is between two 2-edge-connected components. It is also true
that if vertex s and d are not in the same 2-edge-connected component, there is only
one edge-disjoint path between them.

Using these ideas one may observe a possibility to improve LFIR. Duplicate the
cut-edges virtually in the graph of the network. This new graph is 2-edge-connected,
so after the transformation into a directed graph there will be at least two edge-disjoint
branchings. Packets can follow these branchings as before. If a packet following a
branching crosses a cut-edge, then the node after the cut-edge cannot decide which
branching was used, so use the first one (the red one) for the next forwarding.

Lemma 2.3.3. In the graph with duplicated cut-edges, all the cut-edges are used by
both branchings.

Proof. Suppose that edge e is a cut-edge which is not used by one of the branchings.
We know that there is a path from each of the vertices to the destination in that
branching which does not contain the cut-edge, so there is also a path between each
vertex and the destination in the original undirected graph and none of them contains
edge e. This means that without edge e the graph is connected, which contradicts
the assumption that e is a cut-edge.

Lemma 2.3.4. In the graph with duplicated cut-edges, all the cut-edges are used in

2.4. IMPLEMENTATION QUESTIONS 31

the same direction (i.e. if {i, j} is a cut-edge, then both branchings contain (i, j) or
both contain (j, i)).

Proof. Because of Lemma 2.3.3 all the cut-edges are used by both branchings. Sup-
pose that there is cut-edge {i, j} which is used in different directions. This means
that duplicating {i, j} is not necessarily, so without two {i, j} the undirected graph
is 2-edge-connected (there are two edge-disjoint branchings in the directed one). This
contradicts the assumption that {i, j} is a cut-edge.

Theorem 2.3.5. The improved version of LFIR is correct and complete (packet will
arrive, if at most one non-cut-edge is down).

Proof. If there is no failure, packets reach node d along the red branching. Now,
suppose that there is a single link failure, link {i, j} is down, and node i is the one,
which locally rerouted the packets. If i and d are in the same 2-edge-connected
component, packets will reach d along the blue branching thanks to Theorem 2.3.2.

Now, suppose that this is not the case, the failure is not in a component containing
d. Let {x, y} be the first cut-edge along a path from i to d (this is the same for all
the paths including the one along the red and the one along the blue tree). Thanks
to Theorem 2.3.2, {x, y} will be reached, and then the packet will be forwarded along
the red tree. Thus, packet cannot return to i, to the failure, along the red tree, since
the path along the red tree from i to d contains both x and y, so they are ancestors
of i in the red tree, and there is no cycle in a tree, so the algorithm is complete.

Moreover, according to Theorem 2.3.2, no FRR loop can be formed inside a 2-
edge-connected component, so if there was a loop, it would contain some cut-edges,
let one of them be {x, y} again, and suppose that (x, y) is contained by both of the
branchings (Lemma 2.3.4). Since x is the child of y in both of the trees, and since
there is no edge between ancestors and a successors of y in any of the trees, packets
cannot return to any successor of x or to x. In this way, (x, y) can be used only once,
which contradicts the assumption that it is contained by a loop. Thus, the algorithm
is correct.

2.4 Implementation questions

In the previous section, I proposed an algorithm for constructing a loop-free failure
insensitive routing. In this section, we discuss some implementation questions, which
are still open.

32 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

2.4.1 Finding branchings

For LFIR, the most important is an effective algorithm for finding branchings. Note
that, unlike the ones in the literature, our branchings are directed towards the des-
tination, not away from it. However, this does not cause any problem since any
algorithm can be tweaked to reverse the direction of the branchings found.

In the next chapter, the generalization of edge-disjoint branchings is discussed.
As it will turn out, the branchings we need for edge-redundant forwarding are also
named as edge-redundant trees. In [IR84] linear time algorithm was proposed, so a
pair of edge-redundant trees can be found in O(|E(G)|) time. However, for LFIR
another algorithm was proposed, which provides good optimization heuristics.

The computation of edge-disjoint branchings for LFIR is based on the algorithm
of Lovász presented in [Lov76]. This algorithm starts from the destination; this is a
directed tree. Then the algorithm adds directed edges (and vertices) to this directed
tree until it becomes a branching. Each time a new link with the source outside
and the target inside the directed tree can be added, if the remaining graph, the
graph without the edges of the directed tree including the freshly added edge, is sill
connected. It is proven in [Lov76] that in this way a branching can always be found.

Checking the connectivity of the graph can be made by the Breadth First Search
(BFS) algorithm: if it is possible to reach the target of the newly added edge from
its source in the remaining graph (which naturally does not contain the edge itself),
then the remaining graph is still connected. Because at most O(|E(G)|) edges should
be checked in this way finding two edge-disjoint branchings takes O(|E(G)|2) time.

It is shown in Section 2.5 that if we use Lovász’s method the order of the edges
added to the red branching is very important in order to keep the average length
of the red branching (the default forwarding) low. As heuristics I always chose the
directed edge from the set of edges that can be added to the directed tree, which
provides the shortest path to the destination. Using binary heap, finding the next
candidate edge takes O(log |E(G)|) time. Inserting an edge needs O(log |E(G)|) time
too. Because each edge can enter and leave the heap once, heap operations need
O(|E(G)| log |E(G)|) time. When these heuristics are used, BFS traversal is still
needed, so the complete time of finding two branchings is O(|E(G)|2+|E(G)| log |E(G)|) =
O(|E(G)|2).

Naturally, it is necessary to find the branchings for all the destinations so the
complete computation needs O(|V (G)||E(G)|2).

2.5. EVALUATION 33

2.4.2 Finding cut-edges

If it is not sure that the network is at least 2-edge-connected, it is needed to find
the cut-edges. The simplest way of finding out whether an edge is a cut-edge or
not is to simply remove the edge and check if the remaining graph is still connected.
Checking the connectivity can be done by a BFS traversal with O(|E(G)|) complexity,
so finding all the cut-edges takes O(|E(G)|2) time. Since the complexity of finding
a pair of edge-disjoint branchings for all the destinations takes O(|V (G)||E(G)|2),
this simple technique can also be used, and the complexity is still dominated by the
problem of finding the branchings.

2.4.3 Using LFIR in distributed environment

Using LFIR in distributed environment, such as routers in a network, raises a new
problem; routers must find the same two branchings. A unique priority given to all
the edges can solve this problem. If there are more edges with the same distance from
the root during the edge selection, choose always the one with the highest priority.
In this way building the red branching and then the blue one is fully defined, so if
the routers has the same information about the network the same routing will be
calculated.

2.5 Evaluation

We have discussed a new IPFRR technique, LFIR, which can always avoid loops for
the price of longer paths. In this section, I show by extensive simulations that forming
loops is a realistic problem and my solution, which always prevents loops, use only
slightly longer paths.

For the simulations I used the topology of both real and random networks. I used
the topology of the NSF network [CB92] and the backbone network of Germany and
Italy [GO05]. For all the networks, I assigned random link lengths; the distribution
of lengths was independent, discrete and uniform between 1 and 50.

Artificial network topologies were generated using Boston university Representa-
tive Internet Topology gEnerator (BRITE) [MLMB05]. I applied Waxman algorithm
with random node placement and parameters α = 0.15 and β = 0.2. The number
of nodes varied between 20 and 50 and the number of neighbours was 2 and 3. Nat-
urally, according to Waxman algorithm, this means that a node has at least 2 or 3
neighbours.

34 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

2.5.1 Probability of forming an FRR loop

Previously, I have shown that current IPFRR techniques using interface-based for-
warding may cause loops. Now, I show by extensive simulations that this is not only a
theoretical possibility but rather a realistic problem. Since LFIR is capable to handle
link failures, it is considered as a version of FIR. Therefore, I computed the probabil-
ity of loops, when FIR is used in the network. I supposed that FIR drops a packet,
if it cannot be forwarded on the detour (packet is on a detour till it is forwarded
through unusual interfaces).

For the evaluation, I use random experiments. The presence of a loop with FIR
can be modeled by a Bernoulli random variable X (there is loop or not). Suppose
that P (X = 1) = p (the chance of loop), so the expected value and the variance
are EX = p and σ2X = p(1 − p). Make n Bernoulli random experiments and let
their results be X1, X2, ..., Xn. Let Y =

∑n
i=1 Xi

n
. Therefore, EY = EX = p and

σ2Y = σ2X
n

.
Now, use Chebyshev inequality, namely P (Y −EY ≥ α) = P (Y −p ≥ α) ≤ σ2Y

α2 =
σ2X
nα2 = p(1−p)

nα2 . Since 0 ≤ p ≤ 1, p(1 − p) ≤ 0.25. Let α = 0.01 and n = 250 000. In
this way, P (Y − p ≥ 0.01) ≤ 0.25

250 000·0.0001 = 0.01. Thus, the value of Y after 250 000
random experiments is a good approximation for the chance of loops; the chance that
the precision of this approximation is worse than 0.01 (so the difference is more than
1%), is less than 1%. With other words, after 250 000 experiments a symmetrical
confidence interval at size 0.02 at level 99% can be calculated. Hence, I made 250 000
random experiments in each case.

First, I studied the chance that a forwarding loop can be created. Therefore, I
generated 250 000 random link lengths and networks as it was described previously,
and I checked, whether it is possible to find a source node s, a destination node d and
two links or a single node in such a way that if the selected links or the single node
fails, packets heading from s to d get into a loop. The result of these simulations is
surprising: it was always possible to create loops with FIR in all the studied real and
random topologies irrespectively of the concrete configuration. Naturally, this means
only that network topologies, in which FIR is prone to form FRR loops, are quite
common, not that FIR can create loop in all the networks.

Second, I studied the probability of loop between a randomly selected pair of
nodes. Therefore, I randomly selected a source node s, a destination node d and a
pair of links or a single node, and tested if packets heading from s to d gets to a
forwarding loop, if the selected links or the single node fails.

The result of these simulations are presented in Table 2.1 and Table 2.2. Curiously,

2.5. EVALUATION 35

Top. Prob. of loops Prob. of loops
w/ removed edges w/ removed node

NSF 0.39 % 5.4 %
Germany 0.82 % 18.68 %
Italy 0.76 % 18.38 %

Table 2.1. Probability of FRR loops when two edges or one node is removed in
networks with real topology

Node Neighbour Prob. of loops Prob. of loops
number w/ removed edges w/ removed node

20 2 0.32 % 11.64 %
20 3 0.02 % 1.35 %
30 2 0.48 % 22.28 %
30 3 0.05 % 4.95 %
40 2 0.61 % 30.37 %
40 3 0.11 % 9.16 %
50 2 0.7 % 36.4 %
50 3 0.14 % 13.35 %

Table 2.2. Probability of FRR loops when two edges or one node is removed from
networks generated by BRITE

the probability of FIR forming loops is not negligible; when a node fails it can reach
even 36%. Based on these results we must establish that creating loops is an important
problem of FIR.

2.5.2 Lengths of paths

Previously, the probability of forming loop was studied. Naturally, using LFIR these
loops can always be avoided. On the other hand, LFIR may use longer paths for
default forwarding. In this section, the question of the length of those paths is dis-
cussed.

For the simulations computing the lengths of default paths, the same real and
random topologies were applied as former. In each network, I computed the length
of default paths of LFIR between each pair of nodes. The mean of these path lengths
is the average path length. In Table 2.3 and Table 2.4 the average path lengths are
presented (100% is the shortest path) after 250 000 random experiments3. These path

3Naturally, this is not a Bernoulli random experiment, but the law of large numbers is still true.

36 CHAPTER 2. LOOP-FREE INTERFACE-BASED ROUTING

Top. LFIR w/ LFIR w/o
heur. heur.

NSF 106.27 % 137.37 %
Germany 116.36 % 146.15 %
Italy 112.07 % 150.38 %

Table 2.3. Average path lengths using LFIR with and without heuristics related to
using shortest paths in networks with real topology

Node Neighbour LFIR w/ LFIR w/o
number heur. heur.

20 2 105.53 % 128.59 %
20 3 101.68 % 127.61 %
30 2 105.26 % 129.27 %
30 3 101.63 % 129.68 %
40 2 105.04 % 129.65 %
40 3 101.56 % 131.04 %
50 2 104.86 % 129.86 %
50 3 101.5 % 132 %

Table 2.4. Average path lengths using LFIR with and without heuristics related to
using shortest paths in networks with random topology

lengths are computed both with and without the heuristics presented in Section 2.4.1.
Observe that the lengths of default paths are only slightly longer, at most by

17%, than the shortest ones. This means that applying LFIR in networks does not
improve the network load significantly. Moreover, observe that the heuristics proposed
are effective, since they were able to decrease the default path lengths by about 30%
of the shortest path.

Based on the observations above, LFIR is a useful IPFRR technique in networks
with interface-based forwarding. Although it slightly increases the lengths of default
paths, it helps to avoid loops and always provides protection of single links.

However, there is an observation of this chapter, more important than an IPFRR
technique, namely that the scheme of special directed spanning trees can be well
applied in the field of IPFRR. Therefore, the way of finding such trees becomes one
of the most essential questions. I study this problem in the next chapter.

Chapter 3

Finding Vertex-Redundant Trees

3.1 Introduction

In the previous chapter, IPFRR mechanisms using interface-based forwarding were
discussed. There, a pair of edge-disjoint directed spanning trees were introduced
for providing failure protection. As it turns out in this chapter, these edge-disjoint
branchings can be used in a much wider area.

First, consider Definition 3.1.1. Observe that we have already seen edge-redundant
trees, albeit they were named edge-disjoint branchings. Since, a pair of edge-redundant
trees cannot contain the same directed edge, they are edge-disjoint. Moreover, a pair
of edge-disjoint branchings must be a pair of edge-redundant trees, since after re-
moving an undirected edge from the original graph, the destination is reachable from
each vertex on at least one of the trees (Theorem 2.3.2). Thus, the definition of
edge-redundant trees gives only a new view to the same concept.

Definition 3.1.1. Let an undirected graph be G with vertex r ∈ V (G). A pair
of edge-/vertex-redundant trees of graph G rooted at r is a pair of branchings (see
Definition 2.3.1) rooted at r, such that the two paths along the two branchings from
any given vertex s 6= r to r are edge-/vertex-disjoint respectively.

Remark: A pair of vertex-redundant trees are depicted in Figure 3.1.

On the other hand, this new definition of edge-disjoint branchings is important
for generalize the previous concept. Although vertex-disjoint branchings are a non-
sense, vertex-redundant trees can be defined. Observe that vertex-redundant trees
are directed spanning trees, which give the possibility of bypassing even node failures.

Among others, vertex-redundant trees are well applicable in IP networks. As
it was discussed in Section 1.3.3, they were applied for the IPFRR proposal called

37

38 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Figure 3.1. A pair of vertex-redundant trees rooted at vertex d.

IPRT [CHA07]. Furthermore, Lightweight Not-via [C5, C6, J4, P2], introduced in
Chapter 5, uses the generalized concept of redundant trees, known as maximally
redundant trees [C7, J4].

Redundant trees [MBFG99, XCT02c, XCT02b, XCT02a, XCT03, ZXTT05, ZXTT08,
C5, C6, C7], also known as independent trees [IR84, Han98, ABS96, ZI89, Huc94,
MTSIN98, CLY03, CLY06] and colored trees [Ram04, TRK06, BR06, RHK06a, RKK07,
JRY09, KRKH09], are well studied objects in graph theory. They were first applied
by Itai and Rodeh in [IR84]. They proposed algorithms for finding both edge- and
vertex-redundant trees with computational complexity linear in the number of edges.
Later, Médard et. al. [MBFG99] introduced these graphs as redundant trees to the
field of protection in optical networks. There, the previous algorithm was general-
ized, albeit in this way linearity is not always retained. The concept of computation
was further generalized and improved with Quality of Service (QoS) and Quality of
Protection (QoP) possibilities by Xue et. al. [XCT03]. Later, linear time heuristics
were proposed for providing QoS an QoP [ZXTT05, ZXTT08]. The first distributed
algorithm was presented by Ramasubramanian et. al. in [RHK06a, JRY09].

In this chapter, I deal with vertex-redundant trees. Accordingly, the simple term
of “redundant trees” means vertex-redundant trees in the sequel. Moreover, it is trivial
that edge-redundant trees can only be found in 2-edge-connected graphs and vertex-
redundant trees can only be found in 2-vertex-connected graphs. As it was proved
by Itai and Rodeh, these criteria are not only necessary, but also sufficient [IR84].
Therefore, in this chapter I always assume that graphs are 2-vertex-connected. This
artificial assumption is lifted in the next chapter, where maximally redundant trees
are studied, which can be found in arbitrary connected graphs.

In the remaining part of this chapter, first, the problems necessarily raising, when
one tries to implement a linear time algorithm proposed in [ZXTT05, ZXTT08], are
discussed. This algorithm is the first linear time algorithm, which provides QoS by
decreasing the total cost of the trees. Moreover, this algorithm is cited several times

3.2. PROBLEMS WITH IMPLEMENTING ZHANG’S LINEAR TIME ALGORITHM39

in the literature (e.g., [RHK06b, TRK06, JRY09, CHA07]). Second, I propose a new
technique, which overcomes these difficulties, and which can provide the same QoS
level. Finally, I show a new algorithm, which finds a pair of redundant trees rooted
at each vertex in linear time. Although there are numerous linear time techniques
capable to find a single pair of redundant trees rooted at a given vertex, finding a
pair rooted at each vertex needed quadratic time till now.

3.2 Problems with implementing Zhang’s linear time
algorithm

Zhang et. al. have studied the possibility of endowing redundant trees with Quality of
Service (QoS) capabilities in [ZXTT05, ZXTT08]. They have presented an algorithm,
called ReducedCostV, which is capable to find a pair of vertex-redundant trees in
linear time with low total cost.1 Unfortunately, as it will turn out, in some special
cases this algorithm is not linear. In this chapter, I briefly introduce ReducedCostV,
present a simple example, which makes the processing clear and finally, I point out the
difficulties which ruin linearity. Further details can be found in [ZXTT05, ZXTT08].

The algorithm, given by Zhang et al., is based on a special Depth First Search
(DFS) traversal, which computes both the DFS and lowpoint numbers. The DFS
number of a given vertex v is the number of vertices visited by the DFS traversal
before v. The lowpoint number is a bit more complex: for a vertex different from the
starting point of the DFS, find the child with the lowest lowpoint number and the
neighbour with the lowest DFS number; the lowest one from these two values is the
lowpoint number. The starting point of the DFS traversal has no lowpoint number.
These values can be computed by a special DFS traversal, presented in Algorithm 1
(Line 3 is not needed for ReducedCostV, but it is essential for all my later algorithms).

When DFS tree is computed, the algorithm walks down on it selecting always
the “eldest” child, the child with the lowest lowpoint number. At this point, one
may observe some differences between the algorithms, since [ZXTT05] uses stack
and [ZXTT08] uses FIFO. Fortunately, it does not really influence the behavior of
the algorithm.

Since the lowpoint of a child must be lower than the DFS number of its parent
(this claim will be proved in Lemma 3.3.1), walking down on the tree by always
selecting the eldest child means selecting vertices with lowpoint number strictly lower

1Cost function is discussed later.

40 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Algorithm 1 Revised DFS for graph G and root vertex r

1: Start a DFS traversal on the graph from root r. Set DFS number Dv at each
vertex v, so that Dv denotes the number of vertices visited before v.

2: Recursively compute the lowpoint number for each vertex v as min(L,D), where
L is the smallest lowpoint number of v’s children and D is smallest DFS number
among v’s neighbours (since a leaf has no child, the recursion always comes to an
end).

3: For each vertex v, associate a directed edge (v, x), where x is the vertex from v
received its lowpoint number. If it is possible, choose an arbitrary child as x.

than the DFS number of the starting vertex x as long as possible. Sooner or later
the algorithm encounters a “jump” in the lowpoint number, when it becomes higher
than or equal to the DFS of x. At this point, along the path we found some vertices
were visited, which are now called as an ear . The sequence of vertices specified by
the freshly found ear is added to the first tree in one direction and to the second tree
in the reverse direction.

Unfortunately, it does matter that which direction of the ear is added to which
tree. For deciding the correct direction a partial order of the vertices, called voltage,
is used. When a new ear is found, the two endpoints of it are compared, and the
direction towards the lower one is always added to the first (say red) tree and the
other direction to the second (say blue) tree. Finally, voltages are assigned to the
vertices in the freshly found ear, so that these voltages are between the voltages of
the two endpoints.2

The voltage of the starting point (the root of the redundant trees) is special. It
can be either the smallest or the highest in the network. Moreover, when the first
ear is found, its both endpoints are the root, so it will be needed to compare with
itself. In this case, either one of the directions is acceptable for the red tree and the
opposite is acceptable for the blue one.

Finally, before presenting the example, we discuss the cost function, since this is
a heuristic algorithm, which tries to decrease the cost of the redundant trees. The
cost of the two trees in this case is the number of edges used by either of the two
trees (so an edge used by both or one of the trees counts 1); thus, the cost of the
trees in Figure 3.1 is 8. This is useful for networks, where links are needed to be

2Supposing that voltages are taken from a finite, totally ordered set, which, as it will turn out,
is needed for linear complexity, raises the need of a bit stricter rules for the new voltages, in order
to make sure that there is no two vertices with the same voltage. In order to keep the reasoning
simple, I do not deal with these details, since they are not needed in the sequel; reader can find
them in [ZXTT08].

3.2. PROBLEMS WITH IMPLEMENTING ZHANG’S LINEAR TIME ALGORITHM41

Figure 3.2. A possible DFS, the DFS and the lowpoint numbers.

reserved for protection (e.g., optical networks).3 Using this cost function, adding an
ear with n new vertices to the trees costs n + 1 (there are n − 1 edges between the
new vertices and two to connect the endpoints), so covering the graph with k ears
costs |V | − 1 + k (the root is immediately covered). Therefore, the algorithm needs
large ears in order to minimize their number, so it walks down on the DFS tree as
long as possible [ZXTT08].

Before turning to discuss the problems this algorithm suffers from, I present a
simple example. Consider again the network depicted in Figure 3.1. Suppose that we
are computing a pair of redundant trees rooted in vertex d. First a DFS is needed, let
this be the one depicted in Figure 3.2. The DFS and the lowpoint number is written
next to each vertex.

The computation of redundant trees is started from vertex d, we set it ready, and
then walk down along the DFS tree from it. If a vertex has more than one child,
such as in the case of vertex b, choose the eldest child. In this way we find ear e, b, c,
and we stop at c, where a jump in the lowpoint number is, since it has no child with
lowpoint number equals to the DFS number of d.4 There we ’tie the knot’ to the
vertex whose DFS number equals the lowpoint number of c, which is vertex d.

The newly found ear is special, since its both endpoints are d, so the direction is
not important. Now, set the voltages in such a way that v(d) ≺ v(e) ≺ v(b) ≺ v(c)

(where v(x) is the voltage of vertex x), so edges (c, b), (b, e) and (e, d) are added to
the red tree, edges (e, b), (b, c) and (c, d) are added to the blue one (as it is presented
in Figure 3.1), and vertices c, b, e are set ready. Next we take a ready vertex, let it
be vertex b. We could take either vertex e or vertex c as well, but then we would
continue with another ready vertex, since they have no child, which is not ready yet.
From b we walk to vertex f , which has a child, albeit the lowpoint number of a is

3The cost function under discussion is undoubtedly hardly useful for IP networks. However, here
I give a corrected version of ReducedCostV, so we need to give good results with respect to these
costs. I deal with the problem of optimizing trees for IP networks in Chapter 4.4.

4The algorithm needs a child with lowpoint number strictly lower than DFS number of the
starting point of the ear (here d), or one with lowpoint number 0.

42 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

equal to the DFS number of b, so the next ear is vertex f alone and voltages v(b) and
v(e) are needed to be compared. Since v(e) ≺ v(b), (f, e) is added to the red tree,
(f, b) is added to the blue tree, f is now ready, and v(f) is set in such a way that
v(e) ≺ v(f) ≺ v(b). Similarly, the last ear is vertex a alone, v(f) ≺ v(b), so (a, f) is
added to the red tree, and (a, b) to the other one.

The most important problem of this algorithm stems from the need of storing
the voltages, the order of vertices. One may observe that a data structure would
be needed, where both inserting a new item and comparing two vertices takes O(1)

time. Unfortunately, simple arrays are immediately ruled out, since insert may need
moving some elements. Moreover, linked lists or tree structures (e.g., binary trees) do
not come to rescue either, since comparing cannot be done in O(1) time using these
structures.

According to private mailing, the authors of [ZXTT05, ZXTT08] assigned platform-
native numbers as voltages. Although first it seems a practical solution, as computers
encode numbers in a finite number of bits (e.g., an IEEE double precision float uses
64 bits, so it can represent less than 264 different values), the algorithm might easily
run out of assignable distinct voltage values, rendering the result incorrect.

Theorem 3.2.1. Suppose that voltages take their values from a finite, totally ordered
set S. Then, there is a graph of at most 3 log2(|S|) + 7 vertices and a possible DFS
traversal, on which an implementation of the algorithm gives incorrect answer.

Proof. Suppose that the elements of S are identified by a unique natural number,
which we shall use to assign voltages, and by vi < vj we shall mean that the voltage
of vertex vi is less than that of vj. Consider the graph depicted in Fig. 3.3 and
let r be the root vertex. The arrows show a possible DFS traversal of the graph:
r, b1, c1, a1, a2, c2, b2, . . . , bk, ck, ak. Note that the last three items can vary if k is even,
but the proof remains essentially the same.

In the ith step, the algorithm finds the vertex sequence ai, ci, bi between vertices
bi−1 and ci−1. Without loss of generality, suppose that bi−1 < ci−1 (otherwise, the
proof proceeds similarly, only the relations are the other way around). So, to the
tree along which voltages increase we need to add the path bi → ci → ai, so we set
bi < ci < ai < ci−1. Similarly, along the decreasing tree we write ai > ci > bi > bi−1,
so we have bi−1 < bi < ci < ai < ci−1. We choose the voltage of ci pessimistically
to bai+bi

2
c (otherwise, if ci − bi > ai − ci held, we could reconstruct the graph by

connecting ai+1 to ai instead of ci, and bi+1 to ci instead of bi, which would yield a
suboptimal subdivision of S). In consequence, we have that ai − bi <

ai−1−bi−1

2
and,

for a general k, we have ak − bk < |S|
2k−1 . Finally, we observe that the algorithm fails

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 43

Figure 3.3. Illustration for Theorem 3.2.1.

if we run out of distinct voltage values in S, that is, if ak = bk, which occurs when
|S|
2k−1 < 1. Therefore, for arbitrary finite S, we can show a graph of k = log2(|S|) + 2

ears (or 3(log2(|S|) + 2) + 1 = 3 log2(|S|) + 7 vertices), for which the algorithm fails
to find correct redundant trees.

The smaller the set S of voltages, the sooner this pathologic behavior emerges.
For 32 bit integers, we only need 103 vertices for the algorithm to fail, and for 64 bit
integers we need 199 vertices. Floating point arithmetic does not come to rescue here
either: double precision floats of 64 bits run short again at 199 vertices at the most.
A solution would be to use arbitrary precision arithmetics, however, such arithmetics
does not provide O(1) insertion and/or comparison, rendering the implementation
worse than linear.

3.3 Finding redundant trees in strictly linear time

In this section, I present a revised algorithm for finding a pair of redundant trees
in linear time [C7]. This algorithm is divided into 3 distinct phases: in the first
phase, it performs a DFS traversal of the graph, then computes an intermediate graph
representation based on which in the final phase it obtains the redundant trees. Since
special care is taken to ensure that each phase terminates in linear time, the resultant
algorithm will still be linear. Moreover, this algorithm does not use voltages, so the
traps discussed in the previous section are avoided. Furthermore, as it is shown in
Section 3.3.4, the cost of redundant trees created by this algorithm is only slightly
larger than the ones found by the original but not linear algorithm.

44 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

3.3.1 Phase I – DFS traversal

In the first phase, my algorithm computes the DFS and lowpoint numbers with ex-
actly the same algorithm as previously (Algorithm 1). In the sequel, the root vertex
(starting vertex of DFS) will be denoted by r, and the DFS and lowpoint number of
some vertex v will be denoted by Dv and Lv respectively (naturally, Dr = 0).

Next, I present a simple technical lemma for characterizing DFS numbers, which
is necessary in the sequel.

Lemma 3.3.1. Let v be a vertex of an undirected 2-vertex-connected graph. Do a
DFS traversal and start it at r 6= v. Let the DFS parent of v be p. If Dv ≥ 2, then
Lv < Dp. If Dv = 1, then Lv = 0.

If Dv ≥ 2, walking down as long as possible along the DFS tree from v by always
selecting a child c, such that Lc < Dp, leads to a successor with such a neighbour y

in G, that y is a DFS ancestor of p. Otherwise, if Dv = 1, walking down as long as
possible along the DFS tree from v by always selecting a child c, such that Lc = 0,
leads to a successor, which is a neighbour of r.

Remark: Note that if Dv ≥ 2, it is possible that v has no child c with Lc < Dp.
Then we “walk down” zero hops along the DFS tree and y is a neighbour of v.

Proof. If Dv = 1, v is a child of r, so r is a neighbour of v, and Lv = 0. If Dv ≥ 2,
let the DFS subtree rooted at v be T (so v and its successors are in T). Since r

and the vertex with DFS number 1 are not in T , |V (G) \ V (T)| ≥ 2. Thus, since
G is 2-vertex-connected, there must be at least two {m,x} edges in G, such that
m ∈ V (T), x ∈ V (G) \ V (T) and the endpoints of these edges in V (G) \ V (T) are
different. One of these edges have p as an endpoint in V (G) \ V (T), but there must
be at least one, which has another vertex y outside T . Consider this {m, y} edge.

Thanks to the properties of the DFS traversal, since y is a neighbour, it must be
either a successor or an ancestor. Since y 6∈ V (T), y must be an ancestor of both m

and v. Moreover, since y 6= p, y must be an ancestor of p too. Thus, Lv ≤ Dy < Dp.
Suppose that Dv ≥ 2. Walk down along the DFS tree, and always select the child

c, such that Lc < Dp as long as possible. Sooner or later we get to a vertex n, which
has no decent child. Since all the children of n has higher lowpoint number than Ln,
n got its lowpoint number from a neighbour outside T . Let this neighbour be z. Since
Dz = Ln < Dp, z is an ancestor of n, v and p.

If Dv = 1, following the vertices with lowpoint 0 along the DFS tree as long as
possible sooner or later leads to a vertex q, which has no decent child. Since Lq = 0,
q must be a neighbour of r. Since the graph is 2-vertex connected, there must be a
cycle containing both r and v, thus q 6= v.

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 45

Note that Algorithm 1 is implementable with a slight modification of the standard
DFS traversal algorithm, and thus its complexity is O(|V |+ |E|) = O(|E|) (the graph
is 2-vertex-connected, so |V | ≤ |E|).

3.3.2 Phase II – Finding an ADAG

As it was mentioned previously, my algorithm is divided into three phases. Below,
we discuss the second, intermediate phase, when a special directed spanning graph is
computed, which is called spanning ADAG (Almost Directed Acyclic Graph) since it
“almost” fulfils the DAG (Directed Acyclic Graph) property. This intermediate step
is important for two reasons: first, it facilitates a cleaner, modular implementation;
second, as it will be discussed in the next chapter, this intermediate graph will be
well applicable for finding multiple redundant trees, a pair rooted at each vertex, in
the same time.

Next, I give the definition of ADAG, which can be well applied in 2-vertex-
connected graphs. Since in the next chapter the concept of redundant trees will
be generalized to arbitrary connected graphs, this definition will be improved, and
Generalized ADAG will be introduced.

Definition 3.3.1. Let a strongly connected digraph D be an ADAG with vertex r

as a root, if for each v ∈ V (D) there is directed cycle containing both v and r, and
all the cycles in D contain r.

Remark: Note that without r, D is a DAG.

A spanning ADAG is depicted in Figure 3.4. Here, I also define exactly the concept
of ear.

Definition 3.3.2. Let an ear be a sequence of vertices we push to the stack at the
same time (Line 11 or Line 21 of Algorithm 2).

Finding a spanning ADAG is done in a similar way as redundant trees were found
by the algorithm of Zhang et. al.; the edges of the ADAG will be directed always
towards the higher voltage. In order to avoid the traps of voltages, the main idea is
to ensure that we always proceed from lower voltage vertices towards higher voltage
vertices, so we always know in which direction to attach new paths (recall that voltages
were used to help deciding on the order of vertices as they are added to the trees). To
maintain this invariant, we need to ensure that we only leave a vertex when we have
found not only all those ears emanating from it (as the original algorithm of Zhang
et al. does), but also those ones that terminate in it, by sometimes traversing the

46 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Figure 3.4. A sample graph and the computed ADAG, for root vertex d. The com-
putation is based on the DFS traversal depicted in Figure 3.2

DFS tree upwards instead of moving always downwards. This idea is implemented
in Algorithm 2. Note that Algorithm 2 does not compute the redundant trees right
away, it instead builds an intermediate graph representation D.

Furthermore, observe that this algorithm tries to minimize the cost of the trees
found (the cost is the same as it was previously for Zhang’s algorithm). As it will be
discussed in Section 3.3.3, the cost of the redundant trees cannot be higher than the
number of edges of this ADAG. Therefore, this algorithm also tries to find long ears.
When we are walking down on the DFS tree, we do the same as the original algorithm
does. On the other hand, when we are walking up, we only choose a neighbour, if
it got the lowpoint from the current node. More detailed description is presented in
Section 3.3.3.

Before we turn to discuss the specifics of Algorithm 2, I first provide a short
example of the algorithm’s procession. Considering the same network and the same
DFS traversal (Figure 3.2) as before; the graph D calculated by Algorithm 2 is given
in Figure 3.4. We start from vertex d and the first ear we find is e→ b→ c, so edges
(d, e), (e, b), (b, c) and (c, d) are added to D. Now, stack S contains “ebc”, so the next
vertex we pop from the top is vertex e. Vertex e has only a ready child, so we do
not enter the branch at Line 6. However, we observe that there is a neighbouring
vertex still not marked ready, vertex f , so we take the branch at Line 16 and we move
upwards along the DFS tree until we arrive to a ready vertex, vertex b. Therefore,
the next ear is made up by vertex f alone, and edges (e, f) and (f, b) are added to
D. Now, the stack contains “fbc”. We pop f , whose only child is vertex a, so next
we find the ear consisting of the sole vertex a, and (f, a) and (a, b) are added to D.
At this point all vertices are marked ready, so the the algorithm terminates (after
popping the remaining entries “abc” from the stack).

Next, I show that Algorithm 2 always terminates. For this, we only need to show
that the two main branches of the algorithm (Line 6 and Line 16) terminate.

Lemma 3.3.2. The branches at Line 6 and 16 always terminate.

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 47

Algorithm 2 Finding a spanning ADAG for graph G and root vertex r

1: Compute a DFS tree using Algorithm 1. Initialize the ADAG D with the vertices
of G and an empty edge set. Create an empty stack S. Set the ready bit at each
vertex to false.

2: push r into S and set ready bit at r to true
3: while S is not empty
4: current← pop S
5: for each child n of current
6: if n is not ready then
7: while n is not ready
8: Let e be the child of n with lowpoint number 0 or less than the

DFS number of current. If there is no such child, let e be the
node, where n got its lowpoint from.

9: n = e
10: end while
11: Let the found vertices be x0 → x1 → ...→ xk, where xk is ready, and

x0 is the neighbour of current. Set the ready bit at x0, x1, ..., xk−1 to
true and push them into S in reverse order, so eventually the top of
the stack will be x0, x1, ..., xk−1

12: Add edges in the path current→ x0 → x1 → ...→ xk to D.
13: end if
14: end for
15: for each neighbour n of current which is not a child
16: if n is not ready and n got lowpoint number from current then
17: while n is not ready
18: let e be the parent of n in the DFS tree
19: n = e
20: end while
21: Let the found vertices be x0 → x1 → ...→ xk, where xk is ready, and

x0 is the neighbour of current. Set the ready bit at x0, x1, ..., xk−1 to
true and push them into S in reverse order, so eventually the top of
the stack will be x0, x1, ..., xk−1.

22: Add edges in the path current→ x0 → x1 → ...→ xk to D.
23: end if
24: end for
25: end while

48 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Proof. First, I show by mathematical induction that all DFS ancestors of an arbitrary
ready vertex are always marked ready. Initially, this is true, since only r is ready.
Then, after finding an ear either at line 6 or at Line 16, the claim remains true, since
all the ancestors of a vertex in the ear became ready too.

At the end of the branch at Line 6, we always arrive to r or to an ancestor of the
starting vertex, since there is such a path thanks to Lemma 3.3.1. From r we return
to r, and from any other vertex we eventually reach an ancestor (which is ready at
this point as I have shown above), so the branch at Line 6 indeed terminates. On
the other hand, in the branch at Line 16 we always move upwards in the DFS tree,
heading towards r. Since r is ready, a ready vertex is always reached finally, so the
branch at Line 16 also terminates.

Next, I show that the output graph is an ADAG.

Lemma 3.3.3. The output graph of Algorithm 2 is a spanning ADAG of G.

Proof. First, I show that r is in all the cycles in D. Remove r from D and let this
new graph be D′. Observe that in both cases when we add edges to D′, the endpoints
of the edges in the ear appear exactly in the same order both in the edge and in the
stack. Consider an ear the algorithm finds either at Line 11 or Line 21. This ear
starts at current and terminates at another vertex, say, x. Since r 6∈ V (D′), claims
about current, where current = r or claims about x, where x = r are not important
(and not always true). Otherwise, the following claims hold for current and x:

• current 6= x (at branch 6, this is true due to Lemma 3.3.1, and at branch 16
because all the children have been made ready by branch 6)

• current has already left the stack and

• x is still on the stack (since it has a neighbour, the last vertex of the ear, which
is either a child or which got its lowpoint number from x).

Now, let V = v1, v2, ..., vn be the sequence of vertices as they leave stack S. Observe
that if there is a (vi, vj) edge in D′, then vi and vj was either in the same ear or
(vi, vj) was an end of the ear (one of the vertices was current or x). According to the
argumentation above, when we add edge (vi, vj) to D′ one of the following two cases
hold

• vi has already left the stack when we push vj or

• vi appears above vj in the stack.

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 49

Thus, vi will leave the stack before vj, which means i < j. Therefore, we have that
for each (vi, vj) in D′, i < j holds, so V is a topological order and hence D′ is a DAG.

Next, I use mathematical induction in order to prove that D is strongly connected,
and for each v ∈ V (D), there is a directed cycle, which contains both r and v. Initially,
when D contains only r, the claim is true. Suppose that after adding some ears it is
still true.

Now, we add a new ear from current to x. There must be a path from r to
current and one from x to r, thanks to strong connectivity. Moreover, there can be
no directed path from x to current, which does not contain r, otherwise with the
newly found ear there would be a cycle not containing r. Consequently, there is a
cycle in D, which starts from r, goes through current, then all the vertices of the
new ear, and finally returns to r through x. Naturally, the graph remains strongly
connected thanks to this cycle.

Now, we have seen that D is an ADAG. In order to prove that this is a spanning
ADAG of G, it is needed to observe that all the vertices of G becomes ready. Since a
ready vertex leaves the stack sooner or later, a neighbour of a ready vertex must be
also ready when Algorithm 2 terminates. Since there was ready vertex (at least r is
ready), and since the graph was connected, all the vertices are needed to be ready,
when the algorithm terminates.

Lemma 3.3.4. The computational complexity of Algorithm 2 is O(|E(G)|).

Proof. Each vertex is pushed into S and popped from S once, so the most important
part of the algorithm is at Line 6 and at Line 16, where the ears are found. Line 16
is simpler, since the parent can be stored at each vertex during the DFS traversal,
so finding it takes O(1) time. In this way, finding ears at Line 16 takes at most
O(|V (G)|) time altogether.

Finding an ear at Line 6 is more difficult, since it is needed to find the eldest
child, at each vertex. The simplest way for finding it is to check each of the children.
Fortunately, this is needed only once (e.g., we do not need the second eldest child), so
in the worst case each edge of the DFS tree will be used once. Thus, since the DFS
tree has |V (G)| − 1 edges, the complexity is O(|V (G)|) again.

Since a DFS traversal takes O(|E(G)|) time in a connected graph, the overall
complexity is O(|E(G)|).

50 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

3.3.3 Phase III – Constructing redundant trees

In the final phase, I construct a pair of redundant trees from the spanning ADAG
produced by Algorithm 2. First, a simple definition is needed.

Definition 3.3.3. Let D be a spanning ADAG of graph G. Split the root vertex r

in D into two vertices, r+ and r−, in such a way that edges only enter to r+ and only
leave r−. Let this new graph be D′. Define a relation (≺) on V (D′) as follows: u ≺ v

if and only if there is a directed path from u to v in D′ (u, v ∈ V (D′)).
Generalize this relation; for given vertex x and y let x � y be true, if x ≺ y or

x ≡ y.

It is easy to see that (V (D′), (�)) makes up a bounded partially ordered set
(poset); since D′ is a DAG, it is reflexive, transitive and antisymmetric. Additionally,
since there is a cycle in D for any vertex x, which contains r and x, there is a path
from r− to r+ through x. Thus, r− is less than any other vertex, so the minimum
element is exactly r−. Similarly, r+ is the maximum element.

Theorem 3.3.5. Perform a Breadth First Search (BFS) traversal from vertex r on
the spanning ADAG D, yielding a directed tree R. Perform a second BFS traversal
from r, but now taking the edges of D in reverse direction, yielding another tree B.
Now, R and B are a pair of redundant trees rooted at r (when the edges are directed
towards r).

Proof. Create a new graph D′ from D, by splitting vertex r into two vertices, r+

and r−, in such a way that edges only enter r+ and only leave r−. According to
Definition 3.3.3, using this DAG, a partial order can be defined.

Observe that moving from a given vertex v towards r in R equals traversing the
vertices in decreasing direction. Conversely, moving towards r along the other tree, B,
means moving in increasing direction. This ensures that what we obtain by taking the
paths v ; r in R and B, respectively, are two vertex-disjoint paths, which concludes
the proof of the theorem.

Note that this final phase again can be performed in a linear number of steps,
since both BFS traversals are linear in the number of edges in D. Since each of the
three phases turned out to be linear, the overall complexity of the algorithm is linear
too.

Note that the cost of the two trees cannot be higher than the number of edges
of the spanning ADAG. In order to minimize the number of edges of the spanning
ADAG, special care was taken: when we walk down on the DFS tree, we do the same

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 51

Topology Number Original Cost w/ revised Increase
of nodes cost algorithm

Germany 17 19.82 19.82 0%
NSF 26 31.65 31.8 0.47%
Cost266 37 43.49 44.13 1.47%
Germany50 50 57.06 57.78 1.26%

Table 3.1. Average cost of redundant trees on real topologies

as the original algorithm does, we walk down as long as possible without giving up
the chance to get to an ancestor, therefore the ears found are quite long. On the other
hand, at some point current vertex may have some not ready neighbours, which are
covered by a single ear. Suppose that current has two not ready neighbours, a and
b, such that a is an ancestor of b and La = Lb. Then, any ear, walking up on the DFS
tree covering b, covers a as well. Therefore, a does not choose current as a source
of the lowpoint number in Algorithm 1 at Line 3, and Algorithm 2 does not get to a

from current at Line 16. The efficiency of these heuristics is studied in Section 3.3.4.
Getting back to our example, it is easy to construct the redundant trees from the

ADAG depicted in Figure 3.4 using Theorem 3.3.5. These redundant trees coincide
with the ones given in Figure 3.1; the tree marked by solid lines in Figure 3.1 coincides
with B, while the tree marked by dashed lines is exactly R.

3.3.4 Evaluation of total cost

It was discussed previously that the algorithm presented by Zhang et. al. in [ZXTT05,
ZXTT08] may lose linear time complexity on some graphs, because of the need of
keeping up voltages. Therefore, a revised algorithm was presented, which is strictly
linear. This revised algortihm was designed so that it tries to minimize the cost of
the redundant trees in the same way as the original algorithm does. Unfortunately,
in some cases the revised algortithm needs more ears to cover all the vertices of the
graph, in this way finds trees with slightly higher cost.

In this section, the problem of this increase in cost is discussed. Therefore, I
implemented both algorithms and made intensive simulations using real and random
graphs. For real graphs I have chosen the topology of NSF network [SND] the German
(Germany) and the European (Cost266) backbone network [GO05] and an extended
50 node version of the German backbone (Germany50) [SND]. For generating random
topologies, I used BRITE again with the same configuration as previously in Sec-
tion 2.5: Waxman algorithm with random node placement and parameters α = 0.15

52 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Node Neighbour Original Cost w/ revised Increment
number cost algorithm

20 2 25.74 26.31 2.21%
20 3 23.94 24.38 1.84%
30 2 38.76 39.73 2.5%
30 3 36.26 37.07 2.23%
40 2 51.76 53.04 2.47%
40 3 48.57 49.69 2.31%
50 2 64.68 66.3 2.5%
50 3 60.76 62.16 2.3%

Table 3.2. Average cost of redundant trees on topologies generated by BRITE

and β = 0.2. The number of vertices varied from 20 to 50, and each had 2 or 3
neighbours. In each case 250 000 topologies were generated. Since the selection of
the root vertex can silghtly influence the results, I computed the redundant trees for
each vertex as a root for every topology and I computed the mean of these costs. The
results are presented in Table 3.1 and Table 3.2.

As it can be observed, the efforts taken to decrease the cost of the redundant trees
found by the revised algorithm were successful. Since the cost of redundant trees
computed in linear time are only about 2% greater than the ones computed by the
original algorithm, my new technique also provides about the same level of QoS.

3.3.5 Notes on st-numbering

In this section, we digress from the main line of the discussion for short, in order to
introduce st-numbering, an interesting concept that has important relations to our
topic of main interest. As it will turn out, st-numbering is very similar to to the
concept of ADAG, therefore it is important to point out the differences, and reason,
why the concept of ADAG was developed.

One may observe that any spanning ADAG computed by Algorithm 2 has only
one edge entering the root (Lemma 3.3.6). Thanks to this fact, removing this edge
cuts all the cycles in the ADAG and creates a DAG.

Lemma 3.3.6. In a spanning ADAG, found by Algorithm 2 in a 2-vertex-connected
graph G, only one edge enters to the root.

Remark: Note that not all the possible spanning ADAGs have this property, but
the ones, which were found by Algorithm 2.

3.3. FINDING REDUNDANT TREES IN STRICTLY LINEAR TIME 53

Proof. Let x be the vertex with DFS number 1 (this is the vertex visited by the DFS
traversal after vertex r). Since G is 2-vertex-connected, it is possible to reach all the
vertices of G from x without using r, so r have only one DFS child. Thanks to this
fact, only the first ear can have r as both endpoints. Since r is left only, when all its
neighbours are ready, all the remaining ears of r have r as only the starting endpoint
(current).

Thus, a spanning ADAG with a sole edge entering to the root (like one found
by Algorithm 2) is closely related to st-numbering (Definition 3.3.4 [ET76]). This
connection is proven below.

Definition 3.3.4. Given any edge {s, t} in a 2-vertex-connected graph G. Let an
st-numbering be a bijective function n : V (G) → {x ∈ Z+ : 1 ≥ x ≥ |V (G)|}, such
that:

1. n(s) = 1,

2. n(t) = |V (G)|

3. each other vertex x 6= s ∧ x 6= t have two neighbours y and z, such that
n(y) ≥ n(x) ≥ n(z).

It can be observed that an st-numbering is something similar to the concept of
ADAG; actually it can be easily converted into an ADAG. Let n : V (G) → {x ∈
Z+ : 1 ≥ x ≥ |V (G)|} be an st-numbering of undirected 2-vertex connected graph
G. Create a new directed graph D in such a way, that V (D) = V (G) and E(D) =

{(x, y) : {x, y} ∈ E(G)∧n(x) < n(y)∧ (x, y) 6= (s, t)}∪ {(t, s)}. Trivially, there is no
cycle in D without edge (t, s) thanks to the properties of st-numbering. Moreover,
since each vertex x ∈ V (G) \ {s, t} has at least two neighbours, one with less and one
with greater st-number, there is a directed path from s to each of the vertices and
there is a directed path from each of the vertices to t. Thus, with edge (t, s) there is
such a cycle, which contains s, t and any arbitrary vertex, so D is an ADAG with s

as a root and only a sole edge enters to s in D.5

However, observe that even if it is easy to convert an st-numbering into an ADAG,
not all the ADAGs containing a single edge entering to the root can be produced in
this way. Since an st-numbering gives a full order, an ADAG generated from such a
numbering must contain all the edges of G in either direction.

5It is easy to prove that an ADAG with a sole edge entering to the root can also be converted
into some st-numberings. However, since this converting is not needed in the followings, I do not
deal with it.

54 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Unfortunately, some algorithms, like my revised one for computing trees fulfilling
QoS criteria, would be restricted by such an ADAG. As it was mentioned in Sec-
tion 3.3.3 and as it was proved in Section 3.3.4, the revised algorithm for finding a
pair of redundant trees can provide heuristics for reducing the cost of such trees, since
the ADAG is made up by huge ears and therefore few edges. Naturally, this means
that there are some edges of the original graph, which are not contained by the ADAG
in any direction, which is now useful. The information about which edge should not
be used in the trees is essential part of these heuristics. Similar observations was
made by Xue et. al. in [XCT03].

3.4 Computing multiple redundant trees

In the previous section the way of computing a single pair of redundant trees rooted
at a given vertex was discussed. This solves the routing problem with respect to a
single root node. However, in real networks there are multiple destinations. Thus,
usually a pair of redundant trees is needed for each vertex as a root, which would
take O(|V (G)||E(G)|) time with the algorithm presented in Section 3.3. In this
section, I present a distributed algorithm, which can compute the same information
in O(|E(G)|) time. Naturally, not only the computational complexity, but the quality
of these trees is important; this will be studied and improved in Section 4.4 and
Section 4.5.

One may observe that computing a pair of redundant trees must need at least
Ω(|V (G)|2) time, since a single spanning tree has |V (G)| − 1 edges, so even writing
the computed trees into memory would take at least 2|V (G)|(|V (G)| − 1) steps. At
first, this fact seems to make impossible to create an algorithm for computing the
trees in O(|E(G)|) time. Fortunately, in common networks no node needs the whole
redundant trees, but only the next hops, or more precisely, the edges going out from
the vertex representing the given node. In this way, in a network, using the algorithm
I present in this section, no node would know completely any of the redundant trees,
albeit packages could be forwarded along the trees.

One may observe that there is another distributed algorithm, presented in [JRY09]6,
computing the same information. However, the most important designing goal of the
technique in [JRY09] was to minimize the number of messages, thus it uses only local
information, and communication between the nodes is needed for the computation

6Note that there the trees are referred as colored trees.

3.4. COMPUTING MULTIPLE REDUNDANT TREES 55

itself. In contrast, since my solution is designed for intra-domain routing in IP net-
works, I suppose that the whole topology is explored (link state routing is used, like
OSPF) and no cooperation is needed for computation. With these assumptions the
algorithm presented in [JRY09] would need O(|V (G)||E(G)|) time as well to compute
all the redundant trees rooted at each vertex (my algorithm needs only O(|E(G)|)).

In the sequel, I will assume, that the input is exactly the same for all the nodes in
the network. If it is not true (e.g., the order of vertices/edges is not the same) some
precomputation may be needed for making exactly the same redundant trees.

I use the partial order of Definition 3.3.3 in the followings.

Definition 3.4.1. Let the spanning ADAG of graph G be D and let D′ be the graph
created by splitting the root of D into two (r+, r−). For some vertex u, let V +

u be
the set of the vertices larger than u: V +

u = {v ∈ V (D′) : u ≺ v}. Similarly, let V −
u be

the set of vertices smaller than u: V −
u = {v ∈ V (D′) : v ≺ u}.

Additionally, let f+
u (d) denote the first directed edge along some directed path

from u to d ∈ V +
u . Reverse the edges of D′ and similarly let f−

u (d) be the fist
edge along some directed path from u to d ∈ V −

u . Moreover, let f+
u (r) = f+

u (r
+),

f−
u (r) = f−

u (r
−). For the root vertex r, define f+

r (d) = f+
r−(d) and f−

r (d) = f−
r+(d) for

all d ∈ V (D′) \ {r+, r−}.

V + and f+(·) can be computed by a BFS traversal of D. Similarly, V − and f−(·)
come from a reverse BFS. This way, f+(·) and f−(·) encode the next-hop along the
minimum-hop path, which makes paths shorter. Note that in general V +

u ∩ V −
u = ∅,

but V +
u ∪V −

u 6= V (D′)\{u}, because some vertices might not be ordered with respect
to u.

Theorem 3.4.1. Let the spanning ADAG be such that there is only one edge entering
to the root (e.g., Algorithm 2 finds such an ADAG thanks to Lemma 3.3.6). Let
vertices u and d be given in such a way that u 6= d, and choose the edge of the primary
(hP

u (d)) and the secondary (hS
u(d)) tree rooted at d going out from u as follows:

1. If d ∈ V +
u : hP

u (d) = f+
u (d) and hS

u(d) = f−
u (r

−)

2. If d ∈ V −
u : hP

u (d) = f+
u (r

+) and hS
u(d) = f−

u (d)

3. Else: hP
u (d) = f−

u (r
−) and hS

u(d) = f+
u (r

+)

4. Special rules apply at the root vertex (if u = r):
hP
r (d) = f+

r (d) and hS
r (d) = f−

r (d)

56 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

(a) ordered
case

(b) unordered
case

Figure 3.5. Illustration for Theorem 3.4.1.

Then, interleaving the primary (hP (d)) and the secondary (hS(d)) makes up a pair of
redundant trees rooted at d.

Proof. To prove the theorem, it is enough to show that following the primary and the
secondary next-hops comprises two loop-free, vertex-disjoint paths. The rules encode
the intuitive idea: following the next-hops hP (d) we move in increasing direction in
the poset, along hS(d) in decreasing direction, and if u and d are not mutually ordered,
we move downwards in the poset until we can move upwards (or vice versa).

First, I show that for two vertices v, w : v ≺ w, what we obtain by following the
primary next-hops hP (w) is a loop-free v ; w path. Let hP

v (w) = (v, x). Using this
edge, we either get to w, if x = w, or get to a vertex x, v ≺ x. Moreover, x ≺ w, since
(v, x) is the first edge along a path from v to w, so there is a path from x to w too.
Therefore, if x 6= w, we can repeat the same reasoning till we eventually arrive to w.
Along the similar lines, following hS(w) yields a loop-free v ; w path for v, w : v � w

If d = r, the claim is trivial. Suppose d 6= r and there is an order between u and
d, say u ≺ d. Now, following hP (d) yields an u ; d path pp (the path marked by
solid arrow in Figure 3.5a), and following hS(d) yields first a u ; r− path p1s and
then an r+ ; d path p2s (dashed arrow in Figure 3.5a). Based on the observation
above, these subpaths are indeed paths and they are loop-free. The concatenation of
p1s and p2s gives the secondary path ps. Finally, pp and ps are vertex-disjoint: vertices
along pp belong to the interval [u, d], p1s to [r−, u] and p2s to [d, r+], and these intervals
are disjunct except the endpoints.

If there is no order between u and d, the situation is slightly more difficult: fol-
lowing hP (d) first yields an u ; x path p1p and then a x ; d path p2p, where x is
the first vertex for which u � x and x ≺ d holds (see the dashed arrows in Fig-
ure 3.5b). Similarly, hS(d) yields first a u ; y path p1s and then an y ; d path p2s
for the first y : u ≺ y and y � d (solid arrows in Figure 3.5b). Again, concatenation

3.4. COMPUTING MULTIPLE REDUNDANT TREES 57

of the corresponding subpaths yields two vertex-disjoint paths: first, p1p and p1s are
vertex-disjoint because p1p ∈ V −

u , p1s ∈ V +
u and V −

u ∩ V +
u = ∅; second, p1p and p2s are

also vertex-disjoint because the vertices of p1p are not ordered with respect to d but
those of p2s are; third, pp and ps cannot both traverse r, because r+ � y (since only
one edge enters to r, we have a vertex m, for which m � v : v ∈ V \ {r+,m}, so the
secondary path turns back in m at the very latest). Similar reasoning applies to see
that the rest of the subpaths are mutually vertex-disjoint too.

Since the rules of Theorem 3.4.1 gives the possibility to compute the edges of a
pair of redundant trees going out from a given vertex u in O(1) time7, computing
all the edges takes O(|V (G)|) time. Since computing the ADAG and doing two BFS
traversals for finding V +

u , V −
u , f+

u (d) and f−
u (d) take O(|E(G)|) time, computing all

the trees takes O(|E(G)|) time in any connected graph, when there is a processor
assigned to each of the vertices, which is exactly the case in typical IP networks.

In this chapter redundant trees were discussed. I have presented algorithms for
finding a pair of complete redundant trees and only the outgoing edges of a pair of
redundant trees rooted at each node. In the next chapter I generalize both of the
algorithms for finding maximally redundant trees in arbitrary connected graphs.

7Observe that deciding, whether a particular vertex is an element of V +
u or V −

u respectively, can
be realized in O(1) time by assigning a bit to each of the vertices.

58 CHAPTER 3. FINDING VERTEX-REDUNDANT TREES

Chapter 4

Improving Redundant Trees

4.1 Introduction

In the previous chapter, algorithms for finding a pair of vertex-redundant trees were
discussed. Although redundant trees are useful for precomputed detours, these trees
have two significant drawbacks.

First, redundant trees always provide edge- or vertex-disjoint paths, so they can be
found only in 2-edge-connected or 2-vertex-connected graphs. Although we search for
such trees in communication networks, which are usually designed with redundancy,
several such networks do not fulfil 2-vertex-connected requirement even when they are
intact (e.g., see Abeline, AT&T in [SND] or Italian backbone in [GO05]). Moreover,
even networks with proper redundancy may easily lose this capability after a failure.

Naturally, any arbitrary connected graph can be partitioned into 2-edge-connected
or 2-vertex-connected subgraphs, and theoretically finding edge-redundant or vertex-
redundant trees in these subgraphs is possible, albeit providing always the maximum
redundancy (providing maximally edge- and vertex-disjoint paths simultaneously) in
this way can easily become complex. In this chapter, I generalize the concept of
redundant trees, in order to find decent spanning trees in any connected graph.

Second, the paths in several real networks are optimized somehow, thus usually
it is not enough to simply find maximally redundant trees, but they need to fulfil
some extra requirements. As an example, one may consider algorithm ReducedCostV
proposed by Zhang et. al. in [ZXTT05, ZXTT08]. As it was discussed in the previous
chapter, this algorithm uses heuristics in order to reduce the cost of redundant trees.

ReducedCostV was proposed for networks, where explicitly reserving resources
(links) for protection is needed. Since in IP networks link lengths are selected in

59

60 CHAPTER 4. IMPROVING REDUNDANT TREES

Figure 4.1. A pair of maximally redundant trees rooted at vertex d.

such a way that the shortest paths are the ones, which should be chosen, in these
networks it is more desirable to select trees, which contain short paths. Therefore,
in this chapter I propose heuristics, which do not ruin the linear complexity of the
distributed algorithm, and which make paths significantly shorter in average.

4.2 Finding Maximally Redundant Trees

Previously, the concepts of edge- and vertex-redundant trees were discussed. Since
paths in these threes are always edge-disjoint or vertex-disjoint, for finding such trees
2-edge-connectivity or 2-vertex-connectivity is needed. Now, I introduce the concept
of maximally redundant trees [C7, J4], which lifts this artificial assumption networks
may not be able to always fulfil.

Definition 4.2.1. Let an undirected graph be G with vertex r ∈ V (G). A pair
of maximally redundant trees of graph G rooted at r is a pair of branchings (see
Definition 2.3.1) rooted at r, such that the two paths along the two branchings from
any given vertex s 6= r to r have the minimum number of vertices in common.

Remark: Note that this definition says that the paths along maximally redundant
trees have only the unavoidable cut-vertices and cut-edges (a cut-edge has two cut-
vertices as endpoints) in common. In this way the paths are always as edge-disjoint
and as vertex-disjoint as it is possible.

A pair of maximally redundant trees is depicted in Figure 4.1.
As it will turn out, finding maximally redundant trees in a connected graph is

always possible. In this section we discuss the way of finding these trees rooted at
a single, arbitrary given vertex. There is also a distributed algorithm, similar to the
one presented in Section 3.4, for finding all the maximally redundant trees rooted at
not only one but each vertex simultaneously, which is discussed in Section 4.3.

4.2. FINDING MAXIMALLY REDUNDANT TREES 61

4.2.1 Generalized ADAG

The algorithm for finding maximally redundant trees is based on the same idea as
the one for finding simple redundant trees: an intermediate graph representation
called spanning Generalized ADAG is needed. Previously, only a simple definition of
ADAG was presented, which can be found only in 2-vertex-connected graphs. Now,
I generalize this concept.

Definition 4.2.2. Let D be a strongly connected digraph and choose an arbitrary
vertex r as global root. Consider a path from vertex x ∈ V (D) \ {r} to r. Let rx be
the first weak cut-vertex after x along this path. If there is no such vertex (so x is
a neighbour of r, or x and r are in the same weakly 2-vertex-connected component),
let rx = r. Let rx be the local root belonging to x and global root r. The global root
has no local root.

For simplicity, I also refer on global root as root. Moreover, in a graph with a
given root, rx denotes the local root of x in the sequel.

Definition 4.2.3. Let D be a strongly connected digraph with arbitrary chosen root
r. Let C be the set of the maximum (here means inextensible) weakly 2-vertex-
connected components of D. For each vertex x ∈ V (D) \ {r}, add x and rx with the
edges between them to C as a component, if there is no A ∈ C, such that x, rx ∈ V (A).
Set C is the set of clusters of D and root r.

Let rA ∈ V (D) be the local root of cluster A ∈ C, if rA = rx for all x ∈ V (A)\{rA}.
(Note that for all paths from A to r, rA is the last vertex in A.)

Definition 4.2.4. Let D be a strongly connected digraph with vertex r as root. Let
the set of clusters in D be C. D is a Generalized ADAG (GADAG) with r as a root,
if each cluster A ∈ C is an ADAG with rA as a root.

Remark : An equivalent definition is that D is a GADAG, if for all x ∈ V (D) there
is a directed cycle in D containing both x and rx, and A ∈ C is a DAG without rA.

Although one may find these definitions a bit complicated at the first time, it
is not so difficult to understand. Simply consider a GADAG as several ADAGs
“glued” together at the weak cut-vertices (the local roots) which are the roots of
these components1. Naturally, any ADAG D is a GADAG. Since an ADAG is weakly
2-vertex-connected, C has only one element, D itself, which is definitely an ADAG.

Next, I present a simple example. In Figure 4.2, a GADAG rooted at d is pre-
sented. This graph is made up by two weakly 2-vertex-connected components, a, b, f

1Note that r is a local root, albeit it is not necessarily a weak cut-vertex.

62 CHAPTER 4. IMPROVING REDUNDANT TREES

Figure 4.2. A Generalized ADAG rooted at vertex d.

(a) The graph and the new component. (b) The component is “glued” to the
graph.

Figure 4.3. Example for Lemma 4.2.1.

(let it be cluster X) and c, d, e (let it be cluster Y). Since there is no weakly 2-vertex-
connected component, which contains b and its local root e, so C also contains b and
e with the two edges between them as a cluster (let it be cluster Z). It is easy to see,
that rc = re = d, ra = rf = b, rb = e, rX = d, rY = b and rZ = e. Trivially, for each
vertex there is a directed cycle containing the vertex and its local root. Moreover,
without the local root, any of the three elements of C is a DAG, so the graph depicted
in Figure 4.2 is a GADAG.

Algorithm 3 computes a spanning GADAG in an arbitrary undirected connected
graph. Note that this is a version of Algorithm 2. The most important modification
is at Line 9, which is needed for entering a new 2-vertex-connected component; other
modifications are only important for finding multiple redundant trees, thus they will
be discussed later, here they do not influence the result. Trivially, if Algorithm 3 is
applied to a 2-vertex-connected graph, this modification at Line 9 means only that
ears found by walking down on the DFS tree are a bit shorter, but Lemma 3.3.2 and
Lemma 3.3.3 still holds true.

Lemma 4.2.1. Let G be an arbitrary connected graph with vertex r. With graph G

and vertex r as an input, Algorithm 3 always terminates, finds a spanning GADAG

4.2. FINDING MAXIMALLY REDUNDANT TREES 63

Algorithm 3 Finding a spanning GADAG for graph G and root vertex r. Note that
Line 2, Line 14 and Line 29 are needed only for finding multiple trees.
1: Compute a DFS tree using Algorithm 1. Initialize the GADAG D with the

vertices of G and an empty edge set. Create an empty stack S. Set the ready bit
at each vertex to false.

2: Set localRoot at each vertex to NULL
3: push r into S and set ready bit at r to true
4: while S is not empty
5: current← pop S
6: for each child n of current
7: if n is not ready then
8: while n is not ready
9: let e be the vertex from where n got its lowpoint number

10: n = e
11: end while
12: Let the found vertices be x0 → x1 → ...→ xk, where xk is ready, and

x0 is the neighbour of current. Set the ready bit at x0, x1, ..., xk−1 to
true and push them into S in reverse order, so eventually the top of
the stack will be x0, x1, ..., xk−1

13: Add edges in the path current→ x0 → x1 → ...→ xk to D.
14: if current = xk then
15: Set localRoot to current at x0, x1, ..., xk−1

16: else
17: Set localRoot to current.localRoot at x0, x1, ..., xk−1

18: end if
19: end if
20: end for
21: for each neighbour n of current which is not a child
22: if n is not ready then
23: while n is not ready and n got lowpoint number from current
24: let e be the parent of n in the DFS tree
25: n = e
26: end while
27: Let the found vertices be x0 → x1 → ...→ xk, where xk is ready and

x0 is the neighbour of current. Set the ready bit at x0, x1, ..., xk−1 to
true and push them into S in reverse order, so eventually the top of
the stack will be x0, x1, ..., xk−1.

28: Add edges in the path current→ x0 → x1 → ...→ xk to D .
29: Set localRoot to xk.localRoot at x0, x1, ..., xk−1.
30: end if
31: end for
32: end while

64 CHAPTER 4. IMPROVING REDUNDANT TREES

rooted at vertex r, and there is exactly one edge entering to the local root in each
cluster. Moreover, the cut-vertices of G are exactly the weak cut-vertices of D.

Proof. In order to keep the proof simple, in this proof I say that an undirected graph
with two vertices connected by a single edge is 2-vertex-connected. For such a graph
the first claim is trivially true. Moreover, thanks to Lemma 3.3.2 and Lemma 3.3.3
this claim is true for any 2-vertex-connected graph.

Next, I will use mathematical induction. We start from a 2-vertex-connected
graph, and add 2-vertex-connected components to it as follows: let the graph be
graph H the component be I; choose vertex x ∈ V (H) and vertex y ∈ V (I). Let
V (H ′) = V (H) ∪ V (I) \ {y} and E(H ′) = E(H) ∪ E(I) \ {{y, v} : {y, v} ∈ E(I)} ∪
{{x, v} : {y, v} ∈ E(I)} (depicted in Figure 4.3, uniting x and y). Note that any
arbitrary undirected connected graph can be constructed by “gluing” components in
this way.2

Suppose that after some components were added, the claim still holds true. Now,
add one more component, let it be component A. Component A has a vertex in
common with the previous graph (vertex x). The spanning GADAG of the graph
without A will be computed by Algorithm 3 as in the previous step of the induction.
In contrast, now, when x is popped from stack S, the algorithm enters to component
A and traverses A, as it was a 2-vertex-connected graph with x as a root, and adds
a new cluster to the GADAG found. In this way, the new resulting graph must be
a GADAG as well. Moreover, since Lemma 3.3.6 holds true for A, there is only one
edge in A entering to rA.

Now, suppose that there is a weak cut-vertex x of D, such that x is not a cut-
vertex of G. Since x is not a cut-vertex of G, it must be inside a 2-vertex-connected
component A of G, so all the neighbours of x are in A. Therefore, x is a weak cut-
vertex of the directed subgraph found in A as well. However, Algorithm 3 finds an
ADAG inside A, and there is no weak cut-vertex in an ADAG, which contradicts the
assumption that x is a weak cut-vertex. Naturally, since D is a spanning graph, all
the cut-vertices of G must be weak cut vertices of D.

Naturally, the computational complexity of Algorithm 3 is linear, since the proof
of Lemma 3.3.4 remains true for arbitrary connected graphs.

2One may think that two 2-vertex-connected components may be connected with a sole edge
without a common vertex, and it may seem that this case cannot be realized by this scheme. However,
observe that now two vertices connected by a sole edge is considered as a 2-vertex-connected graph,
thus this case can be realized in two steps.

4.2. FINDING MAXIMALLY REDUNDANT TREES 65

Figure 4.4. A possible DFS, the DFS and the lowpoint numbers.

Consider the network and the DFS traversal depicted in Figure 4.4. This DFS is
computed by Algorithm 1. Now, use Algorithm 3 for finding a spanning GADAG.
First, stack S contains d, so the algorithm starts from root vertex d, and then gets
to e. It walks down along the DFS tree, always choosing the eldest child, which
is vertex c, and ear e, c is found. The algorithm adds e and c to stack S (now it
contains “ec”), sets them ready and adds (d, e), (e, c) and (c, d) to GADAG D. The
next vertex popped out from S is e. Vertex e has a not ready child, vertex b. Since
b got its lowpoint number from e, the next ear found is vertex b alone, it is set to
ready, pushed on the top of S (which now contains “bc”), and the algorithm adds
(e, b) and (b, e) to D. Next, node b is popped out from S, and the algorithm finds ear
f, a, adds (b, f), (f, a) and (a, b) to D. Although the stack contains “fac”, the nodes
are all ready, so the algorithm terminates without adding any more edge to D. The
computed GADAG coincides with the one depicted in Figure 4.2.

4.2.2 Constructing the maximally redundant trees

In the previous subsection not the maximally redundant trees, but only an intermedi-
ate graph representation called GADAG was computed. Now, I present the technique
to construct the maximally redundant trees themselves. Naturally, the technique is
very similar to the one presented in the previous chapter.

Theorem 4.2.2. Perform a Breadth First Search (BFS) traversal from vertex r on
the spanning GADAG D, yielding a directed tree R. Perform a second BFS traversal
from r, but now taking the edges of D in reverse direction, yielding another tree B.
Now, R and B are a pair of maximally redundant trees, rooted at r (when the edges
are directed towards r).

Proof. Starting from an arbitrary given vertex x, and walking along tree R yields a
directed path from x to r taking the edges of D in reverse direction. Similarly, using

66 CHAPTER 4. IMPROVING REDUNDANT TREES

tree B yields a directed path taking the edges in normal direction. If x and r are in
the same weakly 2-vertex-connected component, the claim is trivial (Theorem 3.3.5).

Let the set of clusters be C, and let A ∈ C. Let the first vertex of the path from
x to r in R and in cluster A be a and the last be b. Vertex a must be either a weak
cut-vertex or x. Similarly, vertex b must be either a weak cut-vertex or r. Thus,
both the paths in R and B must contain both a and b. Since a and b are in the same
cluster of GADAG D, it is trivial on the same line as the proof of Theorem 3.3.5 that
the paths between a and b are vertex-disjoint. In this way only x, r and the weak
cut-vertices between them are contained by both paths, so R and B are maximally
redundant trees.

Now consider the GADAG depicted in Figure 4.2. The computed trees would
coincide with the ones depicted in Figure 4.1; tree R is the one marked with dashed
lines, and tree B is the one marked with solid lines.

4.3 Computing multiple maximally redundant trees

Previously, the way of computing a single pair of maximally redundant trees was
discussed. In this section, I show a distributed algorithm, similar to the one presented
in Section 3.4. At this point one may think that the algorithm for computing multiple
redundant trees would be able to compute maximally redundant trees as well, if the
computed intermediate graph was a GADAG. Unfortunately, this is not so simple.

The problem stems from the fact that the previous algorithm “knew”, which vertex
was the local root. Since there is only one local root if the graph is 2-vertex-connected,
the global root itself, it is possible to split this vertex into two. Fortunately, for
maximally redundant trees finding the local roots can be done by adding some extra
lines to Algorithm 2; these extra operations are at Line 2, Line 14 and Line 29 in
Algorithm 3.

One may observe that if and only if Algorithm 3 finds an ear with the same vertex
x as both endpoints at Line 7, the algorithm got in a new component A ∈ C. The
local root of this component is x.3 Both endpoints cannot be the same at Line 22,
since such ear could be found at Line 7 sooner. In this way finding the local roots is
easy, albeit it is still needed to know, which local root belongs to which vertex.

For vertex y in an ear with the same vertex x as both endpoints, this problem is
trivial, ry = x (first possibility at Line 14). Other vertices in this component would

3Note that this is a common technique for finding cut-vertices. Here, we do not need to execute
it separately, but we can find these vertices while the GADAG is being constructed.

4.3. COMPUTING MULTIPLE MAXIMALLY REDUNDANT TREES 67

have either two endpoints, which both have the same local root, or vertex x as the
first endpoint (in this case current = x) and another one, vertex z. At Line 14, z is
an ancestor of x thanks to Lemma 3.3.1, so ry = rx (second possibility at Line 14).
On the other hand, at Line 29, we walked upwards along the DFS tree, until we get
to a ready vertex, which is definitely a successor of x, so ry = rz.

Now, it is needed to guarantee that the paths are maximally vertex-disjoint. This
can be done similarly to the solution applied in Section 3.4: an order of the vertices is
needed. Unfortunately, creating the order is not so simple; when the graph is 2-vertex-
connected the only vertex ruining the DAG property is the root, and splitting this
single vertex can provide the possibility of a partial order. In contrast, in arbitrary
connected graphs all the local roots ruin the DAG property, and simply splitting them
cannot solve the problem.

The main idea for computing the outgoing edges of maximally redundant trees for
a given node x is to compute the trees first only for the 2-vertex-connected components
containing x, and finding the paths to remaining vertices only after it. Since a 2-
vertex-connected component contains only vertices with the same local root and the
local root itself, it is easy to separate the necessary parts of the GADAG.

Procedure 4 SetEdge(vertex x)

1: if hP
u (x) = NULL ∧ hS

u(x) = NULL then # Both, or neither is NULL
2: call SetEdge(rx)
3: hP

u (x) = hP
u (rx)

4: hS
u(x) = hS

u(rx)
5: end if

Algorithm 5 computes the edges of the maximally redundant trees going out from
a given vertex u. It is made up by two phases. In the first phase, it computes the
edges for trees rooted at vertices in clusters of D containing u. Then, in the second
phase, first the edges for the trees rooted at the global root are set, then the edges
belonging to all the remaining trees.

As one may observe, the first phase is almost the same as the algorithm presented
in Section 3.4. For vertices, which have vertex u as a local root, hP

u (x) and hS
u(x) are

the first edges along the paths computed by the BFS traversals taking the edges in
normal and reverse direction, which is exactly the same as Rule 4 in Theorem 3.4.1.
Moreover, for vertices which have the same local root, Phase 1 computes the same
edges as Rule 1, Rule 2 and Rule 3.

The second phase computes the vertices which are not in any of the clusters
containing u. For the global root r, the edges going out are trivially correct. For

68 CHAPTER 4. IMPROVING REDUNDANT TREES

Algorithm 5 Computing the primary and secondary edges for all root d (hP
u (d),

hS
u(d)) going out from a given vertex u.

1: For all d set hP
u (d) = NULL and hS

u(d) = NULL. Use Algorithm 3 for computing
a spanning GADAG D with a given r as root (r is the same for any given u).
Create digraph D′ by splitting local root ru into two vertices, so that edges only
enter to vertex r+u and only leave r−u . For each vertex x set x.V + = false and
x.V − = false. If u = r (r has no local root), do not split any of the vertices.

2:
3: # Phase 1: vertices in the same cluster
4:
5: Do a BFS traversal on D′ from u taking the edges in normal direction. Do not

visit vertex x, if x 6= r+u ∧x.localRoot 6= u∧x.localRoot 6= u.localRoot. At visited
vertex x set x.V + = true, and set hP

u (x) to the first edge along the path to x
computed by the BFS.

6: Do a BFS traversal on D′ from u taking the edges in reverse direction. Do not
visit vertex x, if x 6= r−u ∧x.localRoot 6= u∧x.localRoot 6= u.localRoot. At visited
vertex x set x.V − = true, and set hS

u(x) to the first edge along the path to x
computed by the BFS.

7: if u 6= r then
8: set hP

u (ru) = hP
u (r

+
u)

9: set hS
u(ru) = hS

u(r
−
u)

10: end if
11: for all vertex x 6= u, x.localRoot = u.localRoot
12: if x.V + = true then
13: set hS

u(x) = hS
u(ru)

14: else if x.V − = true then
15: set hP

u (x) = hP
u (ru)

16: else
17: set hP

u (x) = hS
u(ru)

18: set hS
u(x) = hP

u (ru)
19: end if
20: end for
21:
22: # Phase 2: other components
23:
24: if u 6= r then
25: set hP

u (r) = hP
u (ru)

26: set hS
u(r) = hS

u(ru)
27: end if
28: for all vertex x 6= r ∧ x 6= u
29: call SetEdge(x) # Procedure 4
30: end for

4.3. COMPUTING MULTIPLE MAXIMALLY REDUNDANT TREES 69

other vertices there is a recursion similar to a recursive lookup. Since both hP
u (r) and

hS
u(r) are computed, this recursion always computes an edge for the given vertex.

Theorem 4.3.1. Let an undirected connected graph G and vertex d be given. For all
u ∈ V (G), interleaving the edges hP

u (d) and hS
u(d) computed by Algorithm 5 makes up

a pair of maximally redundant trees rooted at d.

Proof. Let X be the computed GADAG, and let its global root be r. Let the set of
clusters of X be C.

First, I prove that Algorithm 5 always terminates and computes two edges, hP
u (d)

and hS
u(d), for any given vertex d. It is trivial that Phase 1 always terminates.

Suppose that there is vertex d, such that there is A ∈ C, d, u ∈ A and either hP
u (d)

or hS
u(d) is still NULL after Phase 1. If u = rd, both traversals reach d, so hP

u (d) and
hS
u(d) are set. Otherwise, if d.localRoot = u.localRoot, both d.V + and d.V − cannot

be true, since in this case both BFS traversals would reach d, which is impossible,
since all the cycles in A contains ru = rA. If only one of d.V + and d.V − is true,
then one of the edges is computed by the BFS traversals, and the other one is set at
Line 13 or Line 15. Since if none of them is true, the edges are set at Line 17, the
only possibility is d = ru. However, r+u .V + = true and r−u .V

− = true, so both hP
u (ru)

and hS
u(ru) are set at Line 8.

Phase 2 terminates, if Procedure 4 terminates. Since the recursion gets always
to the local root, sooner or later r is reached. If u = r, hP

u (r) and hS
u(r) are not

computed, however, all the cut-vertices in component(s) containing r are computed,
so the recursion stops before reaching r. Otherwise, hP

u (r) and hS
u(r) are already

computed, so Phase 2 terminates and we get edges as hP
u (d) and hS

u(d).
Next, I show that interleaving the edges makes up two paths from any vertex u to

any vertex d, which are as vertex-disjoint as possible. Naturally, since for any given
vertex x hP

x (d) and hS
x(d) are edges going out from x, interleaving these edges either

makes up paths from u to d (reaching d is possible) or walks, which contain cycles.
If there is A ∈ C, so that u, d ∈ A, the claim is trivial, thanks to Theorem 3.4.1.

Suppose that u and d are not in the same cluster. Create digraph T , and let V (T) =

C ∪ {r}. For all A ∈ C, r ∈ V (A) add edge (A, r) to T (observe that such an r can
only be the global root of X, since other vertices of X are not in T). Moreover, for
all A,B ∈ C, rA = rrB add edge (B,A) to T . Since a local root is always on the
path to r, r is reachable on a directed path from any vertex in T , so T is weakly
connected. Moreover, T is a directed tree, since each cluster has only one local root,
so there is only one edge going out from each x ∈ V (T) \ {r} and no edge leaves r,
so |E(T)| = |V (T)| − 1.

70 CHAPTER 4. IMPROVING REDUNDANT TREES

Let the cluster closest to r in T containing u be U , and similarly let the closest
cluster containing d be D (here closest means that the path from U or D to r has
minimum number of vertices). If U is on the path from D to r in T , Procedure 4
finds cut-vertex x in the cluster closest to D containing u, and sets hP

u (d) = hP
u (x)

and hS
u(d) = hS

u(x). Since any path from u to d contains x, the walks leave each
cluster at the right vertex, so both walks are paths and reach d. If U is not on the
path from D to r, then Procedure 4 sets hP

u (d) = hP
u (r) and hS

u(d) = hS
u(r). In this

way, the walks go up towards r in T until it reaches the first vertex P , which is either
on the path from D to r or which contains d, so there is no cycle again, and the
walks are paths. Since the paths inside a cluster are vertex-disjoint, the two paths
are maximally vertex-disjoint.

Next, I show that Algorithm 5 is linear in the number of edges.

Theorem 4.3.2. The computational complexity of Algorithm 5 is O(|E(G)|) for any
connected graph.

Proof. Computing GADAG D and doing the DFS traversals need O(|E(G)|) time.
The main question is the complexity of Procedure 4. Each time Procedure 4 is
called recursively (from the procedure itself), a vertex x is needed with hP

u (x) =

NULL and hS
u(x) = NULL, so it can be called recursively at most O(|V (G)|) times

altogether. Since it is called from Algorithm 5 |V (G)| times, the overall complexity
of the algorithm is O(|V (G)|+ |E(G)|) = O(|E(G)|) (the graph is connected).

4.4 Optimizing maximally redundant trees

In the previous section the way of computing a pair of maximally redundant trees
to each vertex as a root was discussed. There, the length of paths was not taken
into account, however it is very important for real applications. In this section,
I present linear time heuristics to cut these lengths down. Since finding a single
pair of redundant trees with short paths was already studied in [XCT02b, XCT03],
here I focus on the problem of decreasing the lengths of paths found by the previous
distributed algorithm.4 Thus, although the technique presented in the sequel optimize
the spanning GADAG, and such “better” GADAG would mean shorter paths for the

4I try to decrease the length of paths along both trees, so now we do not have a tree used for default
forwarding. Having a tree for default forwarding is needed for techniques like LFIR (Chapter 2),
but does not fit to techniques like Lightweight Not-via, an IPFRR technique being introduced in
Chapter 5. Here, I optimize for the later ones.

4.4. OPTIMIZING MAXIMALLY REDUNDANT TREES 71

centralized algorithm as well, I focus on the distributed algorithm here and in the
next section.

As it was already mentioned, my heuristics do not increase the computational
complexity of the previously discussed distributed algorithm. Minimizing the path
lengths in linear complexity can only mean minimizing the number of vertices of the
paths (so the edge lengths are uniform). Therefore, here and in the next section,
shorter or shortest path means the path with less or minimal number of vertices.
However, all the following techniques can be applied for arbitrary non-negative edge
lengths, if the BFS traversals in Algorithm 5 at Line 5 and Line 6 are exchanged
to two runs of Dijkstra’s algorithm. Naturally, in this case the overall complexity of
the algorithm is increased, it is equal to the complexity of Dijkstra’s shortest path
algorithm (O(|V (G)| log |V (G)|+ |E(G)|)).

The most important aspect influencing the number of vertices along the paths of
maximally redundant trees is the spanning GADAG; using a “better” GADAG, BFS
traversals can find better paths. Observe that when a GADAG is found, there can be
some edges in the original graph, which are not used in either direction. Adding these
edges in a direction, which keeps up the GADAG property may reduce the length of
paths.

Moreover, observe that for any vertex v, optimizing the whole spanning GADAG
is not necessary; it is enough to add some edges to the clusters of the GADAG, which
contain v. Since paths towards vertices in different clusters are paths towards a decent
cut-vertex, optimizing the paths in the local clusters optimizes all the paths.

Unfortunately, note that simply keeping up the GADAG property is not enough,
since Algorithm 5 needs special spanning GADAG, which has clusters fulfilling Lemma 3.3.6.
Therefore, adding edge in the direction entering to the local root must also be avoided.

Considering these observations, it is possible to construct some simple linear time
heuristics for some vertex v:

• Compute GADAG D of graph G with set of clusters C.

• For all A ∈ C, where v ∈ V (A), remove the single edge entering into rA. Make
a topological order where rA is the minimum element. Edges of G, used in D in
neither direction, can be added in a direction such that the source is the lower,
the target is the higher vertex with respect to the topological order.

Trivially, in this way the GADAG property is kept up, and no new edge entering
a local root is added. Moreover, since topological ordering is linear, these heuristics
do not increase the complexity of the algorithm.

72 CHAPTER 4. IMPROVING REDUNDANT TREES

Figure 4.5. The original GADAG of a simple graph (solid arrows), and the improved
GADAG (dashed and solid arrows).

Note that these heuristics can not only decrease, but also increase the number
of vertices of paths in the maximally redundant trees. The optimization definitely
decreases the length of paths, if two vertices are ordered. Unfortunately, if they are
not ordered, the sorter paths to the local roots may make the paths between the
source and the destination longer. Moreover, some unordered vertices may become
ordered in the improved GADAG, in this way the path lengths can increase too. In
the next section using extensive simulations, I prove that although some paths may
become longer, in average there is a significant decrease.

Next, I present a simple example. Consider the network in Figure 4.5. A possible
spanning GADAG is depicted in this figure by solid arrows. As one may observe,
there are some edges, edge {a, f} and {c, e}, which are not used in the GADAG in
either direction, so improving is possible.

This GADAG is made up by two clusters, the first one contains r, a, b, f and
the second one contains b, c, d, e. After removing the edges entering to r and b, the
topological orders are r ≺ a ≺ b ≺ f and b ≺ c ≺ d ≺ e. In the first component a ≺ f

and in the second component c ≺ e, so (a, f) and (c, e) can be added to the GADAG.
Naturally, as it was discussed above, only b computes both these edges, since only b

is in both clusters.

4.5 Evaluation of heuristics

Previously, some heuristics for decreasing the number of vertices of paths in maxi-
mally redundant trees were discussed. In this section, I study the efficiency of these
heuristics with extensive simulations. Moreover, observe that for 2-connected graphs
my results without heuristics are the same, as we would get with the original algorithm
described in Section 3.4.

For the simulations, I used both the graphs of real word and artificial networks,

4.5. EVALUATION OF HEURISTICS 73

Network Node number Suurballe Xue Prim. path Sec. path Prim. path Sec. path
w/o heur. w/o heur. w/ heur. w/ heur.

Abilene 12 – – 210% 212% 168% 171%
Germany 17 135% 136% 231% 230% 191% 190%
AT&T 22 – – 221% 224% 166% 167%
NSF 26 121% 124% 224% 222% 178% 174%
Italy 33 – – 248% 247% 175% 174%
Cost266 37 129% 154% 250% 253% 190% 194%
Germany50 50 118% 160% 304% 309% 212% 214%

Table 4.1. Average number of vertices along paths of maximally redundant trees in
real word networks (100% is the path with minimum number of vertices).

Node number Neighbours Suurballe Xue Prim. path Sec. path Prim. path Sec. path
w/o heur. w/o heur. w/ heur. w/ heur.

20 2 120% 147% 217% 224% 173% 174%
20 3 116% 155% 298% 313% 180% 181%
30 2 120% 147% 235% 243% 182% 182%
30 3 115% 152% 332% 352% 190% 190%
40 2 119% 148% 250% 259% 190% 189%
40 3 114% 151% 361% 385% 198% 197%
50 2 118% 148% 263% 273% 197% 195%
50 3 113% 150% 388% 415% 205% 203%

Table 4.2. Average number of vertices along paths of maximally redundant trees in
artificial networks (100% is the path with minimum number of vertices).

as previously. As real networks, I selected the Abilene, NSF, AT&T and 50 node
German backbone network from [SND], and the Italian, German and European
Cost266 backbone network from [GO05]. For each of these networks, I computed the
maximally redundant trees with respect to each vertex as root, and I averaged the
length of the resultant paths.

Random networks were generated in the same way, as in Chapter 2 and Chapter 3:
the topologies were generated by BRITE [MLMB05], using Waxman algorithm, with
random node placement and parameters α = 0.15 and β = 0.2. The number of nodes
varied between 20 and 50 and the number of neighbours was 2 and 3. In each case, I
made 250 000 random experiments to get the expected value of the length of paths.

Since several real networks are 2-vertex-connected when no failure exists, for these
topologies I computed two optimal vertex disjoint paths using Suurballe’s algorithm.5

Moreover, I also implemented the heuristics proposed by Xue et. al. in [XCT02b,
XCT03] for minimizing the path lengths of redundant trees. The mean of the lengths
of path pairs computed by these two algorithms and the lengths of paths computed
by Algorithm 5 with and without heuristics are presented in Table 4.1 and Table 4.2.

One may observe that paths get significantly shorter when the heuristics proposed

5Recall that these paths do not make up trees.

74 CHAPTER 4. IMPROVING REDUNDANT TREES

in Section 4.4 are applied. Unfortunately, these paths are significantly longer than
the optimal ones are. Thus, we can identify an interesting trade-off here: using
my maximally redundant tree algorithm instead of Suurballe’s algorithm or Xue’s
heuristics is clearly advantageous in performance-sensitive applications, because its
complexity is much smaller (linear, O(|E|)) than that of Suurballe’s algorithm (for
all the vertex pairs O(|V (G)|3 log |V (G)|)) or that of Xue’s heuristics (a tree rooted
at each vertex is O(|V (G)|3(|E(G)| + |V (G)| log |V (G)|))). On the other hand, my
technique gives suboptimal protection paths, whose length may be significantly larger
than the optimal path length. My simulations reveal that the increase is at most two-
fold, which not necessarily poses difficulties if these paths are only used for protection
in out-of-order situations, which, supposedly, only last a couple of seconds, and the
default paths can still be optimal shortest paths. But perhaps most importantly,
my algorithm is much better suited to certain applications, namely those based on
the hop-by-hop forwarding paradigm like IP, because in these applications we only
need the next-hops along the recovery trees instead of the entire protection paths as
returned by Suurballe’s or Xue’s algorithm. In the next chapter, I present such an
application.

Chapter 5

Lightweight Not-Via

5.1 Introduction

Previously, we have discussed redundant and maximally redundant trees, in order to
use them for IP Fast ReRoute. Now, in this chapter, we return to real networks, and a
possible application of these graphs is presented. We focus on the IPFRR technique
Not-via, and reconsider it using the possibilities of maximally redundant trees, in
order to overcome the drawbacks.

As it was discussed in Chapter 1, one of the most promising IPFRR techniques
is the one called Not-via [BSP10]. First, this technique is able to cover 100% of
single node or link failure cases, second, it does not need significantly new hardware
or protocol, third, Not-via has probably the strongest backing both in IETF and
industry among the techniques, which have 100% coverage. These facts make Not-
via a very likely future IPFRR standard.

As it will turn out in this chapter, despite Not-via is one of the best solutions
currently, it still has important drawbacks. In order to overcome these weaknesses,
I propose a new version called Lightweight Not-via, where the bases of rerouting
remained intact, but the detours are completely changed by applying maximally re-
dundant trees.

In the first part of this chapter, I introduce the original Not-via algorithm, and we
discuss its drawbacks experienced in real operation of a full fledged Not-via testbed
deployed at BME-TMIT [ST08, ERC+] by students I supervised. Then, I turn to
introduce a modified version of Not-via, called Lightweight Not-via [C5, C6, J4, P2],
which overcomes these problems. Finally, I present simulation and test results mea-
sured in a Not-via and Lightweight Not-via testbed, which confirm the efficiency of

75

76 CHAPTER 5. LIGHTWEIGHT NOT-VIA

this new technique.

5.2 IPFRR using not-via addresses

As it was discussed previously, the most important aspect of IPFRR techniques is the
way of local rerouting. Not-via uses explicit marking; it puts packets into an IP-in-IP
tunnel with a special destination address, sends it around the failure and puts it back
to its ordinary path as soon as it safely got past the failed component. This safe
decapsulation point is the so called next-next hop (NNH), the second closest node
along the shortest path tree. The NNH is certainly closer to the destination than the
encapsulating router, so it cannot loop back, and it is, hopefully, beyond the failed
component (the next hop). Moreover, observe that in this way both node and link
failures are handled, distinguishing the two types is not needed for the neighbour.

Additionally, a packet, while on detour, must be given special treatment to ensure
that it bypasses the failed component. Therefore, the destination address of the
tunnel describes not only the endpoint of the tunnel, but the failed resource as well.
This address comes from an address space safely isolated from ordinary addresses, so
that it has a distinct entry in the routing table facilitating to apply special routing
decisions.

Perhaps a simple example is in order. Consider the network depicted in Figure 5.1,
and suppose that a packet entering the network at node a is forwarded to the egress
node c. Furthermore, assume that the shortest path (marked by bold arrows) goes
through node b, but a suddenly loses contact with b. This is either because the link
{a, b} went down, or because node b failed. Repairing to the NNH, node c in this case,
protects against both events, so a encapsulates the packet in a new IP header and
passes it to node d. Note that if no special care were taken, then d would pass back
the packet along its shortest path to a, thus forming a forwarding loop. Therefore,
the encapsulated packet is destined to a special IP address, “c not via b” (denoted
shortly by cb), bearing the semantics “route this packet to node c without traversing
node b in any ways”. Node d accomplishes this by computing the route corresponding
to cb with b removed from the network. So d routes the packet through LAN l and
node e (or f) to node c, where it is decapsulated and sent further along its normal
path as if no failure had happened.

Unfortunately, the situation is not always so simple. Suppose for instance that it
is now b which loses contact to c. Now, b has no NNH to pass the packet to, since
c is the destination as far as b is concerned. This is the so called last-hop problem,

5.2. IPFRR USING NOT-VIA ADDRESSES 77

Figure 5.1. Sample network with IP routers a, b, c, d and e and LAN l. Bold arrows
mark the shortest path to c.

and Not-via resolves it by simply assuming that it is not node c that went down
but only the link {b, c}. Thus, it tunnels the packet to the same not-via address
cb as previously, which ensures that the packet avoids using link {b, c}. A similar
problem arises when a node detects the loss of a next hop that provides the only
connectivity to a certain destination. We cannot blatantly remove this next hop from
the topology, since this would disconnect all possible backup paths. This situation
is called the bridge problem, and it is handled similarly as the previous one. Finally,
there is the problem of LANs. Suppose that node d, willing to send a packet to e

through l, detects a failure in LAN l. In the simplest case, d pessimistically assumes
that the entire LAN went down with all the routers attached to it. This way, we need
only one not-via address to cover the failure of the LAN and we do not need costly
point-to-point liveliness detection between each neighbour. In our case, however, this
simple LAN repair mechanism would cause d losing all connectivity to e, even if d
supposes that e is still alive (e is in the LAN too). If, on the other hand, failure
detection has the granularity to distinguish particular neighbours in the LAN, then
d can decide whether the LAN or a router went down; losing multiple connections is
likely to be the result of a LAN failure. Therefore, if LAN l is down, d can tunnel
the packet into el (denoting that LAN l is unavailable). However, if the shortest
path from c to e is c → b → a → d → l → e and the second shortest without d

is c → f → l → e (e.g. the direct link has very low capacity), node a would need
to use another address ed when it lose connection to d. Hence, generally we need
distinct not-via addresses with respect to all possible combinations of neighbours in
the LAN, plus one more protection address for each node, which describes that the
LAN is down, so the number of IP addresses needed by Not-via scales quadratic with
the number of nodes in LANs, as it is described in [BSP10].

78 CHAPTER 5. LIGHTWEIGHT NOT-VIA

Despite these issues, Not-via is still a practical and rather straight-to-the-point so-
lution. It handles all single link and node failures, it is robust against multiple failures1

and it has strong and stable industrial backing. In contrast to most IPFRR proposals,
it does not require significant changes to legacy IP equipment. What is more, it is im-
plementable in the fast-path. It is for these reasons that we chose Not-via to base our
IPFRR testbed onto. The testbed, deployed at BME-TMIT, consists of a handful of
PC routers running GNU/Linux, complete with kernel-based fast failure detection us-
ing Bidirectional Forwarding Detection [KW08], full support for communicating with
the IGP to query topology information, globally synchronized transient-to-persistent
failure switch-over and a distributed measurement system [TL07, ST08]. After deal-
ing with all the intricacies of implementing the standard and experimenting with it
in operation, it is possible to identify some of its pressing limitations.

Burdening address management: The first question an implementor inevitably
faces is how to assign and distribute not-via addresses. As of this writing, there is
no official protocol support for advertising not-via addresses into the routing domain.
The situation is worsened by the fact that a not-via address has a compound meaning,
as it encodes both a destination node and a component to be bypassed, and there is
currently no way to communicate this rich semantics between routers. As a work-
around, network operators resort to statically assigning local not-via addresses and
concocting ad-hoc policies like “the IP address *.*.X.Y/32 means router X not via
component Y ”. Such policies, however, are inflexible and subject to human configu-
ration errors, and they break down rapidly as the network increases. Just the sheer
number of not-via addresses can pose problems: the simple network of Figure 5.1
would require a total of 26 not-via addresses, which all appear in the routing tables
and are all subject to individual routing calculations.

Considerable computational overhead: In an ordinary IP network, the next hops
towards all destinations are obtained by a single shortest path tree (SPT) calcu-
lation. With Not-via, a router must execute as many SPT instances as there are
components that can fail, with the failed component removed from the topology.
Using some simple heuristics one can go down to some few dozen additional SPT
calculations [LFY07], which is still significant. Note that substantial additional costs
is needed to be paid due to having to deal with an increased number of entries in the
routing tables, establish, maintain and tear down tunnels, etc.

Complexity and special cases: As mentioned above, Not-via brings in subtle intri-
cacies into routing and in many cases it overrides well-known IP routing mechanisms.

1It is easy to detect second failure along a detour, since packets have special destination address.

5.3. AN IMPROVED LIGHTWEIGHT NOT-VIA 79

Figure 5.2. Sample network. Bold arrows mark the shortest path to C, dashed
arrows mark the primary and solid arrows mark the secondary maximally redundant
tree rooted at C.

The corner cases, discussed above, make implementations convoluted and operation
of the protocol hardly tractable by operators.

In Section 5.4, I support the above claims with measurement results obtained on
an operational IP testbed. In addition, note that similar observations were reported
in the literature [LFY07]. In the next section, I propose deliberate modifications to
Not-via in order to remove, or at least mitigate, these compelling issues.

5.3 An improved lightweight Not-via

Perviously the original Not-via technique was discussed. In this section, I modify the
way of computing detours of Not-via by applying the concept of maximally redundant
trees.

I define Not-via over maximally redundant trees in the following way (Figure 5.2).
Suppose a has a packet to send to node c. As long as its default next hop, b, is alive, a
simply passes the packet to b. Moreover, for resilience purposes a has computed a pair
of maximally redundant trees (a primary and a secondary) rooted at c. If, however, b
goes down, a must find a backup path, or at least a next hop that can push the packet
further, towards c. So it encapsulates the packet and sends it along the primary tree
to d. Assuming that d computed the exact same maximally redundant tree to c (which
is not hard to ensure), d will pass the packet through LAN l (LANs are considered
as vertices; further details in Section 5.3.2) and node e sends it to c, where it is
decapsulated and sent further. If, instead, it is now node e that has to get a packet to
c and it finds that connectivity to c went away, both its shortest path and its primary
backup path are affected by the failure. In this case, the packet is encapsulated to

80 CHAPTER 5. LIGHTWEIGHT NOT-VIA

the secondary backup path and sent through l to b. Note that the secondary backup
path cannot be impacted by the failure in this case, as it is node disjoint from the
primary path. Finally, a packet forwarded along the primary path gets rerouted to
the secondary path, when it encounters a failure (this might be the very same failure
that pushed the packet to the detour in the first place) but not vice versa.

5.3.1 Redefining the semantics of not-via addresses

In Lightweight Not-via, a node v has only three addresses: a default routable IP
address, denoted by Dv, an IP address Pv that belongs to the primary tree and an
IP address Sv that belongs to the secondary tree. The address space is, correspond-
ingly, split into three disjunct zones: a default routable address zone D, a primary
backup address zone P and a secondary backup zone S. There are distinct entries
in the routing table for all three addresses for each node, and there is a common
understanding between routers as to which address belongs to which zone. A router,
therefore, always unambiguously knows along which path it received a packet.

In order for a router to participate in the forwarding process, it needs to compute
the next hop corresponding to any of the potential destination addresses it can find
in a packet. In our case, the next hop corresponding to the default routable address
of some node v, Dv, is obtained from the shortest path tree, and can be computed
for all nodes in one pass spawning a single instance of Dijkstra’s algorithm. The next
hops for the primary and the secondary backup addresses, Pv and Sv, are obtained
from computing a pair of maximally redundant trees to v. As it was discussed in
Chapter 4, it is possible to compute the edges going out from a given node for all
the maximally redundant trees in O(|E(G)|) time. Since these edges, going out from
a given node, are the next hops, it is easy to compute all the needed information,
and the computation will still be dominated by the Dijkstra’s algorithm computing
the default hops (O(|V (G)| log |V (G)| + |E(G)|)). In contrast, computing the de-
tours for the original Not-via takes O(|V (G)|(|V (G) log |V (G)| + |E(G)|)) even for
point-to-point networks. These ideas are presented in Algorithm 6, where nh(X) and
nnh(X) represents the next hops and the next-next hops respectively towards node
with address X .

The forwarding process, responsible for passing a packet further towards the des-
tination address, is given in Algorithm 7. Note that the operation push X in routing
terminology means “encapsulate the packet into an IP-in-IP tunnel and set its outer
destination address to X ”. The operation X ← pop does the reverse: decapsulates
the packet and puts the address of the innermost IP header to X .

5.3. AN IMPROVED LIGHTWEIGHT NOT-VIA 81

Algorithm 6 Calculation of routing entries for interior nodes at node u, given net-
work G(V,E)

1: Run Dijkstra’s algorithm on G(V,E) to find the next hops nh(Dv) for each v ∈
V \ {u}. If nh(Dv) 6= v compute the next-next hop on this shortest path tree and
let them be nnh(Dv). If nh(Dv) ≡ v, let nnh(Dv) = nh(Dv).

2: Run Algorithm 5 for computing the edges of redundant trees going out from u.
Let the target of the primary and secondary edge of the trees rooted at a given
node v be node tPv and tSv .

3: for each node v ∈ V \ {u}
4: nh(Pv) = tPnnh(Dv)

5: nh(Sv) = tSnnh(Dv)

6: end for

It is easy to see intuitively that this forwarding rule is correct. First, in the absence
of failures, packets get to their destination along the shortest path as usual. In case
of a single failure, a packet first gets to the NNH along either the primary or the
secondary backup path, if the network remained connected. Both backups cannot be
affected by the failure at the same time, as they are maximally redundant. So single
node or link failures are handled correctly. Finally, packets cannot get into loops in
the presence of multiple simultaneous failures or in single failure cases, which split the
network into two, as a packet is unconditionally dropped and restoration is started
when it meets a failure along the secondary path.

Without these modifications, a not-via address covers only a single failure scenario.
After redefining Not-via in terms of maximally redundant trees, a not-via address pro-
tects many components: the primary backup address protects components along the
default path and the secondary backup protects the primary backup. Consequently,
in this way the number of necessary addresses is decreased to 2 per node, a constant
per router (note that 2 not-via addresses per node is the absolute minimum achievable
with the original Not-via, only realizable in point-to-point rings). This, obviously, al-
leviates the pain of assigning not-via addresses, helps shrinking routing tables and
reduces the number of tunnels, in this way mitigating many of the address manage-
ment issues traditional Not-via raises. Additionally, distributing not-via addresses
with the IGP also became easier: a router can, for instance, advertise three addresses
either as loopback, or as virtual stub interfaces or using some multi-topology IGP
extension [PMR+07], and other routers can follow the policy that the lowest such IP
address is the default, the second lowest one is the primary backup and the largest
one is the secondary backup address. This was impossible with the original Not-via

82 CHAPTER 5. LIGHTWEIGHT NOT-VIA

Algorithm 7 Forwarding process at node u for a packet destined to address A, given
the set of unavailable neighbours F

1: if A = Pu or A = Su then
2: A ← pop
3: end if
4: if A = Du then
5: consume the packet
6: end if
7: if A ∈ D and nh(A) ∈ F then
8: let v be the NNH to A
9: if nh(Pv) /∈ F then

10: push Pv and forward packet to nh(Pv)
11: else if nh(Sv) /∈ F then
12: push Sv and forward packet to nh(Sv)
13: end if
14: end if
15: if A ∈ P and nh(A) ∈ F then
16: X ← pop
17: SX ← the secondary backup address for X
18: if nh(SX) /∈ F then
19: push SX and forward packet to nh(SX)
20: end if
21: end if
22: if nh(A) /∈ F then
23: forward packet to nh(A)
24: else
25: drop the packet and start restoration
26: end if

5.3. AN IMPROVED LIGHTWEIGHT NOT-VIA 83

due to the complex semantics born by not-via addresses.
What is more, in certain cases one can avoid using not-via addresses completely.

In a traditional IP network, a router holds separate, globally routable IP addresses
for each of its interfaces. Lightweight Not-via can safely use these addresses as not-
via addresses. Say, a router has a routable loopback address (the one management
uses to reach the router, or the one (i)BGP runs at, etc), and at least two interfaces
with distinct, unique IP addresses. Now, we can designate the loopback as the default
routable address, the smallest interface address as the primary backup address and the
second smallest one as the secondary. Since these addresses are always disseminated
by the IGP, other routers can easily learn which address belongs to which address
zone. Note, however, that applications directly addressing any of the interfaces lose
fast protection, because their traffic automatically travels through an unprotected
backup path. This can be avoided by addressing routers through the loopback, as it
is usually the case with applications talking to IP routers.

While in a conventional IP network this technique removes the need to maintain
additional not-via addresses, it must be emphasized that it is not applicable to any
arbitrary IP network. Namely, IP backbones running over unnumbered point-to-
point links (e.g., MPLS LSPs) still need to maintain at least two additional not-via
addresses per router, since interfaces usually don’t have unique IP addresses assigned
in such cases.

5.3.2 Removing corner cases

Not-via has some subtle details, making it more difficult to implement correctly and
understand in operation. Though, redefining Not-via in terms of maximally redundant
trees removes most of the corner cases.

For instance, bridge problem is immediately solved, since maximally redundant
trees pass through bridges. Moreover, LAN problem is solved too. It is possible to
consider a LAN as a vertex in the graph of the network, and we can compute a pair
of maximally redundant trees in this new graph as well. Since paths on maximally
redundant trees try to avoid common vertices, one of the trees always bypass the
LAN if it is possible. One may observe that in this way the only difference between
vertices representing IP nodes in the network and vertices representing LANs is that
it is not needed to compute a pair of redundant trees rooted in LAN vertices.

At first one may think that Algorithm 5 may have difficulties when needs to deal
with LANs, since sometimes the edges computed by this algorithm would terminate
in a LAN vertex, which cannot tell the next hop in IP network. However, this problem

84 CHAPTER 5. LIGHTWEIGHT NOT-VIA

can be easily handled by modifying the two BFS traversals at Line 5 and Line 6 in
such a way that when they get to a node x after leaving a LAN vertex neighbouring
starting vertex u (in this case x must be a router), hP

u (x) or hS
u(x) should be the edge

leaving the LAN vertex, not the previous one entering to it.
Unfortunately, maximally redundant trees do not remove the last hop problem.

This can be treated as the original technique does: if there is no next-next hop (since
the next hop is the destination), try to send the packet to the next hop on a detour.

5.3.3 The endpoints of detours

Observe that there are at least three candidates for the endpoints of detours. Although
the original Not-via was limited to select the next-next hop, in order to more or less
limit the number of protection IP addresses, we can tunnel to the destination (the
egress router in a transport network), the next-next hop or the first node closer to
the destination. All the possibilities have their pros and cons.

Tunneling to the destination helps further lowering the number of IP addresses; if
the endpoints of a detours can only be egress routers, only these routers need extra IP
addresses, in this way the number of IP addresses, management cost, computational
cost (less maximally redundant trees are needed) and forwarding table entries can
be decreased. On the other hand, these paths would mean that the endpoints of
detours get quite far away, and since these detours are longer than the shortest paths
(Section 4.5), detours may become unnecessarily long.

Tunneling to next-next hop (as Not-via does) keeps the detours relatively local,
and the endpoint selection simple. The most important complication with this pos-
sibility raises, when the next-next hop is a LAN2, which cannot decapsulate packets.
In this case the next-next IP hop must be selected (which is the next-next-next hop
on the shortest path in the graph containing both routers and LANs). Considering
even this special case (what is much simpler than assigning extra addresses to LANs
as Not-via does), it is possible to keep the protection overhead at a low level even in
this way.

Undoubtedly, the best endpoint candidate would be the nearest node along the
maximally redundant trees, which never sends the packets back, which is definitely
closer to the destination. Unfortunately, since there is no strict connection between
the shortest paths and the paths along the maximally redundant trees, the simplest
way to find this node is to check all the trees inside the same cluster of the GADAG.

2Recall, that LAN problem is handled by considering LANs as vertices.

5.4. PERFORMANCE EVALUATION 85

Naturally, this is quite complicated, and can easily increase even the computational
complexity.

Considering the reasoning above, Lightweight Not-via is defined so that it selects
the next-next hop as an endpoint. Therefore, in the next section, the performance
evaluation of this version is presented.

5.4 Performance evaluation

It is sure that it is not some deep theoretical limitation or trade-off that hampers the
wide-scale deployment of IPFRR the most, but rather a couple of very technical and
very concrete practical issues. In order to confirm this claim, we implemented and
tested both the prevailing IPFRR proposal, Not-via, and also Lightweight Not-via in
an operational IP testbed. In the rest of this chapter, I report on the most important
observations.

The test system is a full-fledged Not-via prototype, deployed on 9 PC routers
running a stock Debian GNU/Linux distribution, the Open Shortest Path First rout-
ing protocol (OSPF) from the Quagga suite of routing daemons [Qua] and kbfd, a
kernel-based implementation of the Bidirectional Forwarding Detection [KW08] pro-
tocol. In order to be able to react to failures as rapidly as possible, a Not-via daemon
takes over the responsibility of failure detection and forwarding table maintenance:
it keeps a BFD session with all neighbours, learns topology information from OSPF,
computes the next hops corresponding to all ordinary and not-via addresses and it
builds a distinct forwarding table with respect to every potentially failing neighbour
(plus the default table). This way, when BFD signals the loss of contact to one of the
neighbours, the router simply switch to the corresponding forwarding table without
having to selectively update the entries affected by the failure one by one. Addition-
ally, in the case of a persistent topology change, the forwarding tables are completely
rebuilt. Although this implementation strategy leaves some quite obvious room for
potential improvement, I still believe that my results are indicative as to how much
resource a streamlined IPFRR implementation actually uses. In addition, this design
makes it possible to modularize the code and hence to easily incorporate Lightweight
Not-via proposal.

My first experiences were aimed at measuring the raw failure recovery speed. I
found that IP Fast ReRoute is just what it promises to be: fast. Configuring BFD so
that any failure is detected in at most 9 ms, but no sooner than 6 ms (BFD interval
= 3 ms, BFD multiplier = 3), Not-via repairs single link and node failures in 16.65

86 CHAPTER 5. LIGHTWEIGHT NOT-VIA

Figure 5.3. Number of additional addresses for the original and lightweight Not-via
in commonplace ISP topologies (number of nodes is given in parentheses), with every
fifth node substituted by a LAN.

ms on average and 18.5 ms at maximum, irrespectively of the actual topology or
the nature and the location of the failure. With conventional OSPF, on the other
hand, one can measure anything between 120 ms to several seconds depending on the
specifics of the topology, the configuration of the routing protocol, the actual failure
detection technique, etc. This fact may alone motivate IPFRR enough.

Next, I studied how many additional addresses Not-via needs. I chose some net-
work topologies, which were previously used: the Abilene, NSF and the AT&T topolo-
gies from [SND]; the German (Germany), Italian (Italy) and the European (Cost266)
backbone topologies from [GO05]; an extended 50 node version of the German back-
bone (Germany50, [SND]); plus two random network topologies: one of 75 nodes
(Top75) and one of 100 nodes (Top100), both generated by the BRITE tool [MLMB05]
using the router-level Waxman model (m = 4). Naturally, it was impossible to build
up such huge networks like the previous ones with the limited number of PCs I had,
so I modified the code, and made it possible to inject topologies into a router; in
this way the router executed exactly the same computation as the topology was the
studied one, only the topology exploring part of the operation was simulated. Since
the type of the links is not specified in these topologies, I repeated the measurements
first with every link set as a point-to-point link, and then with substituting every fifth
node (20%) with a LAN connecting the neighbours of the node.

5.4. PERFORMANCE EVALUATION 87

Figure 5.4. Execution time of computing the forwarding tables and configuring the
forwarding engine for the original and the Lightweight Not-via, with every fifth node
substituted by a LAN.

Not-via Lightweight Not-via
Topology w/o LANs w/ LANs alt to w/o LANs w/ LANs alt to

Name node link addr route addr route nnh addr route addr route nnh
Abilene 12 15 30 196 33 260 3.7 24 187 20 180 5.3
Germany 17 26 50 318 68 371 3.6 34 272 28 238 5.8
AT&T 22 39 76 460 92 470 3.2 44 357 36 324 5
NSF 26 44 88 542 120 612 3.5 52 425 42 370 6.1
Italy 33 56 112 703 145 780 3.7 66 544 52 478 6.3
Cost266 37 57 114 736 150 1078 3.9 74 612 60 628 7
Germany50 50 88 176 1110 242 2576 3.8 100 833 80 1102 7.2
Top75 75 300 600 3330 969 9098 2.6 150 1258 120 1860 5.2
Top100 100 400 800 4457 1895 17490 2.6 200 1683 160 2490 5.8

Table 5.1. Forwarding table operations (route), the total number of not-via addresses
in the network (addr) and the number of vertices along the alternative paths to the
next-next hops.

88 CHAPTER 5. LIGHTWEIGHT NOT-VIA

My measurements were primarily aimed at identifying the management cost of
Not-via. I found that considerable management complexity arises from the need
to hand out and maintain vast numbers of not-via addresses. Figure 5.3 gives this
number for both the original Not-via and Lightweight Not-via, as computed by the
prototype system for some commonplace ISP topologies (exact values are presented in
Table 5.1). Observe that using lightweight Not-via the number of additional addresses
remains modest even in very large topologies with LANs.

Obviously, configuring several thousands of not-via addresses by hand is next to
impossible, and it remains cumbersome and prone to human errors even using some
centralized network management software. The problem is worsened by the need to
retain the compound semantics of not-via addresses in a consistent manner all over
the network. But it is not only central network management that is overwhelmed
by the sheer volume of not-via addresses: just dealing with so many addresses can
overload even the IP routers themselves. Every single not-via address handed out
in the network comes at a high price: a distinct forwarding table entry must be
computed and configured, an IP-in-IP tunnel needs to be set up for those addresses
that can potentially be local or remote endpoints of detours, etc. Table 5.1 gives an
idea of the magnitude of the address management load, in terms of the number of
forwarding table operations involved. Results are given for the original Not-via and
the Lightweight Not-via both with and without LANs. Note that it is only necessary
to execute all these steps when the topology changes persistently, but even in this
case managing so many forwarding entries can be a tedious task. To confirm this
claim, I measured the time spent by a router from computing the next hops until
the forwarding entries are all downloaded into the forwarding engine. The results are
given in Figure 5.4.

The time needed to compute the forwarding tables for the original Not-via grows
dramatically in increasingly sized networks, to the point that it takes tens of millisec-
onds for larger topologies. My measurements indicated a very visible improvement
with the Lightweight Not-via in this regard, thanks to the technique for finding max-
imally redundant trees in linear time, which was introduced in the previous chapter.
However, forwarding table calculation time straight-out vanishes when compared to
the amount of related management work: configuring the forwarding engine with sev-
eral thousand entries easily bogs down a router for half a second or even more. While
this observation might be surprising, it is in line with the rest of the literature [SG01].

Finally, observe that original Not-via uses always a shortest possible path for get-
ting to the next-next hop without using the next-hop. Unfortunately, paths along

5.4. PERFORMANCE EVALUATION 89

redundant trees applied by Lightweight Not-via must be longer even if heuristics pro-
posed in Section 4.5 are applied, which brings up a trade-off: while Lightweight Not-
via significantly decreases management and computational complexity, it increases
the lengths of these detours (see Table 5.1). However, as my results have shown, this
increment takes only some extra hops (about 2–3), and since these paths are used
only for a short time while restoration reconfigures the network, this drawback can
be acceptable for most networks.

Thus, my measurement results cast Not-via in a completely different light: al-
though the computational complexity of Not-via is substantial, yet it is the extra
management burden caused by the extension of the address pool that dominates its
complexity. My measurements reproduce this burden spectacularly even in small and
middle-sized topologies, and we can expect it to become prohibitive in larger net-
works. On the other hand, it is exactly this burden where the advantages of the
Lightweight Not-via really manifest themselves: the time of computing the next hops
and configuring the forwarding engine decreases by an order of magnitude into the
range of some few hundred milliseconds, which falls well within the time range con-
temporary IP routers perform ordinary shortest path routing [SG01]. I believe that
these advantages can easily compensate that Lightweight Not-via use slightly longer
detours.

90 CHAPTER 5. LIGHTWEIGHT NOT-VIA

Chapter 6

Conclusion

In this dissertation, I studied the efficiency of IP Fast ReRoute proposals. These
mechanisms are currently studied heavily, because of the increasing importance of IP
networks. Since these networks suffer from the lack of a native protection scheme,
operators are forced to use some extra network layers (e.g., MPLS) in order to fulfil
QoS requirements imposed on IP networks nowadays. Since using MPLS just for
providing fast convergence is not acceptable for several operators, currently serious
efforts are being taken in order to endow IP with protection capability.

In the first chapter, we reviewed the the principles of IPFRR, and current pro-
posals. Then, we observed, that there are several requirements a modern IPFRR
technique must fulfil. We also found that none of the current proposals is able to
fulfil all of these requirements. Based on these observations, I was able to construct
better solutions.

In Chapter 2, the possibilities of interface-based forwarding were discussed. Al-
though it is hard to realize such a router, since the forwarding mechanism is needed
to be changed, it is definitely possible. We found that the most important drawback
of these techniques is their unavoidable prone to form loops, if shortest paths are
used for default forwarding. Next, based on this observation, I proposed a technique,
which can always avoid loops for the price of a bit longer paths.

However, the most important finding of Chapter 2 is not LFIR itself, but the
observation that decent spanning trees can be extremely well applied for IPFRR.
Therefore, in Chapter 3 and Chapter 4, we discussed the well studied field of redun-
dant trees. Here, I proposed the first linear time algorithm, capable to find a pair
of redundant trees rooted at each vertex. Moreover, I generalized the concept of
redundant trees, introduced maximally redundant trees, and proposed linear time al-
gorithms for finding maximally redundant trees both with centralized and distributed

91

92 CHAPTER 6. CONCLUSION

manner.
Finally, I applied maximally redundant trees for creating Lightweight Not-via,

an IPFRR technique improving Not-via. Considering my research objectives (Sec-
tion 1.4), Lightweight Not-via is the only proposal capable to fulfil all the require-
ments. Simple solutions are immediately ruled out by the requirement of 100% single
failure coverage. Not-via and MRC need too many addresses, which raises heavy
management problems. Most of the interface-based mechanisms are unacceptable
too, since they can create FRR loops. The technique presented in [KRKH09] is not
acceptable, since it is not able to handle node failures. Although IPRT is very close to
Lightweight Not-via, unfortunately, this technique is not capable to handle networks,
which are not 2-vertex-connected.

LFIR is not capable to handle node failures, albeit it is theoretically possible to ex-
change edge-disjoint branchings to maximally redundant trees. However, observe that
this revised LFIR would still have an important drawback compared to Lightweight
Not-via: it would use interface based forwarding, which requires a possible, but still
quite difficult change in the forwarding engine, and avoiding the changes as much as
possible was one of the main requests.

6.1 Further possibilities

Currently, there is a high pressure on router vendors: on one hand, several operators
need native IP protection in order to avoid using MPLS and guarantee QoS criteria
in the same time, while on the other hand, as it turned out from this dissertation,
the industry has not yet found a satisfying standard. Therefore, router vendors like
Cisco, Juniper, Alcatel-Lucent or Ericsson (formerly RedBack) have already imple-
mented or just implementing LFA into there products, but naturally, LFA cannot be
a permanent solution with its very limited protection capability.

Hence, Ericsson has started its own research project, where I continue my work.
The results of this and other projects, which undoubtedly run at other companies,
will be applied in real networks in some years. It seems that the time of IPFRR has
just come; it has got out from universities and research labs, and we have a great
chance that IP finally gets rid off one of its fundamental weaknesses.

Index

ADAG, see Almost DAG
Algorithm

Lovász’s algorithm, 32
Suurballe’s algorithm, 73
Xue’s algorithm, 70, 73
Zhang’s algorithm, 39

Almost DAG, 45
computing, 45
generalized, see Generalized ADAG
relation with st-numbering, 52

Ancestor, 19

Branching, 28

Child, 19
Complexity, 19

DFS number, 44

Ear, 40
ECMP, see Equal Cost MultiPath
Edge-Disjoint Branchings, 28
Equal Cost MultiPath, 9

Failure Inferencing based Fast Rerouting,
11, 22

Failure Insensitive Routing, 22
FIFR, see Failure Inferencing based Fast

Rerouting
FIR, see Failure Insensitive Routing
FRR loop, 7

GADAG, see Generalized ADAG

General Assumptions, 17
Generalized ADAG, 61

computing, 62, 65, 66
optimizing, 70

Graph
connectivity, 19
generalized, 18
simple, 18

Interface-Based Forwarding, 10
creating loops, 23, 34

Intermediate System to Intermediate Sys-
tem, 5

Internet Protocol, 3
IP, see Internet Protocol
IP Fast ReRouting, 4

alternate topology, 14
explicit marking, 12, 14
implicit marking, 10
multicast, 15
no marking, 9
principles, 4
proposals, 8
requirements, 4, 16
tunnelling, 12

IP Redundant Trees, 13
IPFRR, see IP Fast ReRouting
IPFRR tunnels, 12
IPRT, see IP Redundant Trees
IS-IS, see Intermediate System to Inter-

mediate System

93

94 INDEX

LFA, see Loop-Free Alternates
LFIR, see Loop-free Failure Insensitive R.
Lightweight Not-via, 14, 75, 79

corner cases, 83
endpoints of tunnels, 84
evaluation, 85
IP addresses, 80

Linecard, 11, 21
Local rerouting, 5
Loop-Free Alternates, 9
Loop-free Failure Insensitive Routing, 11,

23, 27
2-edge-connected networks, 27
evaluation, 33
implementation, 31
non-2-edge-connected networks, 30

Lowpoint number, 44

Maximally Redundant Trees, 14, 60
computing, 60
evaluation, 72
optimizing, 70

MRC, see Multiple Routing Configurations
Multiple Routing Configurations, 14

Not-via, 12, 76
problems, 78

Notations, 18

Open Shortest Path First, 5
OSPF, see Open Shortest Path First

Packet marking, 6
Parent, 19
Partial order, 2, 55
PIM, see Protocol Independent Multicast
Proactive, 2, 6
Protection, 2

Protocol Independent Multicast, 15

Real-time traffic, 3
Recovery, 1
Redundant Trees, 37

computing, 39, 43, 50, 54
distributed computation, 54
edge-redundant trees, 37
evaluation, 51
vertex-redundant trees, 37

Redundant Trees – computing, 55
relaxed Multiple Routing Configurations,

see Multiple Routing C.
Research Objectives, 16
Restoration, 1
rMRC, see Multiple Routing C.

st-numbering, 52
Successor, 19

U-turn Alternates, 10

References

[ABS96] F. Annexstein, K. Berman, and R. Swaminathan. Independent spanning trees
with small stretch factors. Technical report, 1996.

[AJY00] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards milli-second igp con-
vergence. Internet Draft, available online: http://tools.ietf.org/html/
draft-alaettinoglu-isis-convergence-00, November 2000.

[Atl06] A. Atlas. U-turn alternates for ip/ldp fast-reroute. In-
ternet Draft, available online: http://tools.ietf.org/html/
draft-atlas-ip-local-protect-uturn-03, February 2006.

[AZ08] A. Atlas and A. Zinin. Basic specification for IP Fast-Reroute: Loop-Free
Alternates. Internet Engineering Task Force: RFC 5286, March 2008.

[BFPS05] S. Bryant, C. Filsfils, S. Previdi, and M. Shand. IP fast-reroute using
tunnels. Internet Draft, available online: http://tools.ietf.org/html/
draft-bryant-ipfrr-tunnels-03, April 2005.

[BR06] R. Balasubramanian and S. Ramasubramanian. Minimizing average path cost
in colored trees for disjoint multipath routing. In 15th International Conference
on Computer Communications and Networks, ICCCN 2006, pages 185–190,
October 2006.

[BSP10] S. Bryant, M. Shand, and S. Previdi. IP fast reroute using Not-via ad-
dresses. Internet Draft, available online: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-notvia-addresses-06, 2010.

[CB92] B. Chinoy and H. W. Braun. The National Science Foundation network. Tech.
Rep., CAIDA, available online: http://www.caida.org/outreach/papers/
1992/nsfn/nsfnet-t1-technology.pdf, Sep 1992.

[CHA07] T. Cicic, A. F. Hansen, and O. K. Apeland. Redundant trees for fast IP recovery.
In Broadnets, pages 152–159, 2007.

[CHK+10] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin,
M. Menth, S. Gjessing, and O. Lysne. Relaxed multiple routing con-
figurations: IP fast reroute for single and correlated failures. IAccepted
for publication, IEEE Transactions on Network and Service Management,
available online: http://www3.informatik.uni-wuerzburg.de/staff/menth/
Publications/papers/Menth08-Sub-4.pdf, September 2010.

[Cic06] T. Cicic. An upper bound on the state requirements of link-fault tolerant multi-
topology routing. In Lutfi Yenel, editor, International Conference on Commu-
nications (ICC), page Electronic. IEEE, 2006.

95

96 REFERENCES

[CLY03] S. Curran, O. Lee, and X. Yu. Chain decompositions and independent trees
in 4-connected graphs. In SODA ’03: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 186–191, Philadelphia,
PA, USA, 2003. Society for Industrial and Applied Mathematics.

[CLY06] S. Curran, O. Lee, and X. Yu. Finding four independent trees. SIAM Journal
on Computing, 35(5):1023–1058, 2006.

[Edm73] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96,
1973.

[ERC+] G. Enyedi, G. Rétvári, A. Császár, P. Szilágyi, and Z. Tóth. Instant fault
recovery in IP networks. Presentation and demo at the High Speed Networking
Workshop, Balatonkenese, Hungary, May 2008.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, (2), 1976.

[FB05] Pierre Francois and Olivier Bonaventure. An evaluation of ip-based fast reroute
techniques. In Proceedings of ACM CoNext 2005, 2005.

[FFEB05] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure. Achieving sub-second
igp convergence in large IP networks. SIGCOMM Comput. Commun. Rev.,
35(3):35–44, 2005.

[FHHK06] B. Fenner, M. Handley, H. Holbrook, and I. Kouvela. Protocol independent
multicast - sparse mode (pim-sm): Protocol specification (revised). Internet
Engineering Task Force: RFC 4601, August 2006.

[fS02] International Organization for Standardization. OSI IS-IS intra-domain routing
protocol. ISO/IEC 10589:2002, 2002.

[Gjo07] M. Gjoka. Evaluation of IP fast reroute proposals. In Proceedings of IEEE
Comsware, 2007.

[GO05] M. L. Garcia-Osma. TID scenarios for advanced resilience. Tech. Rep., The
NOBEL Project, Work Package 2, Activity A.2.1, Advanced Resilience Study
Group, Sep 2005.

[Han98] Dagmar Handke. Independent tree spanners. In Graph-Theoretic Concepts in
Computer Science, pages 203–214, 1998.

[Huc94] A. Huck. Independent trees in graphs. Graphs and Combinatorics, 10(1):29–45,
1994.

[ICM+02] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis
of link failures in an IP backbone. In IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 237–242, New York, NY,
USA, 2002. ACM.

[IR84] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed net-
works. In SFCS ’84: Proceedings of the 25th Annual Symposium onFoundations
of Computer Science, 1984, pages 137–147, Washington, DC, USA, 1984. IEEE
Computer Society.

REFERENCES 97

[JRY09] G. Jayavelu, S. Ramasubramanian, and O. Younis. Maintaining colored trees
for disjoint multipath routing under node failures. IEEE/ACM Transactions on
Networking, 17(1):346–359, 2009.

[KHC+06] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP network
recovery using multiple routing configurations. In Proc. of the 25th International
Conference on Computer Communications (IEEE INFOCOM), 2006.

[KHC+08] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP net-
work recovery using multiple routing configurations. In Network Operations and
Management Symposium, 2008. NOMS 2008. IEEE, 2008.

[KHv+09] Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičic, Stein Gjessing, and Olav
Lysne. Multiple routing configurations for fast IP network recovery. IEEE/ACM
Trans. Netw., 17(2):473–486, 2009.

[KRKH09] S. Kini, S Ramasubramanian, A. Kvalbein, and A. F. Hansen. Fast recovery
from dual link failures in IP networks. INFOCOM 2009, April 2009.

[KW08] D. Katz and D. Ward. Bidirectional forwarding detection. Internet Draft, avail-
able online: http://tools.ietf.org/html/draft-ietf-bfd-base-08, March
2008.

[LFY07] A. Li, P. Francois, and X. Yang. On improving the efficiency and manageability
of NotVia. In Proceedings of ACM CoNEXT, pages 1–12, 2007.

[LLW+09] R. Luebben, G. Li, D. Wang, R. Doverspike, and X. Fu. Fast rerouting for IP
multicast in managed iptv networks. In 17th International Workshop on Quality
of Service, 2009. IWQoS., pages 1–5, July 2009.

[Lov76] L. Lovász. On two minimax theorems in graph theory. Journal of Combinatorial
Theory, pages 96–103, 1976.

[LYN+04] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. Proactive vs
reactive approaches to failure resilient routing. In IEEE Infocom’04, 2004.

[MBFG99] M. Médard, R. A. Barry, S. G. Finn, and R. G. Galler. Redundant trees for
preplanned recovery in arbitary vertex-redundant or edge-redundant graphs.
IEEE/ACM Transactions on Networking, 7(5):641–652, Oct 1999.

[MIB+04] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, and C. Diot.
Characterization of failures in an IP backbone. In IEEE Infocom’04, pages
2307–2317, March 2004.

[MLMB05] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Boston university
Representative Internet Topology gEnerator. http://www.cs.bu.edu/brite,
2005.

[Moy98] J. Moy. OSPF version 2. Internet Engineering Task Force: RFC 2328, April
1998.

[MP06] E. Mannie and D. Papadimitriou. Recovery (protection and restoration) ter-
minology for generalized multi-protocol label switching (gmpls). Internet Engi-
neering Task Force: RFC 4427, March 2006.

98 REFERENCES

[MTSIN98] K. Miura, D. Takahashi, S.-I.Nakano, and T. Nishizeki. A linear-time algorithm
to find four independent spanning trees in four-connected planar graphs. In
WG ’98: Proceedings of the 24th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 310–323, London, UK, 1998. Springer-
Verlag.

[NLY+07] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C-N. Chuah. Fast local rerouting
for handling transient link failures. IEEE/ACM Transaction on Networking,
15(2):359–372, 2007.

[NLYZ03] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang. Failure insensitive routing for
ensuring service availability. In Proceedings International Workshopon Quality
of Service (IWQoS), 2003.

[PMR+07] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault. Multi-
topology (MT) routing in OSPF. Internet Engineering Task Force: RFC 4915,
June 2007.

[Pos81] J. Postel. Internet protocol. Internet Engineering Task Force: RFC 791, Septem-
ber 1981.

[PSA05] P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to rsvp-te for lsp
tunnels. Internet Engineering Task Force: RFC 4090, May 2005.

[Qua] GNU Quagga routing software. http://www.quagga.net.

[Ram04] S. Ramasubramanian. Supporting multiple protection strategies in optical net-
works. Technical report, Department of Electrical and Computer Engineering,
University of Arizona, November 2004.

[RHK06a] S. Ramasubramanian, M. Harkara, and M. Krunz. Distributed linear time
construction of colored trees for disjoint multipath routing. In IFIP Networking,
pages 1026–1038, May 2006.

[RHK06b] S. Ramasubramanian, M. Harkara, and M. Krunz. Distributed linear time
construction of colored trees for disjoint multipath routing. 5th International
IFIP-TC6 Networking Conference, May 2006.

[RKK07] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz. Disjoint multipath
routing using colored trees. Computer Networks, 51(8):2163–2180, 2007.

[RSM03] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee. Survivable wdm mesh
networks. Journal of Lightwave Technology, 21(4):870–883, 2003.

[SB10a] M. Shand and S. Bryant. A framework for loop-free convergence. Internet
Engineering Task Force: RFC 5715, January 2010.

[SB10b] M. Shand and S. Bryant. IP Fast Reroute framework. Internet Engineering
Task Force: RFC 5714, January 2010.

[SG01] A. Shaikh and A. Greenberg. Experience in black-box OSPF measurement.
In IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pages 113–125, 2001.

[SND] Survivable fixed telecommunication Network Design library (SNDlib). http:
//sndlib.zib.de.

REFERENCES 99

[SRM02] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee. Fault management in
IP-Over-WDM networks: Wdm protection versus IP restoration. IEEE Journal
on Selected Areas in Communications, 20(1):21–33, January 2002.

[ST08] P. Szilágyi and Z. Tóth. Design, implementation and evaluation of an IP Fast
ReRoute prototype. Technical report, BME, 2008. to appear at Scientific
Student Conference’08, available online: http://opti.tmit.bme.hu/~enyedi/
ipfrr/.

[TH00] D. Thaler and D. Hopps. Multipath issues in unicast and multicast next-hop
selection. Internet Engineering Task Force: RFC 2991, November 2000.

[TL07] Z. Tóth and A. B. Lajtha. Fast failure recovery in IP networks. Technical re-
port, BME, November 2007. at Scientific Student Conference’07, in Hungarian,
available online: http://opti.tmit.bme.hu/~enyedi/ipfrr/.

[TRK06] P. Thulasiraman, S. Ramasubramanian, and M. Krunz. Disjoint multipath
routing in dual homing networks using colored trees. In IEEE Globecom, pages
1–5, November/December 2006.

[VPD04] J. Vasseur, M. Pickavet, and P. Demeester. Network Recovery: Protection and
Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier, 2004.

[WN07] J. Wand and S. Nelakuditi. IP fast reroute with failure inferencing. In Proc.
of ACM SIGCOMM Workshop on Internet Network Management – The Five-
Nines Workshop, 2007.

[WZN06] J. Wang, Z. Zhong, and S. Nelakuditi. Handling multiple network failures
through interface specific forwarding. In IEEE Globecom, November 2006.

[XCT02a] G. Xue, L. Chen, and K. Thulasiraman. Cost minimization in redundant trees
for protection in vertex-redundant or edge-redundant graphs. In PCC ’02:
Proceedings of the Performance, Computing, and Communications Conference,
2002. on 21st IEEE International, pages 187–194, Washington, DC, USA, 2002.
IEEE Computer Society.

[XCT02b] G. Xue, L. Chen, and K. Thulasiraman. Delay reduction in redundant trees for
preplanned protection against single link/node failure in 2-connected graphs. In
IEEE Globecom, November 2002.

[XCT02c] G. Xue, L. Chen, and K. Thulasiraman. QoS issues in redundant trees for pro-
tection in vertex-redundant or edge-redundant graphs. In IEEE International
Conference on Communications (ICC), volume 5, pages 2766–2770, 2002.

[XCT03] G. Xue, L. Chen, and K. Thulasiraman. Quality-of-service and quality-of-
protection issues in preplanned recovery schemes using redundant trees. IEEE
Journal on Selected Areas in Communications, 21(8):1332–1345, October 2003.

[ZI89] A. Zehavi and A. Itai. Three tree-paths. Journal of Graph Theory, 13(2):175–
188, 1989.

[ZNY+05] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C-N Chuah. Failure
inferencing based fast rerouting for handling transient link and node failures.
In IEEE Infocom’05, 2005.

100 REFERENCES

[ZXTT05] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman. Linear time construction
of redundant trees for recovery schemes enhancing QoP and QoS. INFOCOM
2005, March 2005.

[ZXTT08] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman. Faster algorithms for con-
struction of recovery trees enhancing QoP and QoS. IEEE/ACM Trans on
Networking, 16(3):642–655, 2008.

Publication of new results

[J] Journals

[J1] András Császár, Gábor Enyedi, Gábor Rétvári, Marcus Hidell, Peter Sjödin, “Con-
verging the Evolution of Router Architectures and IP Networks”, IEEE Network Mag-
azine, Special Issue on Advances in Network Systems Architecture, 21:4(8–14) 2007.

[J2] Péter Fodor, Gábor Enyedi, Gábor Rétvári, Tibor Cinkler, “Layer-Preference Policies
in Multi-layer GMPLS Networks”, Photonic Network Communications 2009.

[J3] Gábor Enyedi, Gábor Rétvári, “Gyors hibajavítás IP hálózatokban (Hungarian)”,
Híradástechnika, 64:3–4(20–24) 2009.

[J4] Gábor Enyedi, Gábor Rétvári, “Finding Multiple Maximally Redundant Trees in Lin-
ear Time”, Accepted to Periodica Polytechnica Electrical Engineering, available online:
http://opti.tmit.bme.hu/~enyedi/ipfrr/, 2010.

[C] Conferences

[C1] Péter Fodor, Gábor Enyedi, Tibor Cinkler, “A Fast and Efficient Traffic Engineering
Method for Transport Networks”, V Workshop in G/MPLS Networks (WGN5), pages
129–141, 2006.

[C2] Gábor Enyedi, Gábor Rétvári, Tibor Cinkler, “A Novel Loop-free IP Fast Reroute
Algorithm”, 13th EUNICE Open European Summer School and IFIP TC6.6 Work-
shop on Dependable and Adaptable Networks and Services (EUNICE), Twente, The
Netherlands, 2007. BEST PAPER AWARD

[C3] Gábor Enyedi, Gábor Rétvári “A Loop-Free Interface-Based Fast Reroute Technique”,
4th EURO-NGI Conf. on Next Generation Internet Networks (EuroNGI), Krakków,
Poland, pages 39–44, 2008.

101

102 PUBLICATION OF NEW RESULTS

[C4] Péter Fodor, Gábor Enyedi, Gábor Rétvári, Tibor Cinkler, “An Efficient and Prac-
tical Layer-preference Policy for Routing in GMPLS Networks”, 13th Int. Telecom-
munications Network Strategy and Planning Symposium (NETWORKS), Budapest,
Hungary, 2008.

[C5] Gábor Enyedi, Péter Szilágyi, Gábor Rétvári, András Császár, “IP Fast ReRoute:
Lightweight Not-Via without Additional Addresses”, IEEE INFOCOM-MiniConference,
Rio de Janeiro, Brazil, April 2009.

[C6] Gábor Enyedi, Gábor Rétvári, Péter Szilágyi, András Császár, “IP Fast ReRoute:
Lightweight Not-Via”, IFIP Networking, Aachen, Germany, May 2009.

[C7] Gábor Enyedi, Gábor Rétvári, András Császár, “On Finding Maximally Redundant
Trees in Strictly Linear Time”, IEEE Symposium on Computers and Communications,
ISCC, Sousse, Tunisia, July 2009.

[C8] Gábor Rétvári, János Tapolcai, Gábor Enyedi, András Császár “IP Fast ReRoute:
Loop-free Alternates Revisited”, Accepted to IEEE INFOCOM, available online: http:
//opti.tmit.bme.hu/~enyedi/ipfrr/, Shanghai, China, April 2011.

[P] Patent Applications

[P1] András Császár, Gábor Enyedi, “Link failure recovery method and apparatus”, Patent
application WO/2009/010090, 2009.

[P2] András Császár, Gábor Enyedi, “A System and Method of Implementing Lightweight
Not-via IP Fast ReRoutes in a Telecommunications Network”, Patent application
WO/2010/055408, 2010.

[P3] András Császár, Gábor Enyedi, “Fast Path Notification”, Patent application
PCT/EP2010/059391, 2010.

[P4] András Császár, Gábor Enyedi, “IP Fast ReRoute Relying on Fast Path Notification”,
Patent application PCT/EP2010/065040, 2010.

